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ABSTRACT
In this study, we develop an efficient topology optimisation method with the H -matrix method and the 
boundary element method (BEM). In sensitivity analyses of topology optimisation, we need to solve 
a set of two algebraic equations whose coefficient matrices are common, particularly in many cases. 
For such cases, by using a direct solver such as LU decomposition to factorise the coefficient matrix, 
we can reduce the computational time for the sensitivity analysis. A coefficient matrix derived by the 
BEM is, however, fully populated, which causes high numerical costs for the LU decomposition. In 
this research, the LU decomposition is accelerated by using the H -matrix method for the sensitivity 
analyses of topology optimisation problems. We demonstrate the efficiency of the proposed method by 
a numerical example of a multi-objective optimisation problem for 2D electromagnetic field.
Keywords: boundary element method, H -matrix method, level-set method, topological sensitivity, 
topology optimisation.

1 INTRODUCTION
Topology optimisation is the most flexible configuration optimisation method based on com-
puter simulation and has extensively been researched so far. In topology optimisations, 
configuration of design objects is expressed with a function defined in a design domain and 
the function is updated in a way to minimise an objective function, which expresses the per-
formance of design objects. Many varieties of methods for the shape representation are 
proposed, such as a homogenisation-based method [1] and solid isotropic material with 
penalization (SIMP) [2]. In this study, we employ the level-set method, which can express the 
boundaries of design objects clearly [3].

We update the configuration of design objects iteratively based on a topological derivative, 
which is the variation of the objective function when an infinitesimal disc, for 2D, is allocated 
in the design domain. To evaluate the topological derivative, we need to calculate the elec-
tro-magnetic responses for two kinds of incident waves; forward and adjoint. The finite 
element method (FEM) is usually employed to solve the forward and adjoint problems. In the 
FEM, however, the infinite domain should be approximated by a finite domain with an appro-
priate boundary condition. Hence, the FEM needs a large analysis domain in order to assure 
enough accuracy, which may cause large meshing costs. We apply the BEM to calculate the 
magnetic responses since the BEM requires mesh generation only on the boundary and can 
treat the infinite domain strictly.

The level-set-based topology optimisation with the BEM has been applied to many vari-
eties of problems such as acoustics [4], heat conduction [5] and electromagnetics [6]. In 
many cases, algebraic equations that appear in a sensitivity analysis have the same coeffi-
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cient matrix. Hence, we can solve these algebraic equations in one time with direct solvers 
such as the LU decomposition. The BEM, however, leads fully populated coefficient matrix 
after discretisation, which causes large numerical costs to solve the algebraic equation with 
direct solvers. To realise an efficient direct solver, we apply the H-matrix [7] method to 
accelerate the LU decomposition. The H-matrix method is an acceleration method for 
matrix operations based on hierarchical blocking of the matrix and low rank approxima-
tion. We can easily apply this method to direct solvers. Calculation cost for the LU 
decomposition can be reduced to O (N log N) by the use of the H-matrix method. Further-
more, in some multi-objective topology optimisation problems, the required number of 
electro-magnetic field analyses increases in proportion to the number of the objective func-
tions. Hence, for this kind of problems, further acceleration is expected by the use of the 
H-matrix method and the LU decomposition. We demonstrate the effectiveness of our 
method by an example of multi- objective optimization problems for 2D electro-magnetic 
field.

2 FORMULATIONS
In this section, we formulate the electro-magnetic field analysis in a transverse electric (TE) 
polarised field with the BEM. We consider a vacuum domain in which dielectric materials are 
allocated (Fig. 1). We denote the vacuum domain and dielectric materials as Ω1 and Ω2, 
respectively. Also, we define Γ as the boundary of Ω2. The magnetic field u satisfies the fol-
lowing boundary value problem in a TE polarised field:
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where ki and εi denote the wave number and permittivity in the domain Ωi, respectively. Also, 
∂/∂n denotes the inward normal derivative on the boundary Γ. Superscripted variables ui and 
(∂u=∂n)i in boundary conditions (3) and (4) express the limit from the domain Ωi to the 

Figure 1: Analysis domain.
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boundary Γ. In this study, we employ the PMCHWT formulation [8] to avoid the irregular 
eigenfrequency problem and obtain the following boundary integral equations:
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where uinc denotes an incident wave. Also, w and winc are defined as follows:
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By discretising the boundary integral equations (6), we obtain the algebraic equation to 
solve for the unknown quantities.

3 TOPOLOGY OPTIMIZATION
Topology optimisation is a method to determine the optimal structure of engineering devices 
to maximise its performance by iteratively updating the configuration in a design domain D 
based on computer simulations. In order to formulate a topology optimisation problem, we 
need to define an objective function, which expresses the effectiveness of a device. In this 
study, we define the objective functions in terms of the functions of the magnetic responses 
at some observation points x

i
obs , as follows:

 J f u x
i
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In the following subsections, we present a level-set-based topology optimisation, which 
uses a level-set function to express the configuration of the design objects, and the topologi-
cal derivative to update the configuration.
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3.1 Configuration expression with the level-set method

In this study, we express the configuration of design objects with the level-set method. In the 
level-set method, we define the level-set function f f( ) ( ( ) )x x− ≤ ≤1 1 in a design domain D. 
Each domain is expressed based on the value of the level-set function as follows:

 Ω
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3.2 Updating the material configuration with a rection and diffusion equation

We update the level-set function by the following equation:
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where t is a fictitious time corresponding to an optimisation step. The first term in the right 
hand side (RHS) denotes the direction and scale of the update. C is a constant which is used 
to adjust the scale. Further, I (x) is the topological derivative, a variation of the objective 
function caused by allocating an infinitesimal disc in a design domain D. The second term of 
RHS is used to adjust the complexity of the obtained configuration. τ is a positive constant 
and l denotes a characteristic length of the design domain D. The design domain D is divided 
into a structured grid. We update ϕ at each grid point by solving the equation (17). This prob-
lem does not require regeneration of mesh. Further, the analysis domain is finite. We, 
therefore, employ the FEM to solve equation (17).

3.3 Topological derivative

Topological derivative is defined as the first coefficient of the asymptotic expansion of the 
objective function by area of an infinitesimal disc s(ε):

  (18)

where δJ is a variation of the objective function. In a TE polarised field, the topological 
derivative when an infinitesimal circle of dielectric element is allocated in the vacuum domain 
Ω1 is derived as follows:

  (19)

where ũ(x) is the solution of the following adjoint problem:
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When a dielectric element Ω2 is pierced with an infinitesimal circle of vacuum, the topo-
logical derivative is derived by swapping ε1 and ε2 of (19).

In the case of multi-objective optimisation problems, we employ the KS function [9] to 
define the objective function as follows:

 J e
i
n w Ji i=
=

log( ),Σ
1

 (25)

in which each Ji is a function of magnetic response and wi denotes its corresponding weight.  
The topological derivative for the objective function (25) is calculated by the chain rule as 
follows:

  (26)

where Ii (x) denotes the topological derivative when we define Ji as the objective function.

3.4 Topology optimisation algorithm

The topology optimisation algorithm is illustrated in Fig. 2. Firstly, we determine an initial 
configuration of a design object and initialise the level-set function value in accordance with 
the initial configuration of the material. The boundary mesh is generated from the level-set 
function. Then, we conduct the forward analysis with the BEM. As a result of the forward 
analysis, we obtain the value of the objective function and the electro-magnetic response in the 
design domain. When the objective function does not satisfy a convergence criteria, we con-
duct the adjoint analysis. By using the forward and adjoint electro-magnetic responses, we 
calculate the topological derivative. Then, we update the level-set function by the equation 
(17).We repeat the above process until the objective function satisfies the convergence criteria.

4 ACCELERATION OF THE SENSITIVITY ANALYSIS
In this study, we accelerate the calculation of the topological derivative by the H- matrix 
method. H-matrix method is an acceleration method of matrix operations based on hierarchi-
cal blocking of a matrix and low rank approximation. With the help of the H-matrix method, 
we can reduce calculation costs for matrix operations. By the use of such efficient operations, 
we can reduce the calculation cost for LU decomposition to O(N log N) for the number of 
boundary element N. We call the accelerated LU decomposition with the H-matrix method as 
HLU. We can solve the forward problem consisting of equations (1) – (5) and the adjoint prob-
lem consisting of equations (20) – (24) in a fast manner simultaneously by the HLU. In this 
section, we show the method for blocking a coefficient matrix and low rank  approximation.
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4.1 Blocking of a coefficient matrix

Each row and column of a coefficient matrix which is derived by the BEM corresponds to each 
boundary element. Hence, we divide the coefficient matrix into some block matrices based on 
clustering of the boundary. We generate a boundary cluster by the following procedure:

•  We make a rectangle enclosing a boundary, which we are going to divide. We define a set 
of nodes in the rectangle as a ‘cluster’. Also, we denote the number of divisions that is 
required to obtain the cluster as ‘level’.

 • We divide the longer side of the rectangle into two parts and define each obtained rectangle 
as a new cluster.

•  We repeat the above process until the number of nodes in each cluster is less than a preset 
parameter nmin. We define a cluster in which the number of nodes is less than nmin as a 
‘leaf cluster’.

By the above process, we obtain a binary tree structure of the boundary clusters. Figure 3 
shows an example of boundary clustering. ‘Level’ denotes a depth of each cluster in the 
binary tree structure and corresponds to the required number of clustering to obtain each 
cluster. Combination of two clusters in the same level denotes a block matrix of the coeffi-
cient matrix. When the two clusters satisfy the following admissibility condition, we define 
the block matrix as a far-field effect block:

 min{ , } { , },diam diam distC C C C
i j i j

≤η  (27)

where η is a constant that arranges strictness of the admissibility condition. diam Ci denotes 
the maximum distance between two nodes included in the cluster Ci. Also, dist{Ci, Cj} 

Figure 2: Topology optimisation algorithm.
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denotes the minimum distance between two nodes included in each Ci and Cj (Fig. 4). If a 
block matrix Cs × Ct is not a far-field effect block and at least one of Cs and Ct is a leaf cluster, 
we define the block matrix as a near-field effect block.

4.2 Low rank approximation with the ACA

We approximate far-field effect blocks by low rank matrices with the adaptive cross approx-
imation (ACA) [7]. The ACA is a method to approximate a matrix by the algebraic methods 
and can reduce the calculation cost and required memory for the coefficient matrix.

5 TOPOLOGY OPTIMISATION EXAMPLE
In this section, we apply the efficient sensitivity analysis with the H matrix method to a 
 multi-objective topology optimisation problem. We show that the proposed method is advan-
tageous to a conventional method.

5.1 Problem statement

We consider a problem to find the optimal configuration of dielectric element in a design 
domain D = [0, 90] ⊗ [0, 90], which minimises the following objective function for multi- 
angle incidence:

 J e
i
n w Ji i=
=

log( ),Σ
1

 (28)

Figure 3: Example of boundary clustering.

Figure 4: Definition of diamC and dist {Ci, Cj}.
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in which Ji is a sum of electro-magnetic fields for an incident wave of angle θi and is expressed 
as follows:

 J u x
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We consider the case where the angles of incidence are 0°, 3°, 6°, 9° and 12°. The wave 
length λ is 40. We allocate 60 observation points in a domain [100, 120] ⊗ [35, 55]. The 
permittivity of the dielectric element ε2 = 5. As an initial configuration, we put four circles of 
dielectric element whose radii are all 9.75 (Fig. 5). The weight function of the KS function 
wi is fixed to 1.0 in this example. As is shown in Section 3, we have to calculate the topolog-
ical derivatives I i for Ji to calculate the topological derivative I  for the objective function J. 
It causes us to solve algebraic equations for n incident waves, which have the same coeffi-
cient matrix. We solve these equations with H-matrix method and the LU decomposition 
(HLU) in one time. In this study, parameters for H-matrix method nmin, η and tolerance for 
addition of two H-matrices and the ACA are fixed to 32, 1.4 and 10-6, respectively.

5.2 Results of the topology optimization

Figures 6 and 7 show histories of the objective functions and the optimal configuration in the 
case where HLU and GMRES is employed as a solver. Sum of the magnetic fields of each 
angle of incidence is reduced to the same degree. Also, the history of the objective function 

Figure 5: Problem statement of the topology optimisation for multi-angle incidence.

Figure 6: History of the objective function in the case HLU (left) and GMRES (right) is used 
as a solver.
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is almost the same as each other. This means that the approximation error of ACA is rela-
tively small compared to the discretisation error. Calculation time of each step is shown in 
Fig. 8, in which the horizontal axis shows the number of boundary elements for each opti-
misation step. By using HLU, the total calculation time from step 1 to 80 is reduced 
approximately by 75%

6 CONCLUDING REMARKS
We developed an efficient sensitivity analysis approach for topology optimisations using the 
H-matrix method and the LU decomposition. We confirmed that computation cost spent to 
obtain the optimal configuration for a multi-objective optimisation problem is reduced by 
approximately 75% compared to the conventional method with GMRES. We are going to 
extend the proposed method to apply for optimisation problems in which we have to treat 
more complicated structures such as design problems of cloaking devices. For such  problems, 
the structure of the H–matrix becomes further more complicated, increasing the numerical 
cost for matrix operations.

Figure 7:  The optimal configuration in the case HLU (left) and GMRES (right) is used as a 
solver.

Figure 8: Calculation time for each optimisation step.
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