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ABSTRACT
Flow within thick liquid films present owing to capillary effects in the pore space is of key importance 
in many multiphase flow applications in porous media, for example, drying or oil recovery processes. 
The viscous resistance to the flow is a key parameter for modelling fluid transport in such situations. It 
is well known for liquid films wetting the corners of tubes of polygonal cross-section. In this latter case, 
the liquid films shape is simple and can be readily obtained. The situation is much more involved when 
considering a realistic pore space, as in a packing of spherical particles, for example. In this case, X-ray 
tomography observations have shown that most of the liquid is confined around contact points between 
particles at intermediate liquid saturation. Nonetheless, a connectivity of all the liquid bridges through-
out the particle packing can exist, allowing liquid transport across the porous medium. The ultimate 
goal of the present research is to provide the viscous flow resistance for such capillary liquid cluster of 
complex shape. As a first step in this direction, we present in this paper direct numerical simulation of 
the Stokes flow in liquid bridges obtained between two cylindrical pillars confined between two hori-
zontal plates. The liquid bridge shape is obtained under conditions of hydrostatic equilibrium thanks 
to the Surface Evolver software. Then simulations of the viscous flow within the bridge are performed 
using Comsol Multiphysics® Creeping flow solver. 
Keywords:  capillary flow, liquid bridge,  porous media, viscous resistance.

1 INTRODUCTION
Flows in thick liquid films trapped by capillary effects in the corners of the pore space can have a 
major impact on transport processes in porous media. For example, it has been shown that the 
overall drying time was orders of magnitude shorter in systems favoring the development of cor-
ner films, for example, [1–3]. However, the film model considered in these references was 
essentially the one developed for a straight tube of polygonal cross section. The pore space geom-
etry in a porous medium is of course considerably more complex, and the thick films can have 
much more complex shapes as demonstrated for instance in [4] for random packing of particles. 
In this case, most of the liquid is confined around contact points between particles. Nonetheless, a 
connectivity of all the liquid bridges throughout the particle packing can exist, allowing flow and 
transport within the film network across the porous medium. Thus, this case can be envisioned as 
a system of interconnected liquid bridges. As a first step toward the computation of flow in such 
complex systems, we consider in the present paper a geometrical configuration somewhat simpler 
than the one expected in random  packing of particles but significantly more complex than in 
straight tubes. As illustrated in Fig. 1, we consider the system formed by a series of liquid bridges 
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connecting a straight array of cylindrical pillars confined between two horizontal plates. Figure 1 
shows a representative unit cell of this chain of interconnected liquid bridges.  In what follows, we 
consider the case where the distance h between the two horizontal plates is equal to the pillar 
diameter d (the height of pillars is therefore equal to their diameter), whereas the gap w between 
the two pillars is equal to the pillar radius. Hence, the lattice spacing L, that is, the distance 
between the centers of two neighbor pillars, is equal to 1.5 d.

The main objective is to compute the viscous flow resistance of the bridge as a function of 
its volume. As discussed in [1], this parameter is crucial to determine the spatial extent of 
liquid films (here, e.g., the maximum distance over which liquid bridges can be intercon-
nected along the aforementioned straight array of pillars in the presence of a viscous flow).  
This information will be used in a future work devoted to the study of evaporation from 
arrays of cylinders connected by liquid bridges.

The shape of the liquid bridge is controlled only by capillary effects. This means that we 
are interested in situations where the viscous pressure drops over the unit cell  due to the flow 
within the liquid bridge is negligible compared to the pressure jump across the liquid–gas 
interface due to capillarity (the capillary number is very small). As a result, the computational 
procedure can be decomposed into two main steps. The first step is to compute the shape of 
the liquid bridge for a given liquid volume under hydrostatic conditions. To this end, we use 
the energy minimizer software Surface Evolver (SE) [5], as explained in Section 2.1. 
 Afterwards, the flow in liquid bridge is computed using the commercial code Comsol 
 Multiphysics®. This second step is described in Section 2.2. 

2 METHODS OF SOLUTION

2.1 Surface Evolver

As mentioned in the introduction, the first step in the present work consists in computing the 
shape of the liquid bridge. To this end, we use the SE software. Starting from an initial ‘guess’ 
shape for the static liquid bridge, SE progressively converges towards the shape minimizing 
the surface energy by a gradient descent method. During the evolution procedure, the surface 
can be progressively refined by the user, by increasing the number of facets that shape it. 

Gravitational effects are neglected. The contact angle between the liquid and the top and 
bottom plates can be adjusted freely. Note that the liquid is initially confined into a parallel 

Figure 1:  (a) Liquid bridge connecting two pillars confined between two horizontal plates 
(not shown in this sketch). The dimensionless liquid bridge volume is 0.46 (the 
reference volume is the volume of a pillar). The distance between the two horizontal 
plates is equal to the pillar diameter d (the height of pillars is therefore equal to 
their diameter), whereas the gap w between the two pillars is equal to the pillar 
radius so that the length of unit cell is L=1.5d. (b) Computational domain (one-
fourth of unit cell is considered owing to symmetries).
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lipipedic volume enclosing the two pillars. For small enough liquid volumes, it is found after 
surface energy minimization that the liquid does not wet some part of the pillars surface. Note 
that a contact angle of 0° is imposed on the pillar surface by SE. Imposing the same contact 
angle than the one imposed on the top and bottom plates would require to start with another 
initial shape. This will be the subject of a future work. The volume of liquid confined between 
the two cylindrical pillars is another control parameter. In the present study, the total volume 
of the liquid bridge, made dimensionless by a single pillar volume, was taken to vary between 
0.24 and 0.99. For such volumes, there is always a liquid bridge between the two pillars, that 
is, the liquid is not split into disconnected liquid clusters around each pillar.

A typical final shape is illustrated in Fig. 1a. The surface of the pillars is displayed in red 
colour. To ease the capillary surface visualization, the top and bottom plates are not  displayed. 
The surface mesh display has also been turned off. The computational domain to be used in 
Comsol (see Section 2.2) is shown in Fig. 1b. It consists, for symmetry reasons, in a quarter 
of the liquid bridge unit cell, that is confined between the plane y = 0 and the plane y = L.

As can be seen from Fig. 1a, we actually consider an isolated system formed by two pillars 
(as opposed to a spatially periodic system of pillars). It is surmised that the computed shape 
is very close to the one corresponding to a spatially periodic system of pillars in the y direc-
tion. However, this remains to be confirmed.

2.2 Viscous flow simulation

The wetting fluid is supposed isothermal, incompressible and Newtonian with constant 
dynamic viscosity μ and constant density ρ. Due to small dimensions, the Reynolds number 
is far less than 1, so that inertial terms can be neglected and gravity is not considered. From 
these assumptions, the equations of motion reduce to Stokes equations. Continuity and 
momentum equations can thus be expressed as

 ∇ =.u 0  (1)

 m∇ − ∇ =2 0u Pl  (2)

where u is the liquid velocity and Pl the pressure in the liquid. 
Equations (1) and (2) are solved numerically using the finite element based commercial 

software COMSOL Multiphysics® in the liquid domain depicted in Fig. 1b. Free tetrahedral 
elements are used for meshing the liquid domain. A no-slip boundary condition is imple-
mented on the liquid–pillar and liquid–bottom plate interfaces. No-viscous stress pressure 
boundaries are imposed at the computational inlet and outlet boundaries. Similarly, as in a 
previous work for a simpler geometry, that is [6], two different boundary conditions are used 
and compared at the liquid–gas interface, namely the no-stress boundary condition or the 
no-slip boundary condition so as to simulate a perfectly clean interface or a rigidified inter-
face due to surfactant for instance. The computational mesh is refined until obtaining results 
independent of meshing.

3 RESULTS AND DISCUSSION

3.1 Validation of the numerical procedure 

Before consideration of liquid bridges, the numerical procedure combining SE and Comsol 
computations was tested for the much simpler geometrical configuration considered in [6], 
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namely the flow in a liquid wedge trapped by capillarity in a right angle straight corner. This 
case is illustrated in Fig. 2a. As in [6] the viscous resistance within the liquid wedge is 
expressed by the dimensionless flow resistance b defined as
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where uy  is the average velocity in the wedge in the longitudinal direction , calculated 

by dividing the flow rate in the wedge by the liquid corner area, R is the interface curvature 

radius in the x–z plane in Fig. 2a (the interface is flat in the y direction), dP

dy
l  is the pressure 

gradient driving the flow in the liquid wedge.
The meniscus surface is first computed using SE in a right angle corner as illustrated in 

Fig. 2a varying the contact angle implemented on the y–z and x–y planes in SE. The cross-sec-
tion profile of meniscus is then imported into Comsol and then the liquid wedge is rebuilt 
with an extrude tool available in Comsol to construct a mesh more adapted to the viscous flow 
computation. The vertical and bottom wall are set as no-slip boundary, the two cross-sections 
along y axis are set as inlet and outlet. A pressure difference DPl is imposed between the inlet 
and the outlet. The no viscous stress or the no-slip boundary condition is imposed at the liq-
uid–gas interface. 

After computation of the flow using Comsol, the viscous resistance is computed using eqn 
(3). This was performed by varying the contact angle. The comparison between our compu-
tations and the results of [6] is shown in Fig. 2b. The red lines in Fig. 2b correspond to the 
flow resistance results obtained using our procedure, whereas the blue ones are the ones from 
Ref. [6]. Black and blue lines correspond to no-slip boundary, and red and green lines corre-
spond to no-stress boundary conditions at liquid–gas interface, respectively. As can be seen, 
there is an almost perfect agreement between our results and the ones of [6].

3.2 Capillary pressure versus liquid bridge volume

The SE computation was first made by varying the volume of the liquid bridge present in the 
unit cell. As expected and shown in Fig. 3b, increasing the volume reduces the pressure jump 

Figure 2:  (a) Example of liquid–gas interface shape in a right angle straight corner computed 
using Surface Evolver. (b) Variation in flow resistance with contact angle for the 
straight corner flow configuration. Comparison between the present computations 
(referred to as SE) and the results of [6] (referred to as ‘Lit.’).
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between the liquid and the gas phase due to capillarity. The pressure jump is the capillary 
pressure Pc defined by Pc = Pg – Pl, where Pg and Pl are the pressures in the liquid and the 
gas phases, respectively. The local shape of the liquid–gas interface is also characterized by 
the curvature radius of the liquid–gas interface in the x–z plane at the unit cell inlet (this cor-
responds to the green line in Fig. 1b. The results are shown in Fig. 3a, where the volume of 
the unit cell liquid bridge and the considered curvature radius are made dimensionless using 
the volume of a pillar and the pillar radius, respectively. As can be seen from Fig. 3b, the 
capillary pressure can be actually computed simply from the determination of Rin.

3.3 Pressure distribution in liquid bridge

The pressure distribution induced by creeping viscous flow within the bridge is illustrated in 
Fig. 4a for the case q = 10° and a dimensionless liquid bridge volume in unit cell of 0.46. The 
pressure field is further illustrated in Fig. 4b, which shows the pressure (blue line) and the 
pressure gradient along the bottom triple line of Fig. 4a. As illustrated in Fig. 4a, one can 
distinguish two main regions in the liquid bridge: the central region between the two pillars 
where the liquid bridge cross-section areas in the x–z plane are relatively large and the con-
striction regions at the inlet and outlet of the unit cell where the liquid bridge is in contact 
with the pillars. As can be seen, the pressure gradient is concentrated in the inlet and outlet 
regions, that is, the constriction regions of the bridge. The pressure variation is significantly 
weaker in the central region of the bridge between the pillars. The flow resistance in this 
example is thus mostly concentrated in the inlet and outlet regions of the bridge.

3.4 Liquid bridge viscous resistance

Similarly as for the flow in a straight corner (see Section 3.1), the viscous flow resistance b 
of the bridge is defined by

Figure 3:  Curvature radius Rin at unit cell inlet and capillary pressure as a function of liquid 
bridge volume in unit cell (made dimensionless using the volume of a pillar):  (a) 
curvature radius Rin in the x–z plane at the unit cell inlet (this corresponds to the 
green line in Fig. 1b) made dimensionless using the pillar radius d/2 as characteristic 
length. (b) Capillary pressure Pc obtained with SE (red dot line) together with the 

pressure jump (black dot line) computed as P
Rcinlet

in

=
g qcos  and made dimensionless 

using P
dcref =

g qcos

( / )2  as the reference pressure (these results are for q = 10°).
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where Rin is the curvature radius at unit cell inlet discussed previously (see Section 3.2). 
Figure 5 shows the variation in the viscous flow resistance with the volume of liquid bridge 
computed for q = 10°. The three insets show the liquid bridge shape observed from above (top 
view) corresponding to dimensionless volume 0.24, 0.46 and 0.99, respectively. As can be 
seen, the shape of liquid bridge significantly changes when the liquid bridge volume is var-
ied. The inlet curvature radius Rin gradually increases with increasing liquid bridge volume, 
which is also illustrated in Fig. 3a. We also observed that in bridge central region (between 
pillars) the curvature radius increases with increasing liquid bridge volume, implying that the 
pressure in the liquid bridge decreases, in accordance with the results shown in Fig. 3b.

As can be seen from Fig. 5, the dimensionless flow resistance of liquid bridge as defined 
by eqn (4) is of the same order of magnitude as the reference dimensionless resistance corre-
sponding to a flow in a right angle straight corner. Table 1 shows a detailed comparison 
between our computations and the case of a right angle strait corner for the special case cor-
responding to the bridge depicted in Fig. 4 (dimensionless liquid bridge volume = 0.46).  As 
can be seen, the flow resistances of the liquid bridge are less than the ones for the right angle 
straight corner for this liquid bridge volume. This can be qualitatively understood from Fig. 
4b, which shows that the pressure drop is significantly less in the central region of the bridge. 
Hence, considering a reduced length in eqn (4), that is, a length lower than L corresponding 
to the length over which the pressure drop is significant, would lead to increased b. However, 
it is not obvious to define such a reduced length only from bridge geometry.

Furthermore, as shown in Fig. 5, the bridge flow resistance varies with liquid bridge 
 volume and can be greater or smaller than for the right angle straight corner resistance 
depending on the liquid bridge volume. The tendency shown in Fig. 5 is consistent with the 
bridge shape variation with its volume depicted in Fig. 5. The bridge is more tortuous for the 

Figure 4:  (a) Example of pressure distributions (isobars on the liquid–gas interface, where b.c. 
is set as no-stress boundary condition) in a liquid bridge of dimensionless volume 

0.46. (b) Distribution of dimensionless pressure (defined as P
P P

Pl
l loutlet

l

* =
−
∆

) and 

distribution of pressure gradient in the liquid along the triple line indicated in Fig. 
3a. The distance along the triple line is made dimensionless using the unit cell 
length L (see Fig. 1), the dimensionless pressure gradient along the triple line is 

defined as 
∂
∂
P

s
P Ll

l/ ( / )∆ , here s is a curvilinear coordinate along the triple line. 
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smaller volumes, which is consistent with the increase of the flow resistance with decreasing 
bridge volume. For the larger volumes tested, the flow resistance is less than for a right angle 
straight corner. This is consistent with the fact that the shape is not tortuous anymore (see the 
shape on the right-hand side in Fig. 5) and less vertical wall is wetted comparatively with a 
straight corner of same length.

4 CONCLUSION
We have described a method for computing the viscous flow in a capillary bridge attached 

by capillarity to two inline pillars confined between two horizontal plates. The method com-
bined two software. The first one is used to compute the bridge shape under capillary 
equilibrium conditions, whereas the second one is used to compute the viscous flow within 
the liquid bridge. This method is of course restricted to situations where the pressure jump 
across the liquid–gas interface due to capillarity is much larger than the viscous pressure drop 
within the bridge. The study shows that the dimensionless flow resistance of the bridge can 

Figure 5:  Liquid bridge flow resistance b b/ ref  and liquid bridge shape variation with 
increasing liquid bridge volume in unit cell. Solid line with square symbols 
corresponds to results obtained with the no viscous stress boundary condition at 
the liquid–gas interface, solid line with circles is for the no-slip boundary condition 
imposed at the liquid–gas interface. The liquid bridge flow resistance is divided by 
the flow resistance bref for a right angle corner flow documented in [6] (bref = 93.93 
for the no-stress boundary condition and bref = 253.2 for the no-slip boundary 
condition and q = 10°).

Table 1:  Comparison of dimensionless flow resistance b between liquid bridge model and 
right angle straight corner model for two values of contact angle for a liquid bridge 
of dimensionless volume 0.46.

Contact angle

Flow resistance

Interface no stress b.c. Interface no slip b.c.

Liquid bridge Straight corner Liquid bridge Straight corner

0 83.22 93.93 201.47 248.8
10 83.26 93.93 202.13 253.2
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be roughly estimated from the well-documented flow resistance in a right angle straight 
 corner, using the curvature radius of the liquid–gas interface in the cross-section of smallest 
area along the bridge.

Further investigations are needed to try to define a simple but more accurate approach to 
this resistance, which actually depends on the liquid bridge volume as well as other  parameters 
such as the pillar spacing or the pillar aspect ratio. The latter were not varied in the present 
studies but can be shown to have an impact on the flow resistance using the computational 
approach presented in the present paper.

The presented results are currently exploited to analyze evaporation experiments in micro-
fluidic devices. They also open up the route toward the computation of the flow in the more 
complex chains of liquid bridges forming in granular porous media. 
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