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aBSTraCT
This article presents the general approach to incorrectly posed boundary value problems of the plane 
theory of elasticity with the boundary conditions formulated through the directions of displacement 
vectors and principal directions of the stress tensor. The approach is aimed at studying the solvability 
of problems of this type and allows one to determine the maximum number of arbitrary parameters on 
which the solution of the problem depends. We report analytical solutions for three particular formula-
tions for the case of elastic half-plane and propose a numerical approach for solving the problems of 
this type for arbitrary contours.
Keywords: boundary value problems, complex potentials, plane elasticity, singular integral equations.

1 INTrODuCTION
This study is an extended version of the papers [1], [2] that have been published recently in 
regard to incorrectly posed problems of plane elasticity that use the boundary conditions 
(BC) formulated in terms of stress and displacement orientations. The first paper [3] on this 
topic has been published in 1999 and assumed the BC posed on the principal stress directions 
and the curvature of the stress trajectories on the contour (expressed through the tangential 
and normal derivative of the principal directions). The approach to these problems involved 
reduction to a system of singular integral equations followed by reduction of the latter to the 
riemann boundary value problem. The main results of [3] are briefly discussed in this paper 
in order to detail the differences in the corresponding integral equations obtained for 
 formulations discussed in [1]–[3].

The motivation of these studies originated from geomechanics where the boundary values 
of stresses and/or displacements are often unknown on the boundary, which makes it impos-
sible to apply classical formulations accepted in solid mechanics. however even incomplete 
information, such as orientations of principal stresses or displacements can serve as possible 
boundary conditions. accordingly, several non-classical formulations of elastic boundary 
value problems, BVP, employing BC in terms of orientations of principal stresses, displace-
ments or tractions have been investigated in [1]–[8]. The mentioned studies are mostly 
dedicated to the investigation of solvability of the BVP with incomplete BC, which leads to 
non-unique solutions. The latter is proved by using the following approach. The complex 
potentials are presented by the Cauchy integrals with unknown densities. Their boundary 
values are found by employing the Sokhotski–Plemelj formulas. These are used to express 
the orientations of tractions, principal stresses and displacements on the contour in the form 
that contains two unknown complex valued functions. further on, one of these functions is 
excluded by imposing the condition of continuity of the stress vector across the contour. Then 
by using two scalar BC in terms of the orientations one can derive a system of two real sin-
gular equations, SIE. These are combined into one linear complex SIE of the general form 
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that contains the unknown function, its conjugate, the singular and regular integrals and their 
conjugates. an approach suggested by Gakhov [9] is used for analysing the solvability of the 
complex SIE. It assumes separation of the dominant part of the complex SIE followed by its 
conversion into the equivalent riemann problem. The solvability of the latter depends on the 
index of the coefficient of the riemann problem that is calculated through the increment of 
its argument (divided by 2p) in traversing the contour anticlockwise. If the index is positive 
then the riemann problem has a finite number of solutions that is proportional to the index, 
otherwise the BVP does not have solutions in the class of holomorphic functions.

It is shown in [1]–[8] that the dominant SIE corresponds to the case of elastic half-plane 
regardless of the BC used. Therefore, we further consider the dominant SIE only. however, 
in contrast to the previously used approach we deal with two real SIEs. The reason behind 
this is to build the successive solutions of the equations in the system for the problems that do 
not directly allow for the application of the technique mentioned above because of the 
 presence of the derivatives of the unknown functions in the complex dominant SIE.

2 PrElIMINarIES
The general solution of plane elastic problems for isotopic homogeneous media is expressed 
in terms of the Kolosov–Muskhelishvili formulas [10] by two holomorphic functions 
(complex potentials) F(z) and Y(z) of a complex variable z = x1+ix2 and have the form (no 
body forces)
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here P is the mean stress (a harmonic function), D is the complex stress deviator (a 
 bi-holomorphic function), sij are the components of the plane stress tensor (i, j = 1,2), W is 
the complex displacement vector, ui (i = 1,2) are the displacement components, G is the shear 
modulus, k n= −3 4  for the plain stress and k n n= − +( ) / ( )3 1  for the plane stress conditions, 
n is Poisson’s ratio. hereafter, we do not show the arguments of the stresses/displacements, 
but keep them for the potentials where necessary to distinguish between boundary and 
 internal points.

The complex potential j(z) and its derivatives can be expressed in the form of the Cauchy-
type integrals as follows:
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where G is a smooth contour (closed or open) in the complex plane and g(t) is a complex- 
valued function referred to as the density of the complex potential. for y(z) and Y(z) it is 
convenient to use the following presentation:
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where h=h(t) is another complex-valued function ei d
ds

J z z z z( ) ,= = ′ ∈Γ, J  is the angle 
between the tangent and the x1-axis, s is the arc length.
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The boundary values of the complex potentials are found by the Sokhotski–Plemelj 
 formulas [9]

 2 2f y z± ±= ± + = ± ′ + − ′g g h g h tgS S( ), ( ) , (4)

where the superscripts designate the boundary values for the interior (+) and exterior (−) 
domains with respect to the contour G and the following notation for the singular integral is 
introduced
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By using (4) one obtains the boundary values of the stress and displacement functions
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where two regular integral operators are introduced as follows:
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(9)

It should be emphasized that the unknown functions g and h are not independent of each 
other and a certain relationship between them should be imposed depending on BC of the 
problem considered. If one selects h g= k  then non-integral terms in (8) disappear, which 
means continuity of the displacement vector across the contour. If h g= −  (respectively, 

′ = − ′−h e gi2 J ) then the stress vector is continuous across the contour and the expression 
s J= + −P e Di2  derived from (6) and (7) does not contain non-integral terms and has the form
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where the second term in the right-hand side is not singular. It is evident that if the stresses 
on the contour are given then (10) represents a complex SIE for the determination of the 
unknown complex-valued function ′g

 (as well as (8) can be considered as a SIE for the sec-
ond fundamental problem). It can be shown that by simple manipulations (8) and (10) can be 
reduced to those forms reported in linkov [11].

One can use (6)–(8) in order to derive SIEs for incorrectly posed BVPs considered in the 
previous studies [1]–[8]. It is worth noting that as shown by Gakhov [9], the regular integral 
operators do not affect solvability of the complex SIE (excluding some especially designed 
cases). Therefore, they can be omitted when studying the solvability of a particular boundary 
value problem for an arbitrary contour. On the other hand, all regular operators in (6)-(10) 
vanish in the case of half-plane (or become constants in the case of a circle). Moreover, the 
problems for half-plane/circle can be solved in closed form, which can also be used for the 
development of numerical methods for arbitrary domains, which is necessary as for certain 
non-classical formulations the uniqueness is not fulfilled and hence the direct application of 
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the standard techniques for solving SIE is not possible. We further consider some typical 
non-classical BVPs for an isotropic elastic half-plane that lead to different types of SIE and 
then investigate solvability of these problems.

3 BOuNDary ValuE PrOBlEMS fOr half-PlaNE

3.1 formulation

let us represent the stress deviator and displacement vector in the form

 D i D D= = = − =τ α α π θ τmax maxexp( ), arg , | |2 , (11)

 W i W W= = =ω β ω βexp( ), | |, arg .  (12)

here tmax=(s
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 and the real axis), thus D=−tmaxexp(−2iq); W is the complex displacement  vector, 

w≥0 and b are, respectively, the modulus and the argument of the function W.
We consider non-classical formulations in terms of the orientations of stresses and dis-

placements, i.e. assume that the angles a b,  and their normal derivatives ′ ′a bn n,  are known on 
the real axis.
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These four conditions can be combined into three pairs of BC that will be discussed for the 
case of an upper half-plane
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- BVP3. Problem (a,b) assumes BC (13)–(14).

Note that the indexes ± above can be dropped when considering a problem for a single 
half-plane. We will also impose relationships between the unknown functions g and h by 
assuming either continuity of s or W across the contour, i.e. assuming

 h g h g= − =or k .  (17)

depending on the BC. The use of either condition in (17) does not narrow the analysis, they 
provide clear mechanical meaning for analytical continuation of the results onto the entire 
complex plane through the contour.
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It is worth to notice that the above-formulated problems can be initially reduced to a sys-
tem of two real SIE (as the conditions (13)–(16) are real) and then combined into a single 
complex SIE. however even in the latter case the investigation of solvability of the SIE 
 cannot directly use the approach proposed by Gakhov [9] for a complex SIE containing all 
the terms g g g g, , ( ), ( )S S  because the derivatives of the unknown functions are also enter in 
the formulations of BVP1-BVP3. This requires modification of the Gakhov’s method that 
will be done as for system of two real SIEs as for the complex SIE.

3.2 Transformation of boundary values

On the real axis G ={x: |x|<∞} the singular integral specified in (5) takes the following form:
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It satisfies the property

 
S Sg g( ) = − ( ) .  (19)

The boundary values of the functions D and W are found from (7) to (8) by taking into 
account that R1=R2=0 and J =0

 2D h g h g± = ± ′ − ′ + ′ − ′( ) ( )S  (20)

 
2GW g h g h± = ± − + +( )( )k kS  (21)

hereafter the superscripts ± stay for the boundary values for the upper/lower half-planes, 
respectively, elastic moduli G and k in general can be different for upper/lower half-planes, 
but we do not address this case and therefore do not use the superscripts ± for them.

The boundary values of the normal derivatives of the arguments of the functions D and W 
can be replaced by the boundary values of the derivatives with respect to the complex variable 
or by its conjugate as explained in [3] for BVP1 and discussed in detail for BVP2.

4 SOluTIONS Of ThE BOuNDary ValuE PrOBlEMS

4.1 BVP1 and BVP2

BVP1 has been considered in detail by Galybin and Mukhamediev [3] and presented here for 
the sake of completeness. Investigation of solvability of BVP2 is found in Galybin [1]. here, 
we present these solutions together to illustrate the diversity of the approaches. Despite these 
problems look very similar there exist one essential difference between them. BVP1 is for-
mulated for the bi-holomorphic function D, i.e. such a function second derivative of which 
with respect to the conjugated complex variable vanishes (as evident from the second 
 Kolosov’s formula in (1)). The complex-valued function W is not bi-holomorphic but satisfies 
the second order equation below
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Therefore the results regarding solvability of BVP1 cannot be directly applied to BVP2.
We will briefly present the results obtained for BVP1 and then provide more detailed anal-

ysis for BVP2 for the case of an arbitrary contour G and analytical solutions for the case of 
half-plane. It is believed that consideration of the general domain will be useful for under-
standing of the numerical approach that discussed further in Section 5.

4.1.1 Main results for BVP1
let us recall that the system of two real-valued SIE obtained in [3] for BVP1 has the form
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where η α= +2J  is a known angle and l is an auxiliary unknown function expressed 
through unknown densities m c= ′ = ′re( ), Im( )g g  by a certain relationship. It is evident 
from (23) that the solution of the system can be obtained in two steps. The first SIE is 
reduced to the homogeneous riemann problem A+ = −e2ihA−, for finding holomorphic func-
tion A and m = A+−A−, followed by the solving the second SIE by reducing it to the 
non-homogeneous riemann problem that have the same index K

1
 as the first one. It is deter-

mined as follows:
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The solution of the riemann problem for K1 > 0 is found in [9] and, in general, contains a 
polynomial of the K1 degree with complex coefficients. Therefore, the solution of two SIE 
includes 2K

1
 complex coefficients. as the result it has been shown that the system of SIE in 

(23) depends only on K
1
 determined by (24) and has 2K

1
 arbitrary complex constants (or 4K

1
 

real), which are not independent due to real valuedness of the function m and c. Thus only 
half of them are considered as the independent ones as it has been proved in [3]. We do not 
present the exact formulas for the solution here but have to admit that they are of the form 
similar to the solution of BVP3 presented further on.

4.1.2 Transformation of the boundary conditions for BVP2 for an arbitrary contour
let us assume that on a smooth contour G (closed or opened) the orientation of the displace-
ment vector angle b = b(z) is known together with its normal derivative ′bn ( )z . The first 
condition means that argW(z) = b(z) and leads to the boundary condition of the form:

 
Im ,e W e W e W- -

( ) = ⇔ = ∈
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This equation expresses the fact that e−ibW=w is real everywhere in the domain including 
its boundary. By differentiation of Im(e−ibW)=0 with respect to the outward normal n one finds

 
e W e W i e W e Wi i i i− −′ − ′ = ′ +( ) ∈β β β ββn n n , z Γ. (26)

Taking (25) into account one can rewrite the right-hand side of (26) and present the second 
boundary condition in the form
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 e W e W i e Wi i i− −′ − ′ = ′ ∈β β ββn n n2 ( ) ,z z Γ.  (27)

The derivatives of the complex-valued function f = f (z) on the contour G are defined as 
their limiting values. respectively, the tangent and normal derivatives are presented as 
follows:
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here one should notice that the derivatives in the left-hand side are taken with respect to 
the arc length s, i.e. they can be expressed through the derivatives with respect to the complex 
variable z on the contour by the following relationship:
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By taking into account that ′ =z Jexp( )i  one can present the tangential and normal deriva-
tives of the vector W on the contour G in the form
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where Y(z) is defined by (3) where ′ = − ′−h e gi2 J
. It is evident from (28) that
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The latter formulas can be rewritten by using complex conjugation of the second expres-
sion in (32) and by passing to the complex derivative using (29) that results in the following 
expressions:

 ′ = −Wz κΦ Φ( ) ( )z z , Wz
’ = − ′ −z z zΦ Ψ( ) ( ). (33)

Note that these can be directly obtained by direct differentiation of (1). formulas (32)–(33) 
provide the link between the tangential and normal derivatives and the boundary values of the 
derivatives with respect to z and its conjugate on the contour G. It is evident that if the bound-
ary value of any complex-valued function is known than the tangential derivative is also 
known and if its normal derivative is known then one can find the boundary values of the 
derivatives with respect to z.

let us combine two real conditions (25) and (27) into one complex by differentiation of 
Im(e-ibW)=Im(w)=0 with respect to the variable z. Similarly to (27) one finds
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z
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however in contrast to (27) this form is now complex and combines two real conditions 
equivalent to (25) and (27), therefore it can be used for obtaining a complex SIE.
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4.1.3 Complex singular integral equation
let us substitute the expression for W into the right-hand side of (34) and (33) into the left-
hand side of (34) to obtain the following boundary value problem for the determination of the 
holomorphic functions j, y and their derivatives

e e i e zi i
z

i− −−( ) + ′ +( ) = ′ − −β β βκ βΦ Φ Φ Ψ Φ( ) ( ) ( ) ( ) ( ) ( ) (z z z z z kf z z y z2 )) ,( ) ∈z Γ. (35)

Now it is possible to derive a SIE by substituting the boundary values of the complex 
potentials into (35) followed by the application of the Sokhotski–Plemelj formulas. however, 
this would lead to a SIE that contains both unknown function g(z) and its derivative. No 
direct techniques for investigation of such SIEs are known, which necessitates further trans-
formations in order to obtain a SIE of the Gakhov’s-type mentioned above.

Selection of h g= k  followed by substitution of (8) and (9) into (25) which results in
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Note that the last term on the right-hand side is not singular.
By differentiation of (36) with respect to z one finds
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This provides the relationship between the unknown function g and its contour derivative 
g’ that is further considered as the only unknown function after transformation of the right-
hand side of (34) and (35). The left-hand side of (35) is also transformed in view of the 
Sokhotski–Plemelj formulas, which eventually leads to the following complex SIE:
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Equation (38) represents the full complex SIE for an arbitrary counter for BVP2. It should 
be complemented by the integral conditions expressing the fact that the function g returns to 
its initial value after the complete traverse of the contour,

 
′ =∫ g t dt( ) .

Γ

0
 (39)

4.1.4 The SIE for half-plane
It has been mentioned above that solvability of the BVP can be investigated for the case of 
half-plane, for which the formulas of the previous section can be readily simplified by assum-
ing J = 0, Imz=0, in particular the singular operator assumes the form as shown in (18). It 
obeys the properties shown in (5) and (19). The former is valid for any closed contour, while 
the latter is valid only for the real axis. It is also evident that due to (39) one can conclude that
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S S( ) ( )ζ − ′( ) = − ′( ) =t g x t g 0. (40)

We further consider the case of upper half-plane and therefore the SIE assumes the follow-
ing form :

 

( )( ) ( )e e g g e e e g e ei i i i z

x

i i i− − − −+ ′ − ′ + − −
′
′





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′ − +β β β β β ββ
β

k k S ββ βκ
β
β

−
′
′







′( ) = < ∞z ie g x
x

S 0, | | .

 

 

( )( ) ( )e e g g e e e g e ei i i i z

x

i i i− − − −+ ′ − ′ + − −
′
′







′ − +β β β β β ββ
β

k k S ββ βκ
β
β

−
′
′







′( ) = < ∞z ie g x
x

S 0, | | .  (41)

This equation is the homogeneous dominant SIE, a part of the full SIE of the form investi-
gated by Gakhov [9]. Namely

 ag bg c g d g g g f+ + + + + =S S K L . (42)

here f=0 and the coefficients a,b,c and d are known continuous functions of the complex 
contour variable specified as follows:

 
a e e b e e c e e e di i i i i i z

x

i= + = − − = − −
′
′







= −− − − −k k( ), , ,β β β β β β ββ
β

ee e ei i z

x

i− − +
′
′

β β ββ
β

k .
 

 
a e e b e e c e e e di i i i i i z

x

i= + = − − = − −
′
′





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= −− − − −k k( ), , ,β β β β β β ββ
β

ee e ei i z

x

i− − +
′
′

β β ββ
β

k .  (43)

The regular operators Kg and Lg can be found from the full SIE (38), but in the case of 
half-plane they vanish.

It has been shown [9] that the solvability of SIE (42) is determined by the index calculated 
through the increment of the argument of the complex valued function G after the complete 
traverse of G in the counter-clockwise direction as follows:

 

2 2
1

2
1

2
Κ

Γ Γ
≡ ( ) = [ ] = [ ]

= − = +−
+

Index ln( ) arg( )

, (

G G G

G A iB a c
i

A iB
A iB

p p

))( ) ( )( )a c b d d b− + + −  (44)

If 2K
2
>0 (the coefficient 2 is introduced for convenience), then the solution of the homo-

geneous equation SIE (f=0) depends on 2K
2
 complex constants or 4K

2
 real constants, 

otherwise the SIE does not have solutions, see [9].

4.1.5 Special case of boundary conditions
let us consider the case ′ =βn ( )z 0, which can be important for some applications in geome-
chanics. In this case the coefficients a,b,c and d become

 a e e b e e c e d e ei i i i i i i= + = − − = − = − −− − −κ β β β β β β β( ), , , ( )k k 1  (45)

Therefore,

 A iB e ei i− = − −4κ β β βcos ( )k  (46)
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and consequently

 
G e

e e

e
A iB
A iB

i
i i

i
= =

−
−

−
+

−
2

2

2
β

β β

β
k

k
. (47)

Since k>1 the fraction in (47) does not affect the index as its real part is always positive, 
therefore, the index is found as follows:

 
2 22

1
2

Κ Γ Γ
≡ = [ ] = 



Index( ) ln(exp( ) .G i

ip pβ β
 (48)

This result indicates that the index depends on the displacement orientations only, i.e. on 
the angle b, whose increment (after the complete traverse of  G in the positive direction) 
should be positive in order to provide a solution of the considered BVP. If 2K

2
≤0, no bounded 

(non-trivial) solutions exist. for 2K
2
>0 the solution of (43) for the special case of the coeffi-

cients (47) includes an arbitrary polynomial of 2K
2
−1 degree, which means that the solution 

is controlled by up to 4K
2
 real parameters.

It is worth noting that the results regarding the solvability for both problems BVP1 and 
BVP2 are quite similar despite essential differences in the governing equations they satisfy.

4.2 Problem (a,b) for half-plane

Consider the upper half-plane. Then the indices ± can be omitted and one can write the BC 
(13) and (14) on the real axis in the form

 Im( ) , ( : )e D e D e D x xi i i− −= ⇔ = = −∞ < < ∞α α α0 on Γ , (49)

 Im( ) , ( : )e W e W e W x xi i i− −= ⇔ = = −∞ < < ∞β β α0 on Γ . 
(50)

We will seek solutions that provide continuity of the stress vector across the real axis, 
which follows from (20) and (21) when h g= − , which leads to the following boundary values 
on the real axis:

 D g g+ = − − = ′ + ′m m mS( ), 2 , (51)

 2 1 1GW g g+ = + + −( ) ( ) ( )k k S . (52)

Substitution of (51) into (49) and (52) into (50) with the use of (19) leads to the system of 
SIEs in the form

 

e e

e g g e

i i

i i

−

−

+[ ]− −[ ] =

+ + −[ ]− +

α α

β β

µ µ µ µ

κ κ κ

S S

S

( ) ( ) ,

( ) ( ) ( ) ( )

0

1 1 1 gg g− −[ ] =( ) ( ) .κ 1 0S
 (53)

By introducing the following notations:

 g i= + ′ = = = =Μ Λ Μ Μ Λ, , Im( ) Im( ) Im( )µ µ 0, (54)

one can present (53) as follows:
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sin( ) cos( ) ( ) ,

( ) cos( ) ( )sin( ) ( ) .

α α
κ β κ β

′ + ′ =
+ − − =

Μ Μ
Λ Λ

i

i f

S

S

0

1 1  (55)

here the right-hand side of the latter equation depends on the solution of the former equa-
tion. It has the form

 f i= + + −( )sin( ) ( ) cos( ) ( )κ β κ β1 1Μ ΜS . (56)

The system of SIE (55) can be reduced to two riemann BVPs on the real axis. The former 
SIE in (55) is homogeneous; it is reduced to the homogeneous riemann BVP

 A e Ai+ −= − 2 α . (57)

The latter equation in (55) is equivalent to the following non-homogeneous riemann BVP

 
B e B f ei e

e

ii

i
+ − −

+
= + = +2 2

2
( ) , arg( )β ββ

β
V

k
V k .

 
(58)

The indexes of these BVPs are determined as follows:

 
2 2 4 2Κ = = = − [ ]−

−∞
∞

Index( ) Index( )e ei iα θ
π θ , (59)

 
2 2 1Ν = = [ ] −∞

∞
Index( )e iβ

π β . (60)

In (60) it has been taken into account that Index( )eiV = 0 as re( )k + >e i2 0β .
further on we employ the general solution from Gakhov [9] to seek solutions of (57)–(58) 

vanishing at infinity. These solutions obviously depend on the indexes (59)–(60), respec-
tively. The solution for the derivative of the function M is found in the form:

 
′ =

+
− − ( )+ 

−
+Μ Κ

Κ
Κ

( ) cos ( )
( )

( )

ln ( )
x x

P x

x
e

t i
t i i t

2
1

2 1
2

a S α

. (61)

here the exponential function is real-valued, thus the coefficients of the polynomial P2K-1 
should be real as well to provide real-valuedness of the sought function. Therefore, for posi-
tively defined index (59) the solution depends on 2K arbitrary real constants.

let us solve the second SIE in (55) assuming provisionally that 2N>0 and the function f 
specified by (56) is known. This solution (vanishing at infinity) is found from the general 
solution provided in [9] as follows:

 
Λ( ) cos( ( ) ( )) ( ) sin( ( ) ( )) ( ) ( )

( )
x x x f x i x x Z x f t

Z t
P= − + − ( ) −β βV V S

2ΝΝ

Ν
−

+






1
2 1

( )

( )

x

x . 
(62)

here for briefness the following notation was introduced

 
Z x i it i

t i
( ) exp ln= − − +( )





−
+S Ν β V

. (63)

It should be noted that the function Z(x) is real-valued because the singular integral is 
applied to the purely imaginary term in the parentheses and it hence is real-valued. Then it 
becomes evident that the first term in the square brackets of (62) is purely imaginary, 



 A. N. Galybin, Int. J. Comp. Meth. and Exp. Meas., Vol. 7, No. 3 (2019) 271

therefore, the second term should be purely imaginary as well to provide real-valuedness of 
the sought function L. hence all the coefficients of the polynomial P x2 1Ν− ( ) are purely 
imaginary.

The total index of the riemann problems (57) and (58) is the sum of partial indexes

 
2 2 2 23

2 2 1 1Κ Κ Ν= + = + = +[ ] = −[ ]−∞
∞

−∞
∞

Index( ) Index( )e ei iα β β α β θp p . (64)

however, the general number of arbitrary real constants entering the solution of SIE is 
2K+2N+1, where an extra constant generated by integration of (61) should be added in order 
to find the right-hand side of the non-homogeneous equation in the system. This number is the 
maximum possible number of arbitrary constant provided that both indexes are positive. If one 
of them is negative, say 2N<0, then solutions exist if (−2N−1) integral conditions are imposed 
on the right-hand side of the non-homogeneous equation of the system (see detail in Gakhov 
[9]). They can be always satisfied provided that 2K>−2N−1. Therefore, for solvability of the 
system of SIE (55) it is necessary and sufficient that the cumulative index 2K+2N+1 is posi-
tive. Even more the number of solutions is odd because both indices determined by formulas 
(59) and (60) are even numbers, which is evident from the fact that the stress and displacement 
orientations attaint their initial values after the complete traverse of the contour.

It should noted that the number of arbitrary constants affecting the stresses can be reduced 
to 2K+2N, bearing in mind that three constants can be eliminated as translation and rotation 
of the rigid body do not affect stresses. as soon as the displacements at infinity were zero one 
needs to satisfy the only additional condition on rotation, which would fix one of the coeffi-
cient of the polynomial P x2 1Ν− ( ) from the condition Im(F(0))=0.

5 NuMErICal aPPrOaCh
The problems considered above have been reduced to a system of two real equations, see (23) 
and (45), or to a single complex equation (38) that belongs to the type of SIE shown in (42) 
investigated by Gakhov [9]. In all cases at least one of the equations is homogeneous. This 
fact restricts the direct application of any boundary element technique to the homogeneous 
dominant SIE as it would produce only a trivial solution due to f=0. Therefore it is necessary 
to transform this SIE such that its right-hand side becomes non-homogeneous and none of the 
homogeneous solutions is lost. Moreover, the standard BEM techniques cannot be applied 
directly to a non-homogeneous SIE with non-zero index as this would result in incomplete 
solution due to neglecting of the homogeneous part of the total solution. Therefore, the 
numerical approaches for eqns (23), (38) and (45) should address the fact that these SIE can 
have multiple solutions the number of which is determined in accordance with the index of 
the corresponding riemann BVP. Below we outline a possible numerical approach that can 
be applied as to the case of half-plane (that lead to the consideration of the homogeneous 
dominant SIE) as well as for arbitrary contours (full SIE, e.g. (38)).

It has already been shown in [9] that application of the following integral operator

 QQ(.) (.) (.) (.) (.)= − − −a b c dI I S S  (65)

(I is the identical operator, i.e. If=f) reduces the dominant equation (42) (as well as the full 
SIE) to the form

 

Ag iB g g g F

A aa bb cc dd iB ac ac bd bd A

′ − ′ + ′ ′ =
= − − + = − + − =

S Reg( , )

, , Im( ) Imm( ) .B = 0  (66)
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where F f= QQ( ) is known. The regular integral Reg(.) reflects all regular terms as those 
obtained by the change of the order of integration after application of (65) to the dominant 
part of (42) as well as regular integrals K and L in (42) or any other regular terms that are 
included in the full system of equations for arbitrary domains consisting of two real SIEs.

We further seek the solution of (66) as the sum of two functions

 ′ = ′ + ′g g g0 1. (67)

here ′g0 is the general solution of the homogeneous dominant equation

 Ag iB g0 0 0− =S , (68)

and ′g1 is any particular solution of the non-homogeneous SIE

 Ag iB g g g F g g′ − ′ + ′ ′ = − ′ ′1 1 1 1 0 0S Reg Reg( , ) ( , ). (69)

where the right-hand side contains the analytical solution of SIE (68); it includes all linearly 
independent solutions of (68) and hence (69) is not homogeneous anymore even if F=0. 
Therefore, any proper boundary element method can be applied to find the numerical solution 
of the non-homogeneous SIE (69). finally, the sum in (67) determines the solution of the 
homogeneous dominant SIE, where the analytical part ′g0 is found as described in Section 4. 
Besides, when dealing with BVP2, the solution for the contour derivative of the displacement 
vector is found from the following relationship for the displacement vector

 
W g t g( ) ( )z z= ( ) − − ′( )κS S1

2 . (70)

In the case of the system of two real SIE the approach above remains but should be applied 
to both SIEs in (23) and (45) followed by a procedure for the selection of the coefficients of 
the polynomials to provide real valuedness of the solution. It should be noted that this approach 
without any modifications can be applied for solving the system of two full SIEs as well.

6 ClOSurE
The incorrectly posed BVPs considered in this study are useful not only for geomechanics, 
where they originated from, but also for solid mechanics, computational mechanics and geo-
physics. This is especially important in the cases when the standard BVPs fail due to 
uncertainties in boundary conditions or in the cases where the influence of gauges measuring 
displacements/strains on their real values cannot be filtered out. One can find quite a few 
applications of the proposed approach provided that they can be considered in the framework 
of the plane elastic problem which is the main limitation of the method.

It is evident that no changes in the principal stress orientations are observed if a constant 
mean stress is added to a solution of a plane problem or if all stress components are multi-
plied by a positive numbers. This indicates non-uniqueness of non-classical BVP1 and BVP3. 
however, these simplest modifications of the stress fields are not the only possible ones as 
has been shown in the present study where we revealed what parameter (Index) controls the 
number of independent solutions.

In this paper, we presented a general approach for investigation of the solvability of incor-
rectly posed BVPs of plane elasticity formulated in terms of stress and displacement 
orientations. The method is based on the reduction of all considered problems, BVP1–BVP3, 
to a corresponding riemann BVPs. This allows one to determine the number of linearly 
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independent particular solutions of by calculating the index of the riemann problem. There-
fore, all the BVP considered may have non-unique solutions or be unsolvable if the index ix 
negative.

The method proposed by Gakhov [9] for the investigation of the complex SIE (42) has 
been generalised for more complex cases by reducing the SIE containing both the unknown 
function and its derivatives to the form of SIE in (42) by manipulations with the contour 
derivatives (Subsections 4.1.2 and 4.1.3) and by introduction of auxiliary unknown functions 
(Subsection 4.2). This has allowed us to fully investigate the solvability of BVP2 and BVP3 
on the basis of Gakhov’s method.

It is worth noting that despite apparent similarity in formulations of BVP1 and BVP2, 
these problems are essentially different as they deal with the functions that satisfy different 
governing equations. Indeed the function D is bi-holomorphic while W satisfy the lame 
equation if complex form (22). The corresponding system of SIE are also essentially differ-
ent for these problems. however the results regarding solvability look quite similar in both 
cases the number of partial solutions is defined by the number of rotations either the principal 
directions of the stress tensor (as in BVP1) or the displacement vector (as in BVP2). Besides 
the solvability of these BVP does not depend on the behaviour of the normal derivative 

∂
∂

= ′ < ∞±

= + ±

±

y
D z z x x

z x i

arg ( , ) ( ), | |
0

αn ,∂
∂

= ′ < ∞±

= + ±

±

y
W z z x x

z x i

arg ( , ) ( ), | |
0

βn. The solvability of BVP3 is defined by the cumulative index of the problem BVP1 and 
BVP2, which indicates that BVP3 can posses multiple solutions even if one of the problems 
(BVP1 or BVP2) do not have (bounded) solutions. analysis of such situations is left for 
future work.

a numerical approach capable of dealing with both homogeneous and non-homogeneous 
SIEs has been proposed. It can be applied to either of formulations as those leading to real 
systems of two SIEs or to a single complex SIE.
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