RISK ASSESSMENT OF RENEWABLE ENERGIES: GLOBAL EXPOSURE

G.S. CHEBOTAREVA

Academic Department of Energy and Industrial Enterprises Management Systems, Ural Federal University, Russia.

ABSTRACT

The current stage of renewable energy (RE) development poses new challenges to this sector. The existing mechanisms of state stimulation of Renewable energy system are gradually exhausting its capacity. This requires the development of new methods to support the industry, or giving them up altogether. This article presents the results of the theoretical analysis of the systemic features of RE risk assessment at each stage of a project's life cycle. A sectoral approach to the risk assessment of energy projects is proposed. It is based on the well-known logit-model that studies a set of external and internal indicators. Based on this model, a study of the dynamics of the risk indicators of RE projects on three basic stages was conducted. Calculations were made for RE projects implemented in different countries of the world, including China, USA, Canada, Japan, India and a number of European countries. Initially, all projects were divided into three main groups depending on the types of state support: concessional lending, subsidies or the lack thereof. Based on the results of the calculations, the overall and average dynamics of risk by group and by project stage allowed for assessing the global effectiveness of state measures to support the sector, as well as for drawing appropriate conclusions in the context of individual countries. The results of the study are of practical importance and will be used in developing a new approach to risk assessment, taking into account the specifics of the RE market, as well as in enhancing the concept of competition in the global energy market. Keywords: energy, investment project, logit-model, project' stages, renewable energy, renewable energy sources, risk, risks' distribution, state support.

1 INTRODUCTION

Renewable energy (RE) is an example of an 'unconventional' sector in terms of project risk assessment. In particular, it is important to highlight the following main features [1]–[4]: standard financial risks have a minimal impact on the effectiveness of RE projects and sector companies [1], [4]; the most significant risks in the activities of the sector companies and projects are risks caused by a set of political factors (legislative, financial and other types of dependence of investors, instability of state support, etc.) [4]; a lot of instruments of state support for RE projects cause heterogeneous risks of various levels of impact; political risks, including those related to state support for the sector, are typical of RE projects throughout the life cycle; a relatively short life cycle of RE projects (2–3 years on average) complicates the task of more detailed and strategic risk assessment of the sector projects; relatively recent development of the RE market prevents the accumulation of sufficient statistical information for the use of exclusively deterministic methods of risk assessment for projects; to improve a project's efficiency, risk assessment in RE should be connected to at least three main stages of the life cycle.

Together, the above features of risk assessment in RE projects and the current need for state support of this sector give rise to a complex and urgent task of conducting theoretical and applied research of efficiency and reasonability of state stimulation measures for RE projects in the context of the assessment of specific sector risks. This study examined RE projects implemented not only in the leading countries of the sector (China, US, EU countries), but also in other regions (India, Canada, Russia, etc.) [5]–[10].

The result of the study is the theoretical systematization of the main features of the evaluation of RE projects, including the various stage by stage steps, while taking into account the specific

features of each one of them. This article presents a practical assessment of the effectiveness of state support measures for RE on the basis of the risk-oriented logit-model. The results of the calculations were used for comprehensive comparative assessment of the reasonability of two methods of state support and non-provision thereof. It includes the exclusion of RE projects that did not initially require any state support from a risk perspective. The obtained results are of practical importance and will be used in the development of a fundamentally new risk-based approach to the evaluation of RE projects at each stage. In the future, this will enable the development of the author's concept of competition in the global energy market [11].

2 PECULIARITIES OF RISKS ASSESSMENT FOR RE PROJECTS

The risk assessment of RE projects should be connected to the stages of the project life cycle. The short duration of RE projects requires that the study only evaluate three main stages of the project: pre-investment, investment and post-investment. In general, they are characterized by the following features:

- 1. Each stage has its specific features content-wise, which determine a specific approach to risk assessment.
- 2. The combination of risks at each stage can be strictly distinct, and each risk has its own individual level of influence and probability.
- 3. Risk assessment is stage-specific, depending on the period and related forecasts.
- 4. Stage-specific risks are studied over time. This study makes possible to assess how effective risk management programs are at each stage of the RE project.

The specific characteristics of risk assessment at each stage of RE projects are presented in Table 1.

		Features of risks assessment					
Stage	Short characteristic	Initial information for assessment	Methods for risks assessment	Evaluation of political risk			
Pre-investment	Project plan- ning, organiza- tion of financing	Only forecast information on the project, including risks, and the market state (data of the business plan); availabil- ity of informa- tion on the implementation of RE projects with similar characteristics	Preferential use of qualita- tive (expert) methods of risk assessment	High uncer- tainty about the possibility of state support, existence of as- sociated risks			

Table 1: Peculiarities of risks assessment in renewable energy projects: current status.

Investment	Construction and commis- sioning of the RE facility	Actual data on the RES project, the market state; clarification of the calculations on the level of risk before the stage (project reports, con- tracts)	The combina- tion of qualita- tive and quanti- tative methods, the priority of mathematical models in the accumulation of data on current and similar RE projects	High probabili- ty of instability/ cancelation of state support, the existing of associated risks
Post-investment	The operation of the RE facil- ity	Accurate proj- ect data before commission- ing of the RE facility	It is possible to use only quan- titative tools with sufficient information on the implementa- tion of the RE project	Reducing the impact of po- litical risks

The comparison of risk indicators for adjacent stages makes it possible to evaluate the efficiency of the risk forecasting and management system in RE project. The calculated risk *at the pre-investment stage* is a forecast one for the investment stage; *at the investment stage* is a potential one for the post-investment stage of the project.

Integration of the specified features in a single mathematical model will make it possible to estimate quantitatively an individual level of risk at each stage of the RE project. From the methodological perspective, the solution of this problem will be the basis for the quantitative assessment of the political risk, which has a significant importance for RE, and indicate the expediency of state support for the project at each stage.

3 METHODOLOGICAL APPROACH TO RISK ASSESSMENT OF RE PROJECTS The study of the level of risk in renewable energy system (RES) projects is based on a globally recognized approach: assessment of the forecast *logit*-model in eqn (1) [12]–[14]:

$$PD = \frac{1}{1+e^{Y}},\tag{1}$$

where *PD* is Probability of Default of RES project; e = 2,71,828; indicator *Y* is an integral indicator estimated by the proposed model.

The calculation of the probability of a default of projects is based on the model (2), taking into account the specific characteristics of the country's economy, local and international energy market [14]:

$$Y = -a_0 - a_1 \cdot K_1 - a_2 \cdot K_2 - a_3 \cdot K_3 - a_4 \cdot K_4 - a_5 \cdot K_5 - a_6 \cdot K_6 - a_7$$

$$K_7 - a_8 \cdot K_8 - a_9 \cdot K_9 - a_{10} \cdot K_{10} - a_{11} \cdot K_{11},$$
 (2)

where $a_0, a_1, ..., a_{11}$ are the indust-specific constants of significance of the coefficients for the fuel and energy sector.

The qualitative assessment of energy projects is provided by the *dummy*-variables K_1 , K_2 , K_7 , namely: K_1 takes into account the factor of 'age' of the energy company, K_2 is the characteristics of the credit history of the energy company-project initiator, K_7 reflects the regional affiliation of the project. They take values according to the conditions (3):

	0,	if the company was created		0, if company has
$K_1 = \begin{cases} \\ \\ \\ \end{cases}$		more than 10 years ago		positive credit history
	1,	if the company was created	$\mathbf{K}_2 = \{$	1, if company has
	_	less than 10 years ago		negative credit history

$$K_{7} = \begin{cases} 0, if company is located in the capital \\ 1, if company is not located in the capital \end{cases}$$
(3)

The quantitative assessment of the risk level is based on the calculation of other exogenous and endogenous financial and economic indicators: K_3 is the current ratio of the project; K_4 the ratio of profit before tax and interest paid in the project for the period; K_6 the weighted average key interest rate of the Central Bank; K_8 the return on assets; K_9 the return on equity; K_{10} the growth rate of the project equity capital and K_{11} the growth rate of assets of the project for the period.

$$K_5 = \ln\left(\sum_{\beta=1}^{m} EC_{\beta}\right),\tag{4}$$

where K_5 is the weighted average capital of the company; EC_{β} the equity capital of the energy company for the β period.

Taking into account the specific features of the fuel and energy sector, the distribution of industry-specific constants is presented in Table 2.

The proposed model assumes the following total values (5):

$$PD = \begin{cases} [0;0.2) & -minimal \, risk \, of \, project \\ [0.2;0.4] - low \, risk \\ [0.4;0.6] - average \, risk \\ [0.6;0.8] - high \, risk \\ [0.8;1] & -maximum \, risk \end{cases}$$
(5)

Indicators	a_0	a_1	a_2	<i>a</i> ₃	a_4	a_5
Value	3,07,371	37,033	89,734	-86,711	-70,110	-16,427
Indicators	a_6	<i>a</i> ₇	a_8	a_9	a_{10}	a_{11}
Value	-0.1399	-0.6913	-50,894	-1,53,882	73,667	-2,20,294

Table 2: Value of the constant coefficients of the model for the fuel and energy sector.

4 PRACTICAL ASSESSMENT OF RISKS IN RE PROJECTS

An assessment of the risks distribution by stage was carried out for 28 selected RE projects in different countries. It includes countries such as China, USA (market leaders [5], [6]), a number of European countries, as well as India, Japan, Russia and others. The subjects of the study are projects that lie within the popular top-priority areas of RE development: solar, wind, hydro, geothermal and bioenergy.

All projects are divided into three groups according to the methods of direct state support: concessional lending (10 projects, 35.7%), subsidies (7 projects, 25%) and the absence of state support (11 projects, 39.3%).

An important feature of RE projects is their relatively short life cycle (about 2 to 3 years). Therefore, within the framework of this study, it is assumed that the pre-investment stage lasts only the first 6 months, the post-investment stage for the last 6 months and the investment stage throughout the entire duration of the project.

4.1 Distribution of risks in the case of concessional government lending of RE projects

Table 3 shows the results of risk calculations for the RE projects that received concessional government lending.

The results indicate a rather low efficiency of the mechanism of concessional government lending: in three RE projects the risk level increased to the maximum value; in projects where the risk was at the maximum initially, the same dynamics remain [15], [16]. In a number of RE projects with a minimal risk at the pre-investment stage, this indicator also remains at the same level. However, such projects initially did not require state support as a tool of reducing risk.

To study the overall dynamics of the risk, the average value of the indicator at each of the three stages is calculated (last line of Table 3 and Fig. 1). Thus, the level of risk increases from stage to stage, reaching the average value to the post-investment stage.

4.2 Distribution of risks in the case of subsidizing of RE projects

Table 4 presents the distribution of the risk level by stages in the case of non-repayable subsidies for RE projects.

The study of the subsided RE projects did not reveal any dependencies on the stages. In this case, RE projects demonstrate a stable maximum or minimal risk value, an increase of risk to the maximum level or a decrease to the minimal to the post-investment stage. Therefore, there is not the sustainable positive influence of the mechanism of subsidies on the efficiency of RE projects [16], [17].

The mean value of risk for such projects varies insignificantly within 0.015 in the zone of average risk (last line of Table 4 and Fig. 1).

4.3 Distribution of risks in the case of the absence of state support for RE projects

The results of risk distribution in case of the absence of direct state support are presented in Table 5.

Almost half of the described RE projects show a stable minimal risk level. Such projects initially do not require any government incentives. Less than a third of the reviewed projects are characterized by the maximum level of risk (in one case – an increase to the maximum value). The remaining RE projects are able to either reduce the level of risk, including to the minimum value, or remain within these limits.

RES						Risk	Risk
types	Project	Initiator	Period	Stage	Duration	(avg.)	profile
	Solar genera- tion facility in	Government of USA, Abengoa	2016– 2017	Pre-invest- ment	2016	0.478	Average
	the Mojave desert, USA	SA		Investment	2016– 2017	0.739	High
				Post- investment	From 2017	1	Maximum
	Solar gen- eration facil- ity in India (100 mW)	Azure Power Global Ltd,	2015– 2016	Pre-invest- ment	2015	1	Maximum
		Solar Energy Corporation		Investment	2015– 2016	1	Maximum
		of India, Canadian Solar		Post-invest- ment	From 2016	1	Maximum
	Solar gen- eration facil- ity in Australia (5 mW)	Canadian Solar Inc.	2015– 2016	Pre-invest- ment	2015	0	Minimal
				Investment	2015– 2016	0	Minimal
Solar				Post- investment	From 2016	0	Minimal
power	Solar generation	Adani Group	2015– 2016	Pre-invest- ment	2015	0	Minimal
	facility in India (648 mW)			Investment	2015– 2016	0	Minimal
				Post- investment	From 2016	0	Minimal
	Solar genera- tion facility in	SoftBank Energy	2015– 2016	Pre-invest- ment	2015	0	Minimal
	Japan (1.3 mW)			Investment	2015– 2016	0	Minimal
				Post- investment	From 2016	0	Minimal
	SPP Starom- aryevskaya	Private compa- ny LTD 'Solar	2014– 2018	Pre-invest- ment	2014	0	Minimal
		Systems'		Investment	2014– 2018	0.599	Average
				Post- investment	From 2018	1	Maximum
	Hydropower fa- cility in Canada	Innergex Renewable En-	2015– 2016	Pre-invest- ment	2015	0.945	Maximum
Hydro- power	(40.6 mW)	ergy Inc Pref		Investment	2015– 2016	0.941	Maximum
				Post- investment	From 2016	0.936	Maximum

Table 3: Distribution of risks: government lending.

	Hydropower	Enel Green	2014	Dre invest	2014	0	Minimal
	nlant (HPP) in	Power Emgesa	2014-	ment	2014	0	winninai
	Columbia (400 mW)	i ower, Enigesu	2013	Investment	2014– 2015	0.115	Minimal
				Post- investment	From 2015	0.229	Low
	Dam and HPP in Canada	Acciona	2015– 2024	Pre-invest- ment	2015	0	Minimal
				Investment	2015– 2024	0	Minimal
					(avg. 2015–		
					2018)		
				Post-	From	No	data to
				investment	2024	cal	lculate
	Wind genera- tion facility in	Terna energy	2015– 2016	Pre-invest- ment	2015	0.237	Low
Wind power	Greece (10.8 mW)			Investment	2015– 2016	0.127	Minimal
				Post-	From	0.016	Minimal
				investment	2016		
	Average va	lues of risk		Pre-invest- ment		0.266	Low
				Investment		0.352	Low
				Post-		0.465	High
				investment			

Table 4: Distribution of risks: subsidies.

_

RES types	Project	Initiator	Period	Stage	Dura- tion	Risk (avg.)	Risk profile
	Solar power	7C Solarparken	2016-	Pre-investment	2016	0	Minimal
power	plant (SPP) in Germany	AG, Siemens, Government of Bavaria UGE Ltd	2017 2014– 2016	Investment	2016– 2017	0	Minimal
				Post- investment	From 2017	0	Minimal
olar	Solar gener-			Pre-investment	2014	1	Maximum
Sol	ation facility in Canada			Investment	2014– 2016	1	Maximum
	(J.04 III W)			Post- investment	From 2016	1	Maximum

	Photovol-	Panda Green	2016-	Pre-investment	2016	0.891	Maximum
	taic SPP in China	Energy	2017	Investment	2016– 2017	0.944	Maximum
	(100 111 W)			Post- investment	From 2017	0.997	Maximum
	SPP in	Zhonghuan	2014-	Pre-investment	2014	0	Minimal
	China (10 mW)	Photovoltaic System Co.	2015	Investment	2014– 2015	0	Minimal
				Post- investment	From 2015	0	Minimal
	Solar gener-	Canadian Solar	2014-	Pre-investment	2014	0	Minimal
	ation facility in Canada		2016	Investment	2014– 2016	0	Minimal
	(31 mw)			Post- investment	From 2016	0	Minimal
	Wind gener- ation facility in Sweden	Eolus Vind AB	2015- 2016	Pre-investment	2015	0	Minimal
				Investment	2015– 2016	0.5	Average
power	(23 mw)			Post- investment	From 2016	1	Maximum
'ind	Wind-diesel	Private com-	2013-	Pre-investment	2013	1	Maximum
M	complex at oil field	pany LTD 'Aktiviti'	2014	Investment	2013– 2014	0.5	Average
	(Tatarstan)			Post- investment	From 2014	0	Minimal
				Pre-investment		0.413	Average
	Average	values of risk		Investment		0.420	Average
	Average values of fisk			Post- investment		0.428	Average

Table 5: Distribution of risks: absence of state support.

RES types	Project	Initiator	Period	Stage	Duration	Risk (avg.)	Risk profile
	Solar genera-	NextEra	2014-	Pre-	2014	0	Minimal
er	tion facility in	Energy,	2015	investment			
MO	Alamida dis-	Google, GE		_		_	
гb	trict, USA			Investment	2014-	0	Minimal
ola					2015		
Š				Post-	From	0	Minimal
				investment	2015		

	Photovoltaic	NEOEN, Del Sur	2015-2017	Pre-	2015	1	Maximum
	El Salvador (101 mW)	Inter- American	2017	Investment	2015– 2017	0.994	Maximum
		Investment Corporation		Post- investment	From 2017	0.987	Maximum
	SPP in North Carolina, USA	Phoenix Solar AG,	2012– 2015	Pre- investment	2012	0	Minimal
	(32.1 mW)	Duke En- ergy		Investment	2012– 2015	0.111	Minimal
				Post- investment	From 2015	0.222	Low
	Solar genera- tion facility in	UGE Ltd	2016– 2017	Pre- investment	2016	1	Maximum
	New-York, USA (15.3			Investment	2016– 2017	0.5	Average
	mW)			Post- investment	From 2017	0	Minimal
	Solar thermal PP (280 MW),	Government of Arizona	2010– 2016	Pre- investment	2010	0	Minimal
	Arizona, USA			Investment	2010– 2016	0.5	Average
				Post- investment	From 2016	1	Maximum
	Wind genera- tion facility in	Dong En- ergy, PNE	2014– 2015	Pre- investment	2014	0	Minimal
	North sea (312 mW)	Wind		Investment	2014– 2015	0	Minimal
ower				Post- investment	From 2015	0	Minimal
Wind p	Coastal wind power plant	Sumitomo Corporation.	2015– 2017	Pre- investment	2015	0	Minimal
	(WPP) in North sea, Belgium	Parkwind NV, Mee-		Investment	2015– 2017	0	Minimal
	(165 mW)	wind		Post- investment	From 2017	0	Minimal
/er	Geothermal	PetroGreen Energy	2014	Pre- investment	2014	0.994	Maximum
pov	(GPP) in Philip-	TranAsia Oil		Investment	2014	0.994	Maximum
nal	pines (20 mW)	& Energy		Post-	From	0.994	Maximum
nerı		Develop-		investment	2014		
eotł		ment, PNOC					
G		Corp					
	-	P.					

154

	Conversion	Dong	2016-	Pre-	2016	0	Minimal
opower	of CHP to a biomass plant, Denmark	Energy, AffaldVarme Aarhus	2017	investment Investment	2016– 2017	0	Minimal
Bi				Post- investment	From 2017	0	Minimal
	Tidal marine power plant,	Atlantis Resources	2016– 2017	Pre- investment	2016	1	Maximum
	UK (160 mW)	Ltd, Natiral Energy Wire		Investment	2016– 2017	1	Maximum
power				Post- investment	From 2017	1	Maximum
Hydrc	HPP Boguchan- skaya	Private company	2012– 2015	Pre- investment	2012	0	Minimal
		LTD 'Sibir Engineering'		Investment	2012– 2015	0	Minimal
				Post- investment	From 2015	0	Minimal
				Pre- investment		0.363	Low
	Average val	ues of risk		Investment		0.373	Low
				Post- investment		0.382	Low

Figure 1: Distribution of the average level of risks in RE projects: by type of state support.

Table 6: Average risk in the case of exclusion of projects with zero risk.

	Average values of risk by project stages									
Instruments of state support	Pre-investment		Inves	stment	Post-investment					
	Original sample	Excluding 'zero-risk' projects	Original sample	Excluding 'zero-risk' projects	Original sample	Excluding 'zero-risk' projects				
Government lending	0.266	0.665	0.352	0.702	0.465	0.738				
Subsidies	0.413	0.963	0.420	0.815	0.428	0.666				

Figure 2: Comparison of average risk in the case of exclusion of projects with zero risk, by: (a) government lending, (b) subsidies.

The average risk in such RE projects (last line of Table 5 and Fig. 1) is consistently in the group of low risk.

One of the criteria for the ineffectiveness of state stimulation of the sector is the provision of support to those RE projects, which are initially characterized by a minimal value of risk. The author assumes that such projects do not need any incentives at stage one. For the subsequent assessment, the average risk values were calculated and a comparative analysis was performed for the cases of government lending and subsidies without taking into account the described RE projects (Table 6 and Fig. 2).

Calculations show that in the case of *concessional government lending*, the real level of risk almost doubles and ends up in the group of high risk. The exclusion of zero-risk projects from the group of subsidy recipients revealed an interesting dynamic. At the pre-investment stage, the average risk tends to the maximum, and by the end of the project is reduced to a high level. In practice, this means that, on the one hand, a tool of non-repayable subsidies can be effective for RE projects, which are characterized by initially significant level of risk. On the other hand, it provoked an increase of risk in risk-free projects at the pre-investment stage. However, in the case of subsidies, the average risk has also almost doubled.

5 CONCLUSIONS

A rapid pace of RE development has been achieved through active state support for this sector. However, the research presented in the article clarifies this view. Calculations showed that the most effective incentive tool is in fact the absence of state support mechanisms for the sector. In this case, there are no sharp changes in risk, and its average value is within the low level. Provision of subsidies for RE, in general, also shows a stable value of risk. However, in comparison with the absence of support, the level of risk increases to a medium value. The least effective tool was concessional government lending. When this mechanism was applied, risk at the pre-investment stage was the lowest (low risk group), and by the post-investment period it showed the highest possible value among all projects. Among the reasons for such results is the high impact of political and legislative risks [18]–[20].

The obtained results allow determining promising methodological directions for further research. They are associated with the development of new deterministic risk assessment tools for the main stages of the project, taking into account the specific character of RE. The new mechanism should help to answer a difficult question as to what tools of state support are best suitable for which projects, and which projects do not require additional incentives at all, taking into account the regional affiliation and size of RE facilities. [21]–[23]

ACKNOWLEDGMENTS

The work was supported with a grant of the Russian Science Foundation (project N_{2} 17-78-10039) (chapters 1–4) and by Act 211 of the Government of the Russian Federation, contract N_{2} 02.A03.21.0006 (chapter 4).

REFERENCES

- Ermolenko, G.V., Tolmacheva, I.S., Ryapin I.Y., Fetisova Y.A., Matshura A.A. & Reutiva A.B., *Handbook on Renewable Energy the European Union*, Institute of Energy SRU GSE: Moscow, p. 96, 2016.
- [2] Dia-Core project, The Impact of Risks in Renewable Energy Investment and the Role of Smart Policies, available at http://diacore.eu/results/item/enhancing-res-investmentsfinal-report (accessed 01 April 2019).
- [3] Panepinto, D., Gitelman, L., Kozhevnikov, M., Magaril, E., Magaril, R. & Zanetti, M.C., Energy from biomass for sustainable cities. *IOP Conference Series: Earth and Environmental Science*, **72**(1), 2017. https://doi.org/10.1088/1755-1315/72/1/012021
- [4] Chebotareva, G., Leading factors of market profitability of the renewable energy companies. *Proceedings of the 2nd International Conference on Social, Economic and Academic Leadership*, Vol. 217, pp. 277–287, 2018. https://doi.org/10.2991/icseal-18.2018.39
- [5] International Renewable Energy Agency (IRENA), Renewable Energy Statistics 2017. http://www.irena.org/DocumentDownloads/Publications/IRENA_Renewable_Energy_ Statistics_2017.pdf (accessed 10 January 2019).
- [6] International Renewable Energy Agency (IRENA), Renewable energy highlights. http:// www.irena.org/DocumentDownloads/Publications/IRENA_Renewable_energy_highlights_July_2017.pdf (accessed 10 Febraury 2019).
- [7] Renewable Energy Policy Network for the 21st Century (REN21), State of renewable energy 2016. Global report, http://www.ren21.net/wp-content/uploads/2016/10/ REN21_GSR2016_KeyFindings_RUSSIAN.pdf (accessed 11 February 2019).
- [8] Renewable Energy Policy Network for the 21st Century (REN21), State of renewable energy 2017. Global report. http://www.ren21.net/wp-content/uploads/2017/10/17-8399_ GSR_2017_KEY-FINDINGS_RU_low.pdf (accessed 20 March 2019).
- [9] Renewables 2018, Global status report. http://www.ren21.net/gsr-2018 (accessed 20 March 2019).
- [10] Frankfurt School-UNEP Centre/BNEF 2018, Global Trends in Renewable Energy Investment 2018. http://www.greengrowthknowledge.org/sites/default/files/downloads/resource/Global_Trends_in_Renewable_Energy_Investment_Report_2018.pdf (accessed 20 March 2019).
- [11] Chebotareva, G., Risk-oriented approach to competition assessment in the global renewable energy sources market. WIT Transactions on The Built Environment, 179, pp. 345–355, 2018. https://doi.org/10.2495/ug180321

- [12] Mokhov, V.G., Chebotareva, G.S. & Khomenko, P.M., Modelling of 'green' investments risks. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya 'Matematicheskoe modelirovanie i programmirovanie', 11(2), pp. 154–159, 2018. https://doi.org/10.14529/mmp180213
- [13] Sorland B.F. & Rudel M.G.N., *What drives Financial Distress Risk and Default Rates* of Leveraged Buyout Targets? Empirical Evidence from European Transactions, Norwegian School of Economics: Norway, 2015.
- [14] Khaidarshina G.A., Integrated model to assess the risk of bankruptcy. *Finance*, **2**, pp. 67–69, 2009.
- [15] Lombardi, P. & Schwabe, F., Sharing economy as a new business model for energy storage systems. *Applied Energy*, **188**, pp. 485–496, 2017. https://doi.org/10.1016/j. apenergy.2016.12.016
- [16] Ascione, F., Bianco, N., De Stasio, C., Mauro, G.M. & Vanoli, G.P., Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: a new approach to assess cost-optimality. *Applied Energy*, **174**, pp. 37–68, 2016. https://doi.org/10.1016/j.apenergy.2016.04.078
- [17] Johnston, S., Nonrefundable tax credits versus grants: The impact of subsidy form on the effectiveness of subsidies for renewable energy. *Journal of the Association* of Environmental and Resource Economists, 6(3), pp. 433–460, 2019. https://doi. org/10.1086/702736
- [18] Gonzalez, A., Riba, J.R., Esteban, B. & Rius, A., Environmental and cost optimal design of a biomass–Wind–PV electricity generation system. *Renewable Energy*, **126**, pp. 420–430, 2018. https://doi.org/10.1016/j.renene.2018.03.062[AQ2]
- [19] Bhattacharya, M., Paramati, S.R., Ozturk, I. & Bhattacharya, S., The effect of renewable energy consumption on economic growth: evidence from top 38 countries. *Applied Energy*, **162**, pp. 733–741, 2016. https://doi.org/10.1016/j.apenergy.2015.10.104
- [20] Rediske, G., Siluk, J.C.M., Gastaldo, N.G., Rigo, P.D. & Rosa, C.B., Determinant factors in site selection for photovoltaic projects: a systematic review. *International Journal of Energy Research*, 43(5), pp. 1689–1701, 2019. https://doi.org/10.1002/er.4321
- [21] Zhang, C. & Yang, J., Economic benefits assessments of 'coal-to-electricity' project in rural residents heating based on life cycle cost. *Journal of Cleaner Production*, 213, pp. 217–224, 2019. https://doi.org/10.1016/j.jclepro.2018.12.077
- [22] [McInerney, C. & Bunn, D.W., Expansion of the investor base for the energy transition. *Energy Policy*, **129**, pp. 1240–1244, 2019. https://doi.org/10.1016/j.enpol.2019.03.035
- [23] Oliveira, T., Varum, C. & Botelho, A., Econometric modeling of CO₂ emissions abatement: comparing alternative approaches. *Renewable and Sustainable Energy Reviews*, **105**, pp. 310–322, 2019. https://doi.org/10.1016/j.rser.2019.02.001