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ABSTRACT
The radial basis function (RBF) collocation method is applied for the approximation of functions in two 
variables. When the RBFs employed include a shape parameter, the determination of an appropriate 
value for it is a major issue. In this work, this is addressed by including the value of the shape parameter 
in the unknowns along with the coefficients of the RBFs in the approximation. The variable shape 
parameter case when a different shape parameter is associated with each RBF in the approximation is 
also considered. Both approaches yield nonlinear systems of equations, which are solved by a standard 
non-linear solver. The results of several numerical experiments are presented.
Keywords: collocation, function approximation, radial basis functions.

1 INTRODUCTION
One of the major issues in the approximation of functions by linear combinations of radial 
basis functions (RBFs), which includes a shape parameter [2, 3] is the determination of an 
optimal, or at least an acceptable, value of this shape parameter and to this end several tech-
niques have been proposed in the past [4, 8, 10, 18].

In this work the problem of approximating functions in two-dimensional domains using an 
RBF collocation method is considered and an attempt to address the issue of estimating an 
appropriate value of the RBF shape parameter is made. The basic idea was introduced in 
[12, 13] where the Kansa-RBF method [14] was applied to two-dimensional second and 
fourth order nonlinear boundary value problems. The shape parameter determination issue is 
still present in such applications and to overcome it, in [12, 13] it (the shape parameter) was 
taken to be one of the unknowns to be determined as part of the solution. Since the problems 
in question were nonlinear anyway, this inclusion did not affect the discretization of the prob-
lem much as this added nonlinearity was absorbed, in a natural way, by the resulting nonlinear 
system. In the current work, the same idea is employed in function approximation and the 
collocation of the approximation at various points in the domain now yields a system of non-
linear equations, which is solved using standard software. Thus, as well as the unknown 
coefficients in the RBF expansion, a value for the shape parameter is obtained. Here, the 
results of [15] are extended, see also [20], and, in addition, the case where a different value 
of the shape parameter is used for each RBF in the function approximation, is considered. 
This idea of using variable shape parameters in RBF approximations is not new and has been 
previously used in [1, 11, 19, 22].

The paper is organized as follows. In Section 2, the RBF formulation for the problem in 
question is presented. Some implementational details about the solution of the resulting non-
linear system are given in Section 3. In Section 4, the results of several numerical experiments 
are provided. The extension of the method to the variable RBF shape parameter formulation 
as well as some preliminary numerical results are presented in Section 5. Some remarks and 
ideas for future work are given in Section 6.
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2 RADIAL BASIS FUNCTION INTERPOLATION

2.1 The problem

The interpolation of a bivariate function f : Ω → R, where Ω → R
2, where, from a set of 

sample values f x ym m m=1

M
,( ){ }  on a discrete set X x y= ( ){ } ⊂m m m=1

M
, Ω  is considered.

2.2 RBF approximation

The function f is approximated by the linear combination
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where the RBFs ϕn(x, y), n=1,…, N, are expressed in the form
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yielding a total of N = Nint + Nbry centres. RBFs often include shape 

parameters which shall be denoted by c and, as already mentioned, the determination of an 
optimal value for these remains a major challenge.

Two popular RBFs, which include a shape parameter are:

•  The normalized multiquadric (MQ) basis function
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and

•  The inverse multiquadric (IMQ) basis function
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To emphasize the dependence of RBFs on the shape parameter, Φ(rn) in (2) will be denoted 
by Φ(c, rn) and thus approximation (1) will be replaced by
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The unknown coefficients a
nn 1

N{ } = {an} in eqn. (5) and the unknown shape parameter c are 

determined by collocation at the points x ym m m 1

M
,( ){ } ∈

=
Ω

 fN(xm, ym) = f (xm, ym), m = 1, . . . , M. (6)

For the collocation points, Mint interior points x ym m m 1

M
,
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=
 are taken yielding a total of M = Mint + Mbry points. In general, the 
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collocation points are not the same as the centres and, in order to have at least as many equa-
tions as unknowns, one needs to take M ≥ N + 1.

2.3 Augmented polynomial basis

Often in RBF approximation the approximation (5) is replaced by

 
f x y a c r a p x y x yn nN , , , , ,

n 1
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where p
k k 1

K{ } =  is a basis of the set Pp of bivariate polynomials of total degree up to p. The 
polynomial basis is

 pk(x,y) = xi−jyj, 0 ≤ j ≤ i, 0 ≤ i ≤ p, for k = 1, . . . , K, (8)

where K = (p + 1)(p + 2)/2. When using approximation (7), in addition to eqn. (6), the insol-
vency conditions
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are applied. In order to have at least as many equations as unknowns, one still needs to take 
M ≥ N + 1.

3 IMPLEMENTATIONAL DETAILS
The presence of the shape parameter c in the unknowns renders the system of M + N eqns. 
(6) and (9)
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(10)

nonlinear. In (10), the vector a = [a1, . . . , aN+K]T contains the unknown coefficients in 
approximation (7).

The nonlinear system (10) can be solved with the MATLAB© [16] optimization toolbox 
routine fsolve which uses either a trust-region-dogleg/reflective algorithm or the Leven-
berg-Marquardt algorithm [17]. In fsolve the user may or may not provide the Jacobian. 
Alternatively, the nonlinear system (10) may be solved with the MATLAB© optimization 
toolbox routine lsqnonlin which solves nonlinear least squares problems using, as 
fsolve, either a subspace trust region method or the Levenberg-Marquardt algorithm. In 
this case, (10) is recast as a nonlinear least squares minimization problem by setting
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As with fsolve, in lsqnonlin the user may or may not provide the Jacobian and, in 
addition, the routine offers the option of imposing lower and upper bounds on the elements 
of the vector of unknowns x = [a, c]T . In this way, constraints on the values of the coefficients 
and in particular on the values of the shape parameter may be imposed.

4 NUMERICAL EXAMPLES
In all the numerical examples considered in this paper, the approximate solution fN was eval-
uated on a set of L test points in Ω. The maximum relative error

 

E
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and the root mean square error (RMSE)
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were also calculated. In Example 1, both MQ (3) and IMQ (4) were used while in all the other 
numerical examples only MQ were used. In each case, once the value of the shape parameter 
c was determined from the solution of the nonlinear system, the solution was re-calculated 
for this value of c. The interior collocation points are taken to be the Halton points [6, Appen-
dix A.1] while the boundary points are uniformly distributed and the centres are obtained in 
a similar way. For the test points L = 101 interior Halton points were taken. As the addition 
of the bivariate polynomials (8) did not improve the accuracy of the approximation, in all 
examples, in (7), p = 0 was taken. In all the numerical examples considered in this section, 
the domain Ω is the unit square (0, 1) × (0, 1) and M = 336, N = 278.

4.1 Example 1

The first example considered is the approximation of Franke’s function [6, Section 2.2] (see 
Fig. 1)
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which is a standard test function for data fitting.

4.1.1 Experiments with MQ
In Fig. 2(a) the results obtained by solving the linear approximation problem for a range of 
different (pre-assigned) values of the shape parameter are presented. This is done, in this and 
all subsequent examples of this section, in order to observe the behaviour of the errors with 
respect to the shape parameter and, in particular, to determine the optimal value of the latter. 
In Table 1 the corresponding results using the proposed technique (in the case the value of the 
shape parameter c is unknown), after 2000 iterations with different initial values c0, are 
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presented. The obtained results are remarkably consistent and agree with the value of c giving 
the apparent minima in Fig. 2(a). The nonlinear system was solved with fsolve.

4.1.2 Experiments with IMQ
In Fig. 2(b) the results corresponding to those in Fig. 2(a) when using IMQ are presented. In 
Table 2 the results obtained using the proposed technique after 2000 iterations for different 

Figure 1: Example 1: Franke’s function f1.
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c0 c E E

1.0 4.8689 9.4509(-5) 1.9220(-5)
2.0 4.8629 9.4089(-5) 1.9352(-5)
3.0 4.8663 9.4283(-5) 1.9025(-5)
4.0 4.8902 9.9538(-5) 1.9664(-5)
5.0 4.8768 9.7329(-5) 1.9331(-5)

Table 1: Example 1: Results for various c0 using MQ after 2000 iterations.

Figure 2: Example 1: Results with MQ and IMQ for varying shape parameter.
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initial values c0 are listed. These again agree well with the value of c giving the apparent 
minima in Fig. 2(b). The nonlinear system was solved with fsolve.

4.2 Example 2

In this example the function [5, 7, 13]

f2(x, y) = (1 + e−1/ε − e−x/ε − e(x−1)/ε )(1 + e−1/ε − e−y/ε − e(y−1)/ε),

is considered. This function exhibits a boundary layer which becomes more severe as the 
value of ε > 0 decreases (see Fig. 3) and, as a result, the problem of approximating f2 
becomes more challenging as ε decreases. In Fig. 4(a)–(d) the results obtained by solving 
the linear approximation problem for a range of (pre-assigned) values of the shape parame-
ter for ε = 1,0.5, 0.25 and 0.1, are presented. In Table 3 the corresponding results obtained 
using the proposed technique (after 2000 iterations) with different initial values c0 are listed.

4.2.1 Case ε = 1
The solution in this case is relatively flat and the convergence of the proposed technique is 
quite rapid, which leads to high accuracy. Typical results obtained using MQ with different 
initial values for c0 are presented in Table 3. These indicate that the obtained value of c is 
close to the one giving the minima in Fig. 4(a). In this case the nonlinear system was solved 
with fsolve.

4.2.2 Case ε = 0.5
In this case the solution is not as flat and, as a consequence, convergence is not as rapid as for 
ε = 1, and therefore the accuracy is not as high. In Table 3 typical results obtained using MQ 
for different initial values c0 are presented. In this case the routine lsqnonlin was used 
and, again, the obtained value of the shape parameter c is close to the optimal such value from 
Fig. 4(b).

4.2.3 Case ε = 0.25
Now the solution is even less flat and the accuracy not as high as in the cases ε = 1 and ε = 0.5. 
Typical results obtained using MQ are presented in Table 3 for different initial values c0. The 
routine lsqnonlin was used and the obtained value of the shape parameter c is close to the 
optimal such value from Fig. 4(c).

4.2.4 Case ε = 0.1
This is the most challenging case and the accuracy is much lower. In Table 3 typical results 
obtained using MQ for different initial values c0 are presented. The routine lsqnonlin was 

c0 c E E

1.0 3.5573 4.0088(-4) 4.8095(-5)
2.0 3.5709 4.1049(-4) 4.8774(-5)
3.0 3.5687 4.0895(-4) 4.8864(-5)
4.0 3.5812 4.1749(-4) 4.9525(-5)
5.0 3.5785 4.1542(-4) 4.9293(-5)

Table 2: Example 1: Results for various c0 using IMQ after 2000 iterations.
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Figure 3: Example 2: The function f2(x, y).
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Figure 4: Example 2: Results for varying shape parameter for ε = 1, 0.5, 0.25 and 0.1.
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employed and the obtained value of the shape parameter c is close to the optimal such value 
from Fig. 4(d).
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4.3 Example 3

The function [3, Section 2.1.1] (see Fig. 5)
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is approximated. This function is different from f1 and f2 in that it is an oscillatory trigono-
metric function. In Fig. 6 the results obtained by solving the linear approximation problem 
for a range of (pre-assigned) values of the shape parameter are presented, while in Table 4 the 
corresponding results obtained with the proposed method for different initial values c0 after 
2000 iterations are listed. In this case, the routine lsqnonlin was used. The obtained 
results agree well with the apparent optimal value of c in Fig. 6.

4.4 Example 4

Finally, the function [9] (see Fig. 7)

c0 c E E

ε = 1 0.4 1.4312 1.0344(-5) 3.5067(-8)
0.5 1.4384 1.0296(-5) 3.5667(-8)
0.6 1.4277 9.7104(-6) 3.3584(-8)
0.7 1.4171 1.1609(-5) 3.3984(-8)
0.8 1.4102 1.1596(-5) 3.4626(-8)

ε = 0.5
0.3 0.6222 4.1773(-6) 2.2671(-7)
0.4 0.6301 4.9118(-6) 2.4898(-7)
0.5 0.6477 8.2606(-6) 2.8472(-7)
0.6 0.6310 4.7927(-6) 2.3990(-7)
0.7 0.6575 1.1300(-5) 3.1951(-7)

ε = 0.25
0.3 0.8754 5.2289(-5) 3.7164(-6)
0.4 0.9115 5.5683(-5) 3.8877(-6)
0.5 0.9189 6.4466(-5) 4.2627(-6)
0.6 0.9159 6.9501(-5) 4.6381(-6)
0.7 0.9347 4.7612(-5) 3.0524(-6)

ε = 0.1
0.4 0.9668 8.4964(-4) 9.5993(-5)
0.5 0.9857 7.2374(-4) 9.2681(-5)
0.6 0.9955 9.2337(-4) 1.1115(-4)
0.7 1.0219 7.3247(-4) 1.0153(-4)
0.8 1.0111 9.5063(-4) 1.2014(-4)

Table 3:  Example 2: Results for various c0 using MQ after 2000 iterations for ε = 1, 0.5, 
0.25 and 0.1.
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Figure 5: Example 3: The function f3(x, y).
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Figure 6: Example 3: Results for varying shape parameter.
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c0 c E E

0.2 1.3327 2.5836(-6) 1.8364(-7)
0.3 1.3566 1.9701(-6) 1.7476(-7)
0.4 1.3580 1.9872(-6) 1.7955(-7)
0.5 1.3659 5.1221(-6) 2.9474(-7)
0.6 1.3844 3.8214(-6) 2.8858(-7)

Table 4: Example 3: Results for various c0 using MQ after 2000 iterations.
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is approximated. In contrast to the previous functions considered, f4 is very flat. The results 
obtained by solving the linear approximation problem for a range of (pre-assigned) values of 
the shape parameter are presented in Fig. 8, while in Table 5 the corresponding results 
obtained with the proposed method for different initial values c0 are listed. In this case the 
routine fsolve was used and it was observed that the obtained results (after 2000 iterations) 
agree well with the apparent optimal value of c in Fig. 8.

Figure 8: Example 4: Results for varying shape parameter.
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Figure 7: Example 4: The function f4(x, y).
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5 EXTENSION TO VARIABLE SHAPE PARAMETER APPROXIMATION
Now, a different shape parameter is associated with each centre and thus, instead of using 
approximation (5), the approximation
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is used and instead of using (7),
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is used. In this approach, in addition to the coefficients a
n n 1

N K{ } =
+

 in (16), one needs to deter-
mine the unknown shape parameters c

n n 1

N{ } = . This is achieved by satisfying the collocation 
equations (6) and the insolvency conditions (9). The resulting nonlinear system is of the form 
(10) with c in F(a, c) replaced by the vector c, where c = [c1, . . . , cN]T, and, in order to have 
at least as may equations as unknowns, one now needs to take M ≥ 2N.

Two ways of initializing the starting values of the shape parameters were adopted. In the 
first one (Approach a), c0 = c0 [1,1, . . . ,1] where c0 denotes the starting value of all shape 
parameters. In the second one (Approach b) a uniform initial distribution of shape parameters 
given by (see [19])

c0 min max min

1

N 1
, 1, , N,l d d d

l
l( ) = + −( ) −( )

−( ) = …

was taken. In addition to the errors (12) and (13), cmin and cmax were calculated, which are the 
minimum and maximum values, respectively, of the entries of the final vector c.

5.1 Numerical example

As in Example 1, Franke’s function (14) was approximated on the unit square. In Table 6 the 
results obtained with Approach a using fsolve for various numbers of degrees of freedom 
and different starting c0 using MQ after 200 iterations are presented. The corresponding 
results obtained with Approach b for different dmin, dmax are listed in Table 7. From these 
preliminary results it is observed that satisfactory accuracy may be obtained with relatively 
few degrees of freedom and a limited number of iterations.

c0 c E E

0.1 0.2413 2.3610(-9) 7.8452(-10)
0.2 0.2437 2.9100(-9) 8.5599(-10)
0.3 0.2461 2.9079(-9) 9.0576(-10)
0.4 0.2430 2.7862(-9) 9.0576(-10)
0.5 0.2446 2.7667(-9) 8.7399(-10)

Table 5: Example 4: Results for various c0 using MQ after 2000 iterations.
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M N c0 cmin cmax E E
452 148 2.0 1.1390 6.7495 2.2600(-3) 7.5785(-4)
452 148 2.5 1.6063 5.8086 1.7556(-3) 4.9926(-4)
452 148 3.0 2.1761 7.3573 2.5192(-3) 6.3261(-4)

492 188 2.0 1.1979 6.5165 8.2771(-4) 3.0365(-4)
492 188 2.5 1.6794 5.6618 7.6577(-4) 2.5493(-4)
492 188 3.0 2.5402 7.3493 1.2594(-3) 3.5584(-4)

536 248 2.0 1.2008 6.1611 3.2940(-4) 6.4558(-5)
536 248 2.5 1.6789 7.2949 3.2886(-4) 4.9834(-5)
536 248 3.0 2.2077 7.0799 3.3533(-4) 8.1232(-5)

561 278 2.0 1.1466 6.0327 1.7391(-4) 3.3371(-5)
561 278 2.5 1.8154 6.6718 9.0588(-5) 2.3758(-5)
561 278 3.0 2.4343 8.1001 1.6087(-4) 3.4088(-5)

656 278 2.0 1.2487 6.5684 1.4671(-4) 3.0017(-5)
656 278 2.5 1.6308 8.1263 5.8600(-5) 1.5845(-5)
656 278 3.0 2.2820 8.5574 8.7639(-5) 2.0150(-5)

Table 6: Example 1, Approach a: Results for various M, N and c0 using MQ after 
200  iterations.

M N dmin dmax cmin cmax E E

452 148 2.5 3.5 2.3589 5.4495 2.2327(-3) 5.1564(-4)
452 148 3.0 4.0 2.4338 7.8863 2.3084(-3) 6.4032(-4)
452 148 2.0 4.0 1.9848 5.7519 2.1908(-3) 5.1638(-4)

492 188 2.5 3.5 2.3686 6.0079 8.8472(-4) 2.7468(-4)
492 188 3.0 4.0 2.8215 7.4603 1.4377(-3) 3.5393(-4)
492 188 2.0 4.0 1.9720 5.9779 6.9359(-4) 2.0169(-4)

536 248 2.5 3.5 2.4582 7.7133 1.7178(-4) 5.5196(-5)
536 248 3.0 4.0 2.9211 7.2200 2.6193(-4) 5.8612(-5)
536 248 2.0 4.0 1.9992 7.6053 5.9643(-4) 8.9178(-5)

561 278 2.5 3.5 2.4094 6.5063 1.5876(-4) 3.2555(-5)
561 278 3.0 4.0 2.9233 7.4067 2.2266(-4) 4.4236(-5)
561 278 2.0 4.0 2.0018 6.3572 2.5854(-4) 4.1789(-5)

656 278 2.5 3.5 2.4471 5.9029 4.9113(-5) 1.2664(-5)
656 278 3.0 4.0 2.9275 6.1518 5.9370(-5) 1.3736(-5)
656 278 2.0 4.0 1.9967 6.3194 1.3254(-4) 2.6770(-5)

Table 7: Example 1, Approach b: Results for various M, N and dmin, dmax using MQ 
after 200 iterations.
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6 CONCLUSIONS
The RBF collocation method was applied for the approximation of functions in two dimen-
sions. Instead of pre-assigning the value of the shape parameter, this value is taken to be one 
of the unknowns along with the coefficients of the RBFs in the approximation and this leads 
to a nonlinear system of equations, which is solved using standard MATLAB© software. To 
demonstrate the robustness of the proposed approach, it was applied to several examples 
from the literature, each of which exhibits different features and hence presents different 
challenges. Provided the initial value of the shape parameter is taken within a certain range, 
it was observed that the obtained final value of the shape parameter was close to its optimal 
value. This idea was extended to the variable shape parameter case where each RBF used in 
the approximation is associated with a different value of the shape parameter. The results of 
some preliminary numerical experiments revealed that this approach is promising. A justified 
criticism of the proposed approaches is clearly the cost, as one is currently solving a nonlin-
ear problem instead of a linear one in which case the value(s) of the shape parameter(s) 
is(are) pre-assigned. This however is also true of various other approaches proposed for the 
determination of a suitable shape parameter. The most accurate way to determine an optimal 
shape parameter is by brute force, i.e. by solving the (linear) problem for a sequence of values 
of (fixed) shape parameters and finding the one for which the approximation is most accurate. 
Clearly, the more shape parameter values taken, the more accurate the estimate. Since in most 
cases the exact solution is unknown, the accuracy of the approximation is assessed, for exam-
ple, in terms of how well the boundary conditions are satisfied. This brute force approach, 
however, amounts to an (expensive) iterative method of solution of the problem. A good 
example of a similar iterative approach is the use of the golden section search algorithm for 
obtaining a good shape parameter [21]. Another expensive approach for obtaining a good 
shape parameter is the so-called leave-one-out cross validation proposed by Rippa [18]. One 
issue that requires further experimentation is the number of iterations required in the routines 
used, especially in the variable shape parameter case where the early indications are that high 
accuracy can be achieved with relatively few iterations. In addition, since both fsolve and 
lsqnonlin offer the user the option of providing the Jacobian of the nonlinear system 
under consideration, it would be worth investigating how this modification affects the speed 
of convergence and computational cost of the method.
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