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ABSTRACT
Cathodic protection (CP) is a technique that prevents corrosion of underground metallic structures. 
Design of any CP system first requires defining the protection of current density and potential distribu-
tion, which should meet the given criterion. It also needs to provide, as uniform as possible, current 
density distribution on the protected object surface. Determination of current density and potential 
distribution of CP system is based on solving the Laplace partial differential equation. Mathematical 
model, along with the Laplace equation, is represented by two additional equations that define bound-
ary conditions. These two equations are non-linear and they represent the polarization curves that define 
the relationship between current density and potential on electrode surfaces. Nowadays, the only reli-
able way to determine current density and potential distribution is by applying numerical techniques. 
This paper presents efficient numerical techniques for the calculation of  current density and potential 
distribution of CP system based on the coupled boundary element method (BEM) and finite element 
method (FEM).
Keywords: Boundary Element/Finite Element Method (BEM/FEM), Cathodic Protection (CP), 
non-linear boundary conditions, potential distribution.

1  INTRODUCTION
Due to the increasing number of underground and underwater metallic installations (such 
as pipelines), interest in the development of appropriate protection against corrosion pro-
cesses has been growing. Practice has shown that the most effective way to protect these 
installations against corrosion is to use cathodic protection (CP) systems along with pas-
sive protection (high resistive coatings). These systems are assumed to be effective when 
the rate of corrosion of the protected object does not exceed a defined value, after installa-
tion of the CP system [1]. For the assessment of the efficiency of such systems, both in the 
design phase and during execution, it is necessary to know the distribution of the electric 
potential and protection current density on the surface of the protected object. Nowadays, 
for design and assessment of the effectiveness of such systems, numerical methods are 
used [2–4].

One of the most commonly used numerical methods for the calculation of relevant param-
eters of the CP systems is the boundary element method (BEM). The advantage of this 
method compared to other conventional numerical methods such as the finite difference 
method (FDM) and finite element method (FEM) is in that it only requires a discretization of 
the boundary surfaces. In addition, with this method it is relatively easy to treat infinite and 
semi-infinite domains such as ground and air. The only disadvantage of BEM is that it 
considers the electric potential on the electrode surface as being uniform; that is, there is no 
current flow through the electrodes [2, 5]. This problem can be overcome by combining BEM 
with e.g. FEM.
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When modelling a CP system, electrochemical reactions that take place on the electrode 
surfaces must be taken into account. Since the electrochemical reactions take place on the 
electrode surface, they take into account the boundary conditions. Electrochemical reactions 
that take place on the electrode surface do not give the linear relationship between electric 
potential and current density; therefore, used boundary conditions are non-linear. Therefore, 
Newton–Raphson technique was used to solve the non-linear equation system [6, 7].

In this paper, coupled BEM/FEM method was used for calculation of the CP system 
parameters. Electrochemical reactions that occur on the electrode surface are considered in 
the presented mathematical model. In addition, attenuation of electric potential in the cathod-
ically protected pipeline was taken into account.

2  MATHEMATICAL MODEL
The presented mathematical model is composed of three parts. The first part is the soil (outer 
domain), which is modelled using direct BEM; the second part is electrodes metal (inner 
domain), which is modelled by FEM; and the third part is the boundary between these 
two domains and is modelled by BEM/FEM [8–10]. In the third part, non-linear boundary 
conditions were applied.

2.1  Boundary element method

As previously mentioned, BEM was used for calculation of the electric potential and current 
density distribution in the outer domain, i.e. soil. According to the direct BEM, current den-
sity and electric potential can be calculated at any point of the domain by using the following 
integral equation:

	 c q q p n G p q d G p q n p d
s s s( ) ( ) + ( ) ⋅∇( ) = ⋅∇( ) + ′∫ ∫j j j j� �
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where q is the observation point, p is the field source point, c(q) is the constant, js(q) is the 
potential at the observation point q in soil, js(p) is the potential at the field source point p in 
soil, 

�
n is the normal unit vector, G(p,q) is the Green’s function, Γ is the boundary of the 

domain and ∇ is Nabla operator. Additional term j¢ given on the right side of the eqn (1) is 
the constant potential on the infinite boundary [6, 7, 11]. To calculate this potential, addi-
tional integral equation must be added [5–7]:
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where κS represents the electric soil conductivity.
Green’s function used in this paper is given by the following equation:
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where |p - q| represents the distance between source point p and observation point q and |pꞌ - q| 
is the distance between observation point q and image of the source point pꞌ. The reflection of 
the source point pꞌ is caused by soil/air interface and this point is placed in air on the distance 
from the soil/air interface similar to the source point p placed in soil from the soil/air 
interface [10].
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From integral eqns (1) and (2), potential in the soil at the soil/electrode interface as well as 
the flux density can be obtained. To calculate the current density on the electrodes, Ohms law 
must be introduced, as follows:

	 jS S S= − ∇k j � (4)

where jS represents current density.
Equations (1) and (2) can be solved by using direct BEM [12]. The first step of BEM is 

discretization of electrode surfaces with boundary elements. In this paper, biquadratic bound-
ary element with nine nodes was used. After application of the Collocation method at the 
point and Gauss–Legendre quadrature, solution of the electric potential and current density 
can be obtained for each node of all boundary elements. This can be done by solving the fol-
lowing matrix equation:
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In eqn (5), indexes c and a represent the cathode and anode surface, respectively.
According to the direct BEM, elements of the matrix eqn (5) can be calculated by using the 

following equations:
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where NG is the number of applied Gauss–Legendre quadratures, Nt is the number of nodes 
of one boundary element, ξ,η are Gauss points, N(ξ,η) are shape functions, det[J(ξ,η)] is 
determinant of Jacobean matrix, wj1 and wj2 are weights coefficients for Gauss points ξ and 
η, respectively.

Equations (6) and (7) are valid for non-singular elements i.e. for i ≠ j. Singular H elements 
are calculated according to the Gibbs theorem [2]. Singular G elements are split into two 
parts. The first part is a non-singular part and represents the impact of the image of the source 
point on the collocation point and is calculated as per eqn (7). The second part is a singular 
part and this part is calculated by using 1/r singular quadrature [13].

2.2  Finite element method

For calculation of the attenuation of the potential in the electrodes, FEM can be applied. 
The first step of FEM is discretization of the entire domain of interest on finite elements. 
After discretization, solution of the electric potential distribution can be calculated by solving 
the following integral equation:
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where κM is the conductivity of electrodes materials, Ωe is the volume of e-th finite element, 
ψ is the shape function, nfe is the total number of finite elements, Γe is the boundary surface 
of e-th finite element, jMj

(e) is the potential of j-th node of e-th finite element and j Mj
(e) is the 

current density of j-th node of e-th finite element. Indexes i and j with shape functions repre-
sent the node number of e-th finite element.

Solution of eqn (9) can be written in the matrix form as follows:
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After application of the coordinate transformation and Gauss–Legendre quadrature, the 
elements of matrix eqn (10) can be calculated according to the following equations [2, 5]:
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where xk represents one of the Cartesian coordinates.
Equations (11) and (12) are valid for matrix elements of one finite element. To form global 

matrix eqn (10), it is necessary to take into account contributions of all finite elements that 
share the same node. This can be easily done by summing the contributions of all finite 
elements of a given node.

2.3  BEM/FEM and boundary conditions

To couple FEM for the inner domain with direct BEM for the outer domain, an additional 
equation must be added in the system. On the interface between two domains, a continuity 
equation can be written:

	 − ⋅∇( ) = − ⋅∇( ) ⇒ =k j k j
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After application of the continuity equation, the matrix equation of the whole system can 
be written in the following form [2]:
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To solve matrix eqn (14) it is necessary to apply boundary conditions on the all boundary 
surfaces of the problem. Boundary conditions on electrodes surfaces are defined by expres-
sions that represent the relationship between electric potential and current density. These 
relationships represent the polarization characteristics of electrodes. For protected object 
(cathode) surface, thw polarization characteristic is given by the following expressions:

	 j j j jc Fe O H
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Fe
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− − − − −
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where j0Fe is the current density corresponding to the metal dissolution reaction, jlim,O2
 is the 

limiting current density of oxygen reduction, jH2
 is the current density of hydrogen separa-

tion, jFe, jO2
 and jH2

 are the equilibrium potentials of corresponding electrochemical 
reactions and βFe, βO2

 and βH2
 are Tafel slopes of metal dissolution, oxygen reduction and 

hydrogen separation, respectively.
Polarization characteristic for galvanic anode is defined by the following expression:
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where ja is the equilibrium potential of galvanic anode and βa is the Tafel slope of galvanic 
anode.

Equations (15) and (16) represent the boundary conditions of electrode surfaces. As it can 
be noted, these boundary conditions are non-linear and,  therefore, matrix eqn (14) is non-
linear and can be solved by using iterative techniques. In this paper, for a solution of this 
equation the well-known Newton–Raphson iterative technique was used [12].

3  CASE STUDY
The previously presented mathematical model was used for the calculation of relevant param-
eters of the steel pipeline protected by galvanic anode CP system shown in Fig. 1.

Zinc galvanic anodes are placed alternately on both sides of the protected pipeline being 
spaced at 6 m and the distance from the pipeline axis is 5.5 m. The outer diameter of the 
analyzed pipeline is 4 m and is set to a depth of 3.75 m. The anode strings are placed at a 

Figure 1: Geometry of analyzed system.
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depth of 2.5 (m), while the length of anode strings is 6.4 m. The whole system is placed in the 
soil with electrical soil resistivity of 100 Ωm. Value of polarization characteristics parameters 
for both, anode and cathode surfaces, are given in Table 1.

Calculation results of the electric potential and current density on the protected pipeline 
surface are given in Figs 2 and 3, respectively.

From results given on Figs 2 and 3, it can be noted that most of the negative values of the 
electric potential on the protected object are on the surfaces that are closer to the anode 
strings. With increase in distance from the anode string, the electrical potential of the pro-
tected object is closer to the values of corrosion potential (i.e. becomes more positive). The 

Table 1: Value of polarization parameters [2, 11].

Parameter Value Parameter Value

j0Fe 1(μA/cm2) jH2
-800 (mV) vs. CSE

jFe -700 (mV) vs. CSE βH2
276,3 (mV/dec)

βFe 138,15 (mV/dec) jO2
1(μA/cm2)

jlimO2
1,1 (μA/cm2) ja -1100 (mV) vs. CSE

jH2
1 (μA/cm2) βa 60 (mV/dec)

Figure 2: Electric potential distribution on pipeline surface.

Figure 3: Current density distribution on pipeline surface.
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same applies for the distribution of current density. From given results it is also noticeable 
that electric potential and current density change the longitudinal as well as the axial on ana-
lyzed pipelines. In many analyses, axial change of the electric potential and current density 
are often neglected. From the given results it is clear that axial change of electric potential 
and current density is not negligible, and must be taken into consideration.

4  CONCLUSION
The main task in determining the efficiency of a CP system is to define technically the correct 
level of the electric potential and current density on the surface of the protected object. The 
most reliable way to adopt for calculation of these parameters is by the application of appro-
priate numerical methods. In this paper, a mathematical model based on the coupled BEM/
FEM for calculation of the electric potential and current density of the CP system is pre-
sented. In the presented model, direct BEM was used for the calculation of the electric 
potential and current density in the outer domain, and FEM for the calculation in the inner 
domain. These two methods are coupled on boundary between the outer and inner domains 
where the non-linear boundary conditions are applied.

The presented mathematical model was used for the calculation of electric potential and 
current density distribution of one illustrative example.
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