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ABSTRACT
Isosurfaces are an appropriate approach to visualize scalar fields or the absolute value of vector fields 
in three dimensions. The nodes of the corresponding isosurface mesh are determined using an efficient 
and accurate isovalue search method. Then, these nodes are typically connected by triangular elements, 
which are obtained with the help of an adapted advancing front algorithm. An important prerequisite 
of an isovalue search method is that volume data of the examined field is available in total space. That 
means, the field values are precomputed in the nodes of an auxiliary post-processing volume mesh 
or a novel meshfree method is developed that enables both efficient computations of field values in 
arbitrary points and fast determination of domains with a defined range of field values. If the first 
approach is applied, a classical isovalue search method is to use an octree scheme to find relevant vol-
ume elements, which are intersected by the isosurface. Finally, the surface elements of the isosurface 
are constructed based on the intersection points of the isosurface with the volume elements. In that case, 
the accuracy and the computational costs are mainly influenced by the density of the post-processing 
volume mesh. In contrast, an innovative coupling of established isovalue search methods, fast boundary 
element method (BEM) techniques, and advancing front meshing algorithms is here presented to com-
pute isosurfaces with high accuracy only using the original BEM model. This novel meshfree method 
enables very accurate isovalue search methods along with nearly arbitrarily adjustable resolution of 
the computed isosurface. Furthermore, refinements of the isosurface are also possible, for instance in 
dependency of the current viewing position. The main idea to realize this meshfree method is to directly 
combine an octree-based isovalue search method with the octree-based fast multipole method (FMM).
Keywords: applied boundary element methods, fast multipole methods, isosurface computations, mesh-
free post-processing, visualization.

1 INTRODUCTION
The computation of isosurfaces is a very attractive method to detect and visualize domains 
with a given range of scalar field values or the absolute value of vector field values in three 
dimensions. Furthermore, the characteristic properties of an examined field are sufficiently 
described by only a few isosurfaces in many practical applications. However, an efficient 
isovalue search, which is the fundamental step of isosurface computations, is still a challeng-
ing task, especially in the context of boundary element methods (BEMs). On the one hand, 
field values must be available in total space. A classical approach to provide volume data in 
the case of BEM is to compute the examined field values in the nodes of an additional auxil-
iary post-processing mesh. On the other hand, fast search methods are necessary to find 
isovalues efficiently. An established isovalue search method is an octree-based scheme 
 Wilhelms and Gelder [1]. A pointer-less organization of the octree enables very efficient 
storage of the tree along with fast navigation in the tree in the case of dense octrees Wilhelms 
and Gelder [1]. Further enhancements improve the accuracy in the case of complex-shaped 
 isosurfaces in combination with unstructured grids for field values Anderson et al. [2], 
Schreiner et al. [3], and Kazhdan et al. [4]. It is also possible to not only compute correct 
isosurfaces but to obtain surface elements, which can be used for further field computations 
Dey and Levine [5]. Modern implementations of isovalue search methods run massively 
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parallel on graphics processing units (GPU) Martin et al. [6]. However, the total accuracy and 
efficiency of all these approaches depend significantly on the density of the post-processing 
volume mesh for the field values. There, a compromise between accuracy and computational 
costs must be found to obtain correct isosurfaces.

The computation of field values in a large number of evaluation points is an expensive 
task, if classical BEM is used. Fortunately, compression techniques like the fast multipole 
method (FMM) Greengard and Rokhlin [7] reduce the computational costs significantly 
both for the solution of the linear system of equations and for the post-processing Buchau 
et al. [8]. Furthermore, it is possible to compute very efficiently field values for visualiza-
tion objects, for instance streamlines, without an auxiliary mesh by a bidirectional 
coupling of BEM with visualization approaches Buchau and Rucker [9] and Buchau and 
Rucker [10].

Here, an innovative coupling of a meshfree BEM post-processing with an efficient isosur-
face computation is presented. The basis is an adaptive octree scheme, which is used both for 
the isovalue search and for a FMM accelerated BEM computation of field values. A direct 
evaluation of the series expansions of the FMM enables very accurate field value computa-
tions in relatively large domains using only a small number of coefficients. Hence, intersection 
points of isosurfaces with octree cubes can be determined more precisely and expensive 
computations of field values in the nodes of an auxiliary dense volume mesh are avoided. 
Furthermore, the presented approach enables an accurate refinement of the isosurface mesh 
with relatively low computational costs by computing additional intersection points inside 
the cubes on a set of lines parallel to the cubes edges. Finally, an adapted advancing front 
meshing algorithm is applied to construct triangular elements of the isosurface for an impres-
sive visualization in a virtual reality environment.

2 NUMERICAL FORMULATION

2.1 Fast boundary element method

Here, three-dimensional problems, which are based on a solution of Laplace equations, are 
considered. An indirect BEM formulation is applied to obtain surface source densities on 
domain boundaries of piecewise homogeneous, linear, isotropic materials. In the case of 
electrostatic field problems, the scalar electric potential u r( ) at an arbitrary point r  is directly 
obtained from the surface charge density s  on the surface A of conductors or dielectrics by 
an evaluation of

 u G A
A

r r r r( ) = ′( ) ′( ) ′∫
1

0Œ
s , d . (1)

G is Green’s function of Laplace equation
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and ∈0 is free space permittivity. A system of linear equations is obtained by an application of 
isoparametric second order quadrilateral boundary elements and the Galerkin method Buchau 
et al. [11]. The dense system matrix is compressed efficiently using the FMM Greengard and 
Rokhlin [7].



 A. Buchau, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 5 (2017) 649

Here, isovalues of u r( ) are searched for a visualization of u r( ) with isosurfaces. The val-
ues of u r( ) can be directly obtained from (1). The evaluation of (1) is significantly accelerated, 
if the FMM is applied for the post-processing, too Buchau et al. [8]. Then, an octree scheme 
is used to group all boundary elements and evaluation points. The integral in eqn (1) is only 
evaluated for a small number of boundary elements in the near-field of an evaluation point  
rep. However, singular and nearly singular integrals must be computed efficiently with satis-
factorily high accuracy. The far-field of rep is taken into account by an evaluation of the local 
expansion in the octree cube of the evaluation point Cep

 u L r Yf ep
n

L

m n

n

n
m n

n
mr( ) = ( )

= =−
∑ ∑1

4 0π
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Ln
m are the so-called local coefficients in C

ep
, L is the order of series expansions, and r , q, j 

are spherical coordinates of rep with origin in the center of Cep. Yn
m are spherical harmonics. 

Equation (3) can be regarded as a Taylor series expansion of uf r( ) in spherical coordinates, 
too. In practice, a good accuracy is obtained for L = 9 to L = 12 along with acceptable com-
putational costs. That means, uf r( ) is approximated in Cep with higher order polynomials 
and only a few coefficients. An approximation using linear volume elements would require a 
relatively large number of volume elements to achieve a comparable accuracy of uf r( ).

An octree scheme is the basis for a correct application of an FMM-accelerated BEM in 
practical applications. An octree is relatively easy to create and checks whether a point or an 
element is inside a specified cube are simple to perform by comparisons of Cartesian coordi-
nates. FMM series expansions like eqn (3) are only applicable, if sources and evaluation 
points are definitely separated based on spherical coordinates. Hence, real dimensions of 
elements are taken into account by circumscribing spheres that result in an extra cube layer 
between corresponding cubes in practical implementations.

2.2 Meshfree isovalue search method

An isovalue search method is necessary to compute the nodes of the isosurface mesh. It 
requires to provide values of the examined field; here, the potential u r( ) in total space or in 
practice in a large but limited spatial range. An important property of BEM is that due to 
eqn (2) infinite space is taken exactly into account. The following method considers both 
aspects.

The total space is subdivided into two regions. One region, the inner domain Ωi  (red and 
green region in Fig. 1), contains the boundary elements in the red region in Fig. 1 and requires 
careful evaluations of compressed BEM integrals. The other region, the outer domain Ωo 
(blue region in Fig. 1), is the surrounding free space, where the distance of all evaluation 
points to the boundary elements is large enough to only apply series expansions for the com-
pressed evaluation of eqn (1). The cubes in the green and blue regions without boundary 
elements are necessary to compute and visualize isosurfaces not only between the boundary 
elements but also in the surrounding air domain. The number of cube layers in Ωo is arbitrar-
ily adjustable according to user’s demands.

The first step of the adapted isovalue search method is to create two dense octrees, one for 
Ωi  and one for Ωo. The root cube Cri of the inner octree Ti is constructed from the bounding 
box Be  of all boundary elements. The centre of Cri corresponds with the center of Be  and its 
edge length is the largest edge length of B

e
. The inner octree is then extended by further cubes 
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(green cubes in Fig. 1). Finally, outside of C
ri
 all prerequisites for an application of the 

so-called multipole expansion
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are fulfiled. The origin of the spherical coordinates is in the centre of C
ri
. The multipole coef-

ficients M
n
m contain information of sources on all boundary elements, for instance the surface 

charge densities in electrostatics.
The cube C

ri
 is subdivided into eight child cubes according to the octree creation rules of 

the FMM. The significant difference to the classical FMM is that here empty cubes are cre-
ated and stored, too. Empty cubes are only subdivided if boundary elements are assigned to 
their neighbour cubes and if these cubes are at a finer octree level than the empty cube.

The outer octree T
o
 (blue cubes in Fig. 1) is constructed in dependency of T

i
. The centre of 

the root cube C
ro

 of T
o
 coincides with the center of C

ri
. The edge length of C

ro
 is

 l nl
ro ri
= , (5)

where l
ri
 is the edge length of C

ri
 and n is a positive integer. The outer octree T

o
 is subdivided 

into empty child cubes until the level with edge length of the child cubes of C
ri
 is reached. 

The cubes, which would coincide with cubes of T
i
 are omitted, that means each r

ep
 is clearly 

assigned either to T
i
 or to T

o
. Then, all cubes of T

o
 surround T

i
 and the field in all cubes of T

o
 

can be computed using only one multipole expansion eqn (4). Of course, if very large 

Figure 1: Octree scheme for geometrical subdivision of total space.
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 surrounding air domains are considered, the order L in eqn (4) can be reduced for far distant 
cubes to reduce computational costs without significant loss in accuracy.

After the creation of the two octrees, the multipole expansions eqn (4) and local expan-
sions eqn (3) of the FMM are computed in all cubes of T

i
 analogous to the classical FMM 

algorithm.
For an efficient octree based isovalue search, the value range of all cubes is determined 

first. Then, an efficient filtering of relevant cubes using the hierarchical tree structure is pos-
sible. Since extrema of u r( ) are lying on boundary elements, the values of u r( ) in all nodes 
of the boundary elements are determined first. Then the total range of u r( ) is known. The 
range of an octree cube is obtained from the values of u r( ) on boundary elements inside the 
cube and from the values of u r( ) in the corners of the considered cube. Note that it is neces-
sary to take boundary elements into account that are assigned to the cube and boundary 
elements of neighbour cubes that extend into the cube.

If no boundary elements are lying in a cube or in its neighbour cubes, the local expansion 
in eqn (3) suffices to compute u r( ). A significant difference to well-known isovalue search 
methods is that u r( ) is not linearly interpolated between the corners of the cube but a higher 
order Taylor series expansion in eqn (3) is used. Hence, an optimization method, for instance 
a simple bisectional line search or a gradient-based search method, is applied to determine 
the intersection points of the isosurface with the octree cube edges. An advantage of the pre-
sented approach is that the intersection points are determined with high accuracy. Furthermore, 
additional intersection points inside the cube can be computed with a refinement of the cube 
and an isosurface with nearly arbitrarily fine adjustable resolution is obtained using further 
search lines on cube faces and inside the cube.

If boundary elements are lying in the considered cube or in its neighbour cube, the compu-
tation of intersection points is more expensive, because additional to the local expansion in 
eqn (3) nearly singular integrals in eqn (1) must be evaluated. In that case, a refinement of the 
isosurface is omitted. In any case, the resulting octree cubes are relatively small near bound-
ary elements and a fine resolution of the isosurface is obtained automatically.

Two typical situations for refinement of the isosurface are depicted in Fig. 2 and in Fig. 3. 
First, the intersection points of the isosurface with the cube edges are determined. Then, the 
cube faces are refined using search lines at the faces. These points are important to obtain 
closed isosurface meshes. Further search lines inside the cube are used to obtain points of the 
isosurface between the cube edges and faces. These points are relevant for high-quality visu-
alization of curved isosurfaces.

In Fig. 2, the red points are the intersection points at the cube edges. The green lines are 
additional search lines at cube faces for the blue intersection points. The intersection points 
of additional search lines inside the cube are depicted in Fig. 3.

Several strategies for positioning the additional search lines exist. One possibility is to place 
equidistant lines parallel to the cube edges. Radial search lines are an option for curved isosur-
faces. In practice, an efficient and especially numerical robust method is to place all search 
lines parallel to cube edges but to use a mixture of directions. Then, almost regular distances 
of intersection points on curved isosurfaces are obtained along with low computational costs.

2.3 Isosurface meshing algorithm

The last step of isosurface computation is to create a meshed isosurface from the computed 
points obtained by the isovalue search method of the previous section. Linear triangular 
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 elements are typically used in visualization for performance and rendering reasons. Here, the 
task is to create a triangular mesh from already computed nodes. In contrast to classical 
meshing algorithms, where the position of the nodes is determined during the meshing pro-
cedure, the position of the nodes of the isosurface mesh is fixed and they have to be connected 
in a suitable way.

Figure 2: Computation of intersection points at cube faces and cube edges.

Figure 3: Computation of intersection points in a cube.
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In principle, the approaches for watertight surface reconstructions from arbitrary point 
clouds could also be used here, Kobbelt and Botsch [12] and Hornung and Botsch [13]. How-
ever, they should be adapted to avoid deletion of some already computed nodes. Hence, an 
established surface mesh generation method, the advancing front technique Löhner [14], is 
more suited. It is applied with some adaptions to each cube C

is
, which is intersected by the 

isosurface, and the meshes of the isosurface segments A
is
 are constructed separately for each 

cube C
is
.

First, the edges E
is
 of A

is
 are defined using the intersection points at the edges of C

is
 and 

the additional intersection points at the faces of C
is
. For the following algorithm, it is impor-

tant that the intersection points along each E
is
 are sorted.

The first triangle is constructed from the first point of the first edge P
1
, the second point on 

that edge P
2
, and the next point P

3
 on the second edge, which ends or starts at P

1
 (Fig. 4). The 

order of these three nodes of the triangle defines the direction of the normal vector of the 
triangle. The direction of the normal vector is important during the construction of adjacent 
triangles. Hence, care has to be taken to ensure that the normal vectors of all elements of A

is
 

point in the same direction.
Starting from the first triangle, element edges and triangles along the edges E

is
 are con-

structed (Fig. 4). Therefore, two sequent points of E
is
 are connected by an element edge e

e
. 

Then the third node of the triangle is searched according to the following triangle construc-
tion algorithm.

The next isosurface segment edge is the edge adjacent to the previous edge. The direction 
of the edge is adjusted in such a way that the positive direction of the right-hand rule is 
 maintained to ensure correct orientation of normal vectors.

Figure 4: Construction of triangles starting at edges.
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The same triangle construction algorithm is applied to all free edges (green edges in Fig. 4) 
after the construction of triangles along the edges E

is
. Finally, a completely meshed isosur-

face segment is obtained.
A new triangle is constructed starting from an element edge (red line in Fig. 5). Its normal 

vector is estimated using the normal vector of neighbour triangles. If the element edge is at 
the edge of the isosurface segment, the mean value of the normal vectors of all triangles, 
which have a common corner with the considered edge, is computed. The normal vector of 
the triangle adjacent to the element edge is used otherwise. The search point for the third 
node of the triangle (red point in Fig. 5) is constructed using the midpoint of the element edge 
(blue point in Fig. 5) and the weighted cross product of edge direction and normal vector. 
Then, the distances of all nodes to the red search point are computed and the nodes are sorted 
by this distance in ascending order. The closest node (node intersected by the blue circle in 
Fig. 5) is checked, whether it could be used as the third node of the triangle. The found node 
must be a free node or it must belong to an element with a free edge towards the red edge. The 
third node is finally connected using two edges (dotted green lines in Fig. 5) with the red 
edge. If these new edges are already part of existing triangles, these edges are assigned to the 
new triangle, too. Otherwise, new element edges are created.

During the construction phase, it is necessary to store not only the triangles including their 
nodes but also all element edges due to performance optimization. For each edge, a flag 
whether the edge is a free edge is recorded, too. To optimize the element edge search, a list 
of all edges, which end at a node, is maintained.

The triangles of all isosurface segments are merged in a common element container. There-
fore, a renumbering of element nodes is required. Finally, one element set is transferred to the 
visualization software and rendered.

3 NUMERICAL EXAMPLES
The presented isosurface computation method was implemented in our in-house post-pro-
cessing BEM software using the programming language C# including the .NET library. 
There, the focus was on testing the isovalue search method with respect to required computer 

Figure 5: Construction of a new triangle from an edge.
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resources and accuracy as well as the meshing algorithm to create high-quality visualizations 
of the computed isosurface. The aim was to evaluate the potential of meshfree isosurface 
computations. Performance optimization of the code have been omitted due to desired flexi-
bility of the code.

The computation of isosurfaces of the electric potential of a plate capacitor was chosen as 
a numerical example. Although the geometrical configuration is relatively simple, it is very 
well suited for testing isovalue and isosurface computations. The isosurface in the symmetry 
plane is completely flat and isosurfaces near the plates of the capacitor are highly curved. 
Furthermore, the surrounding air domain is relevant for an accurate post-processing, too.

The two plates of the capacitor were discretized with in total 800 second order quadrilat-
eral elements. The resulting linear system of equations with 2,562 degrees of freedom was 
solved using four parallel threads on an Intel Xeon CPU E3-1275v5 with 3.6 GHz and 64 GB 
main memory at 2,133 MHz in 9 s. GMRES with a Jacobi preconditioner was used as itera-
tive solver and convergence with an error smaller than 10 6−  was achieved after 56 iteration 
steps. The matrix of the linear system of equations was compressed using the FMM  
with L = 12.

The potential in 1,681 points of a plane intersecting the capacitor was computed using a 
single thread in 5 s (Fig. 6). The result was visualized with the visualization tool COVISE 
Lang and Wössner [15], which was originally developed at the high performance computing 
centre (HLRS) of University of Stuttgart and which is now an open source software. The 
communication between COVISE and our in-house post-processing code is established based 
on OASIS Open Data Protocol (OData) [16] to enable a bidirectional coupling between the 
visualization tool and the code for numerical field computations.

An inner octree with 3,209 cubes and an outer octree with 65 cubes have been constructed 
to compute isovalues. The outer octree adds one additional layer of cubes to the inner octree 
to take field values outside the bounding box of the capacitor into account, too. The data 

Figure 6: Surface charge density on the capacitor plates and potential in a plane.
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range of each cube is determined first. Then, 28 relevant cubes of the inner octree and 16 
relevant cubes of the outer octree have been selected for isosurface computation. That means, 
detailed computations of the potential have been performed in 1.3% of the cubes only. This 
corresponds to a significant reduction of computational costs in comparison to a volume 
meshed based post-processing.

A line search method using bisection is applied to find the isovalue along a search line. On 
average, 20 iterations are needed to find the point on the line with the defined isovalue with a 
relatively small error.

If no refinement is applied, the octree structure is visible in the computed isosurface 
(Fig. 7). The coarse isosurface consists of 168 nodes and 80 linear triangular elements. It is 
obvious that the visualized isosurface is not smooth enough. In total, 29,984 computations 
of the electric potential in the corners of the cubes, in the nodes of the boundary elements, 
and  in points on the search lines were necessary. The CPU time on a single core was about 
 10 minutes. An example of a refined isosurface is depicted in Fig. 8.

4 CONCLUSION
An innovative approach for a meshfree computation of isosurfaces has been presented. A 
direct coupling of octree-based isovalue search methods, FMM accelerated BEMs, and 
advancing front meshing algorithms enable fast computations of isosurfaces with nearly arbi-
trarily adjustable resolution. The numerical results show impressively that the presented 

Figure 7: Isosurface without refinement.

Figure 8: Refined isosurface.
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approach reduces both the number of expensive BEM computations and storage  requirements 
significantly. In total, a flexible and powerful visualization of scalar fields and values in a 
virtual reality environment is possible along with relatively low computational costs, which 
is very important in practical applications of BEMs.
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