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ABSTRACT
The importance of micro-shock tubes is growing in line with recent developments of microscale tech-
nology for products like micro-heat engines and micro-propulsion systems. The flow dynamics within 
a micro-shock tube are different from those found in a macro shock tube, and knowledge of these 
dynamics is not as yet well established, as the flow within these tubes includes extra physics namely 
rarefaction and complex effects due to viscosity. Studies have recently been made with assumed initial 
condition of instantaneous diaphragm rupture producing centred shock and expansion waves. However, 
for a real case, the diaphragm ruptures over a finite time causing a period of partial rupture and this 
will change the shock characteristics. The work here reports on a series of axisymmetric numerical 
simulations carried out to calculate the influence of an initial finite-time diaphragm rupture. Rarefac-
tion effects were taken into account by the use of Maxwell’s slip velocity and temperature conditions. 
Use of an initial finite-time diaphragm rupture boundary condition causes the forming of a non-centred 
shock wave downstream of the diaphragm, and, the shock propagation distance is considerably reduced 
by use of the finite-time rupture process.
Keywords: CFD, finite rupture, micro-shock tube, Shock wave propagation, slip wall

1 INTRODUCTION
A shock tube generates a moving shock front by the sudden expansion of gas from a driver 
section (high pressure) into a driven section (low pressure). The moving shock front has 
accompanying expansion and contraction waves. Initially the driver and driven regions are 
separated by an impervious diaphragm which in turn bursts, with the subsequent formation 
of a moving shock wave which induces flow to move behind it. In contrast to macro tubes, 
micro-shock tubes show added flow physics, especially shock attenuation due to boundary 
layer growth and ensuing viscosity effects at low Reynolds numbers. When the Knudsen 
number is large, fluid near the wall slips because of non-continuum effects. This helps to 
grow shock strength and thereby increase wave propagation.

Within a micro-shock tube the viscous and rarefaction effects become much greater so 
giving simulations and experimental data of shock wave propagation and flow dynamics 
which are at odds with established theory [1]. This is primarily due to the pressure being low 
and the small geometry of the micro tube. To aid design and increase efficiency of devices 
based on a micro-shock tube, it is important to fully understand the shock wave propagation 
and related flow characteristics. Knowledge of the temperature characteristics of such devices 
may also be important.

The use of continuum-based simulations as opposed to molecular-based calculations is 
determined by the Knudsen number [2]. This is the ratio of mean-free-path to tube diameter. 
When the Knudsen number is low, less than 0.01, then the continuum-based simulations are 
appropriate. Between 0.01 and 0.1 Reynolds-averaged Navier-Stokes equations can be used 
with slip boundary conditions. Above 0.1 molecular calculation methods should be used.

Work involving macro tubes has already been carried out, for example by Duff [3] where 
the effect of boundary layer growth on shock propagation due to viscous loss was examined. 
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Analytical modelling has been performed again investigating the effect of boundary layer 
growth on the shock propagation [4], together with the proposal of a scaling factor, S , which 
depends on the relationship of shock attenuation to tube diameter and initial pressure [5]. For 
low values of S  in micro-shock tubes it has been calculated that the shock wave reduces 
greatly in strength due friction and heat conduction. Using a variety of boundary conditions 
good agreement was found between numerical calculations and analytical theory for calcula-
tions in the laminar region of the boundary layer [6]. Finally, the influence on shock 
propagation of wall friction and heat transfer has shown that shear stresses and energy losses 
close to the wall greatly affect the shock attenuation [7].

Unsteady Reynolds-averaged Navier-Stokes equations have been used in the calculation of 
flow within micro tubes [8], together with velocity slip and temperature jump equations. It 
was found that the shock wave strength decreased considerably for low initial pressures and 
small tube diameters. Other studies [9, 10] indicate that the forming of a boundary layer 
attenuates the shock wave propagation and, also by reducing the micro tube diameter, the 
shock strength greatly decays.

Studies in the last paragraph assume instantaneous opening of the diaphragm to produce a 
centred expansion and shock wave. However, in practice, a diaphragm bursts over a finite 
time and flow progresses in line with the available opening from the driver section to the 
driven section. Non-centred waves are produced in the driven section and the propagation 
characteristics are different to those of the sudden rupture process. The flow in the vicinity of 
the diaphragm becomes very complex. The question arises as to how to simulate the actual 
diaphragm rupture. Hickman et al. [11] proposed that the diaphragm initially bulges and that 
the opening starts at the diaphragm centre. Later Outa et al. [12] proposed a cosine opening 
function with respect to time and recently Matsuo et al. [13] proposed a quadratic function.

In the current work a 2D axisymmetric CFD approach was used to simulate unsteady flow 
evolvement and shock propagation inside a micro-shock tube. The optimal mathematical 
function to describe the finite-time rupture of the diaphragm was established followed by a 
comparison of the characteristics found in the driven section between gradual and sudden 
diaphragm rupture.

2 MICRO-SHOCK TUBE (COMPUTATIONAL DOMAIN)
A micro-shock tube consists of a driver region, a driven region and a diaphragm initially used 
as separator as can be seen from Fig. 1. Initially high pressure and low pressure are assigned 
to the driver and driven regions, respectively. When the diaphragm is ruptured, a moving 
shock wave front develops due to the pressure difference. Reflection of the shock wave occurs 
when it meets the solid end-wall of the driver region.

Figure 1: Closed micro-shock tube.
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In this work the dimensions LH( ) and LM( ) for the driver and driven regions were 41mm 
and 66mm respectively while the equivalent diameters dH( )  and dM( ) were 20mm and 
7.5mm.

Some helpful terminology regarding a shock front travelling along the driven section is 
shown in Fig. 2. EH, CS and SW respectively represent expansion head, contact surface and 
shock wave.

3 NUMERICAL CALCULATIONS

3.1 Governing equations

Two-dimensional, axisymmetric, transient, calculations were made using Reynolds-averaged 
compressible Navier-Stokes equations coupled with the energy equation. The conservation 
equations used were
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Figure 2: Terminology associated with shock front.
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In the above, the radial and axial coordinates are r  and z  respectively, and the radial and 
axial velocities are u and w respectively. The static pressure is p, h  is enthalpy and µ  is 
molecular viscosity. F  is body force and qr  and qz are the radial and axial heat fluxes 
respectively.

The total energy per unit mass (e) in the above equations is evaluated as

 e h p= − / .ρ  (6)

The PHOENICS-2018 [14] code together with some additional coding inserted using the 
In-Form facility found in PHOENICS was used for the computation of these equations. In 
order to calculate density, the ideal gas law was used and to discretize convection the higher- 
order van Lee MUSCL scheme was chosen. A first-order Euler scheme was used for time- 
stepping. When appropriate, i.e. at very low pressure during rarefaction, the Maxwell slip 
velocity and jump equations [2] were used in the near wall region as
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Here kB is Boltzmann’s constant, σ  is the Lennard-Jones characteristic length. The α  
coefficents are momentum and thermal accommodations, the mean free path is λ  and δ  is the 
distance from the wall. The subscripts g w,  and c refer to gas, wall and cell-centre. The slip 
velocity was derived from Eq. (7).

The viscosity was modelled using the Sutherland viscosity model and is a function of 
temperature
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In Eq. (10) the viscosity of the gas is µ , with µ0 a reference viscosity, The temperature is 
T , with T0 a reference temperature. Su  is the Sutherland constant.
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3.2 Computational domain

The computational domain was discretized using a structured, cylinder-polar mesh. Grid 
independence was tested with the final mesh size chosen as 120 radial by 1200 axial cells. 
The numbers in the driven region was 60 radial by 720 axial cells, and in the driver region 
120 radial by 480 axial cells. Close to solid walls and the diaphragm region refinement of the 
mesh was achieved using geometric progression. This is shown in Fig. 3 where only some of 
the mesh has been selected to give clarity.

Each calculation was run for 0.3ms using uniform time steps detailed in Table 1. The k-ω  
SST turbulence model [15, 16] mentioned in Table 1 is a two-equation eddy-viscosity model. 
The use of a k-ω  formulation in the inner parts of the boundary layer makes the model 
directly useable down to the viscous sub-layer. The SST formulation switches to a k-ε  behav-
iour in the free-stream. It was found not to be necessary to use under-relaxation and the 
convergence criteria for each variable was 10-4. The computer was a Dell 5500 Workstation 
with an Intel Xeon Six Core Processor (2.66 GHz) with 16GB RAM.

3.3 Validation

The calculation method, using instantaneous diaphragm rupture, was tested by comparing 
with an analytical solution and experimental results. 1D transient calculations were made and 
compared with an analytical solution [17] for macro shock flow. It is appropriate to test the 
calculation method against macro shock tube flow as shock waves, contact discontinuity and 
rarefaction waves are common to both macro- and micro-shock tubes. The macro tube chosen 
for this part of the validation was 10m long and had a cross-sectional area of 0.1m2. During 
the calculations, 90 cells were used in the computational domain. For the driver section initial 

Figure 3: Refinement of the grid close to solid surfaces.

Table 1: Computation specifics

Energy equation Enthalpy (h )
Time step 0.1µ s
Grid arrangement Staggered
Turbulence model k-ω  SST
Solution algorithm Implicit SIMPLEST
Time differencing 1st Order Euler
Discretization MUSCL
Elapsed run-time (0.2ms) 20.0 hours
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pressure was set at 1bar, the temperature 348.391K and the density of the gas 1.0kg/m3. 
For the driven section the initial pressure was set at 0.1bar, the temperature 278.13K and the 
density of the gas 0.125kg/m3. The boundary condition for the wall was non-slip and the 
energy equation was solved as enthalpy using the ideal gas law. For the discretization of con-
vection the higher-order Van Leer MUSL scheme was used. As shown in Fig. 4 quite good 
agreement was found for the axial temperature distribution between the analytical solution 
and the calculations, with the results within the shock in good agreement. However, just at the 
start and finish of the shock, the temperature was not calculated very accurately. This may be 
due to the MUSCL scheme used, so in an attempt to rectify this deficiency, the suggestions 
due to Suresh and Huynh [18] for the necessity to satisfy the monotonicity by the enlarge-
ment of the TVD intervals were introduced. A slight improvement in the calculation of the 
variables towards the shock ends resulted as can be seem for the temperature distribution 
in Fig. 4.

A second validation was made by comparison of calculations with the experimental results 
of Park et al. [19] who used a micro-shock tube of 6mm diameter with a pressure ratio (Pr) 
of 6. The driven section was initially set at 1atm. The calculated shock- and expansion-wave 
propagation curves are shown in Fig. 5. Here EH and SW represent the expansion head and 
shock wave respectively.

There is quite good agreement between the experimental and calculated results although 
less attenuation is found from the calculations. This could be because real gas flow is more 

Figure 4: Comparison of calculated results with measurements in a macro shock tube.

Figure 5: Experimental and calculated results for wave location at different times.
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viscous and there is heat transfer from the shock-heated gas to the walls of the shock tube. 
The boundary conditions used at the walls were adiabatic with the fixed value 300K. Again 
the inclusion of TVD enlargement helps to improve the calculations a little.

3.4 Finite rupture-time modelling

It is important to describe first the mechanics of how the diaphragm in the present work rup-
tures. It has been previously postulated and proven [20] that left to its own devices a cellophane 
diaphragm will most likely rupture first around its periphery due to dynamic pressure load-
ing. However this is not the scenario considered here. Rather, to coincide with experimental 
data it will be assumed in all the present work that initial rupture occurs at the centre-line of 
the tube induced with the aid of a needle [13].

To reproduce the bursting of the diaphragm with respect to time, three functions were 
investigated, namely linear, quadratic and square-root

Linear r t=α , (11)

Quadratic r t= β
2 , (12)

Square-root r t= γ . (13)

where r  is the opened radius at the arbitrary time t, α  is the constant R T/ , where R  is the 
total tube radius and T  is the total time to open fully, β = R T/ 2, and γ = R T/ . To find 
which of these functions is the most suitable representation of the finite-time diaphragm rup-
ture, calculations were made using the geometry of [13] which was a tube of 65.5mm diameter 
with a pressure ratio of P P4 1 2/ =  where P4  is the initial pressure of the driver domain and 
P1 is the initial pressure of the driven domain. From the experiment [10] it was shown that the 
total rupture time was approximately T = 0 216. ms with P4  set at 101,325Pa. Figure 6 com-
pares the diaphragm opening radius r  for the different functions described by Eqns. (11–13) 
and it can be clearly seen that the rupture progresses initially much slower for the linear and 
quadratic functions when compared to the square-root function.

If a direct relationship of diaphragm rupture time with area is assumed then the rupture 
time for different shock tube diameters can be inferred. For a tube of diameter 7.5mm the 
time of rupture was found as approximately 3µ .

Figure 6: Diaphragm opening radius for different time functions.
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Half of the diaphragm was discretized into 30 sub-divisions which coincided with 30 dis-
crete time steps, and initially the diaphragm sub-divisions were considered to be solid and 
impervious, and, at each time step, an additional sub-division was opened. The sub-division 
lengths were set according to which opening time function was in use. In the experiment, the 
diaphragm bursts in a continuous fashion but it was considered here that 30 time steps were 
sufficient to represent the continuous functions of Fig. 6.

Figure 7 shows the variation of static pressure at the experimental measuring point for 
different initial time functions.

It is clear that the square-root function is much closer to the experimental results showing 
that the rupture process is initially fast and gradually slows. Due to these encouraging results 
all finite-time diaphragm rupture calculations made in the rest of this paper use a square-root 
function for the total diaphragm opening time.

4 RESULTS AND DISCUSSION
Comparison is now made between characteristics of the resultant flow for gradual and sud-
den rupture of the diaphragm. Extensive calculations have already been reported for a 
sudden rupture of the diaphragm [9] using the computational domain shown in Fig. 1. The 
initial conditions chosen for comparison were, P P4 1 9/ = , P1 101325= Pa , the Knudsen 
number (Kn) for the driven section set at 9 10 6

×
−  and the initial temperature (T ) set at 300K. 

The wall boundary condition was non-slip.
For gradual diaphragm rupture the flow evolvement into the driven region gradually takes 

place leading to several compression waves being formed which eventually coalesce leading 
to a shock wave being formed. The flow evolvement at the end of the gradual rupture period 
is shown in Fig. 8 and is represented using temperature contours. The development of the 
contact surface (CS) and shock wave (SW) are seen by the increase and fall of the tempera-
ture values. Shown in Fig. 9 is the development of the shock front for times during the 
gradual diaphragm rupture period.

Because of finite time to achieve full rupture, it takes time for flow into the driven section 
to fully develop. Therefore the full shock front also takes time to form and will start down-
stream of the diaphragm, as opposed to instantaneous rupture where the shock wave forms 
immediately. A good indication of the shock strength is the temperature ratio across the 
shock, T T2 1/ . The analytical solution (inviscid) gives the temperature ratio as a constant 
and higher value than the solution here due to the constant attenuation of shock strength 

Figure 7: Pressure history for different time functions at 
x

D
= −2 29. .
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due to viscous losses. The progression of the shock strength with time during and after 
gradual rupture is shown in Fig. 10, which also explains the formation distance of the shock 
front.

The distance between shock and contact variation is given in Fig. 11. It can be seen that the 
resulting shock-contact distance is strongly dependent on the initial assumption of diaphragm 
rupture, i.e. the gradual diaphragm opening gives a much reduced shock speed and hence a 
shorter shock-contact distance results when compared to the instantaneous diaphragm burst-
ing process.

Figure 9: Temperature contours in the vicinity of the diaphragm during the rupture progression

Figure 8: Temperature distributions in the diaphragm region at the end of the gradual 
diaphragm rupture.

Figure 10:  Temperature ratio distribution indicating the strength of the shock wave travelling 
along the driven region with time.
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A shock wave resulting from a burst diaphragm moves within a driven region with a Mach 
number MS. In an ideal micro-shock tube, with fixed initial conditions, MS can be calculated 
from
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where γ  is the mean free path and is a function of the Boltzmann constant, the Lennard-Jones 
characteristic length of species, temperature and pressure. The Mach number keeps constant 
in a given micro-shock tube [1]. It is shown in Fig. 12 that the shock front location for the 
gradual rupture lags behind that of the instantaneous rupture. The analytical ideal inviscid 
solution as given by Eq. (14) where the theoretical Mach number MS was set at 2.1 is seen to 
over-predict the shock front speed when compared to the other two solutions.

CONCLUSIONS
In this work the effect of having a gradual opening of the diaphragm instead of an initial 
instantaneous rupture of the diaphragm was studied. It was found that the gradual rupture of 
the diaphragm leads to a gradual flow progression over the time of rupture. Compression 

Figure 11:  Shock-contact distance variation for instantaneous and gradual diaphragm 
ruptures.

Figure 12:  Location of the shock front along centre-line in the driven section for sudden and 
gradual ruptures.
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waves develop which coalesce and eventually form a moving shock front, and, as such the 
full shock front starts downstream of the diaphragm and not, as with the instantaneous open-
ing, at the diaphragm location. The time of rupture was found to be very small and the best 
function describing the opening process was found to be the square-root function. The shock 
propagation distance for the gradual rupture case was found to be less than that for the instan-
taneous rupture case.
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