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MICRO/NANO FLOWS: VORTICITY GENERATION

TREVOR H. MOULDEN
The university of Tennessee Space Institute, USA

ABSTRACT
Vortical structures have been observed to develop in electrically driven fluid motion at the micro/nano 
scale, but no coherent theory has been put foreword in the literature to explain such a development. The 
present paper gives several results in a theory based upon the classical field equations. In particular, it 
is shown that the origin of vorticity production resides in the applied electric field interacting with any 
ion concentration gradients present in the fluid as defined by the vorticity equation. This is in addition 
to any viscous layer vorticity diffusion that may also exist in the flow.
Keywords: Micro/nano Scale Flows, Maxwell Tensor, Vorticity Production.

1 INTRODUCTORY REMARKS
The equations derived for any theory associated with fluid mechanics, or with physics in gen-
eral, are of no practical use in applications unless they possess a unique regular solution. 
Since there is no complete proof of these properties for the Navier–Stokes/ion concentration 
equations, they have to be assumed before the following analysis has any merit. The particular 
application of interest herein is to electrically driven flows in micro/nano scale devices. See 
Silber–Li, et al. [1] for background details on a specific case that has been explored experi-
mentally and which provides the background to the theory discussed herein. The practical 
importance of this class of flows has been demonstrated in several situations of interest.

The theory of fluid mechanics adopts a so–called hylomorphic structure, H = {B, Dt}, as 
the framework for the theory. Here B is the fluid body of interest and Dt is the spatial domain 
occupied by that fluid body at time t ∈ T. Thus, property fields are associated with the body 
B but are written as functions over the spatial domain Dt. These property fields include the 
fluid density and temperature as well as those associated with the electric field. The domain 
Dt could be a function of time as the fluid body moves across space R3. The present study is 
only concerned with the generation of vorticity within the flow field (of fixed geometry) and 
not with the creation of vortical structures. The former is a property of the field equations, the 
latter, a feature of the entire boundary value problem: vortical structures are flow geometry 
dependent. The appearance of the flow, to distinct observers, is also distinct (as studied in the 
Plato problem; see Moulden [2] for example).

As noted by Levich [3] early work on the interaction of (direct current) electric fields with 
particles suspended in fluid motion was carried out by F. F. Reyss at the start of the nineteenth 
century. On the other hand, the study of micro/nano scale flows is quite recent with 
Chang et al. [4] providing a survey of such flows (including the role of vortex motion in the 
flow field development). However, that vortex instability is of a different kind to the property 
of the vorticity field discussed herein. No detailed theoretical mechanism for the formation of 
vortical motion was provided in the study of Chang et al. [4] (but some of their cited refer-
ences contain such a discussion); it is appropriate therefore, to discuss the mechanism 
involved in more detail. In fact, there is nothing more than the standard vorticity equation, 
enlarged to include the action of electric fields, at work in this model of vortical flow devel-
opment. Vorticity, ζ (x, t), evolution (see equation 1.3) is discussed in Section 3 below; indeed 
the present study is only concerned with this vorticity generation.
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At the spatial dimensions appropriate for the micro/nano scale devices of interest herein 
it is readily shown that the molecular mean free path of the fluid is of such relative magni-
tude as to render the continuum theory an adequate representation of the flow. Hence the 
adoption of the Navier– Stokes equations (augmented with the Maxwell equations for elec-
tric fields) is quite appropriate for a discussion of such fluid motion. It is also assumed that 
the flow field is sufficiently smooth within the device of interest that the curl of the field 
equations can be extracted to describe the vorticity field for all appropriate space and time 
scales.

The proof of uniqueness is not direct for the equations that define electrically driven flows 
in micro/nano scale fluid mechanics due to the very non–linear nature of these equations. In 
addition, this set of field equations are coupled together in a non–trivial way. It can be noted 
(see Mao et al. [5] and Park et al. [6] for example) that linearizion is often undertaken to 
discuss the flow field at these small scales. However, such an approximation is not appropri-
ate for the discussion of vortical structures in the flow field. Herein an exact theory will be 
examined in some detail. Gurtin [7] gave a simple uniqueness theorem for the Navier Stokes 
equations when regularity was assumed and when the body force was not a function of other 
field variables. This result, as written by Gurtin [7], cannot be extended for the present case 
which includes direct coupling of the body force with the other field variables. The unique-
ness problem is discussed in subsection 3.2 below.

Any discussion of a uniqueness theorem must include the ion conservation equations 
(adopting the Nernst–Planck flux, J(a), to determine the net charge density re(x, t)). Again, 
it must be assumed that regularity issues associated with the solution to the entire set of field 
equations can be addressed (but this topic is not considered herein).

The central issues for the present deliberations are the creation of vorticity, ζ(x, t), and 
vortical motion, in micro/nano scale fluid motion. This creation can only be studied from 
within the vorticity equation: that is the curl of the linear momentum equation (see equa-
tion (1.3) below). This equation shows directly that the source of vorticity resides in the 
curl of the Lorentz force, F ≡ re E. Here, re denotes the net charge density given as the sum: 
re = F Σ(zaca). In addition, F, denotes the so–called Faraday constant while ca is the con-
centration of the ath ion. Finally, za represents the corresponding ion valence. Section 1.4, 
below, discusses the Nernst–Planck flux, J(a). However, it can be noted that the cited liter-
ature on this class of flow does not consider the vorticity evolution equation. Knowledge of 
the properties of the vorticity equation are essential for a complete understanding of the 
flow development in micro–nano scale devices.

1.1 The Mass Invariance Constraint.

Since the flow in micro/nano scale devices takes place at very low speeds, the fluid density 
can be taken to be constant. This constant density statement is also based upon the assumed 
uniformity of the fluid composition. In the experimental data presented in Silber–Li et al. [8], 
the fluid consisted of Borax solution at pH 9.2. Under these conditions, the mass invariance 
constraint reduces to the simple statement:
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and is assumed to hold throughout the entire flow field. Here, v(x, t), denotes the local veloc-
ity vector of the fluid. It is also assumed that the addition of Borax does not cause significant 
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local viscosity and density property variations within the fluid. In the experimental situations 
of practical interest, there would be a continual mass flux through the entire physical device. 
However, the mathematical model adopted herein will assume constant fluid mass. It is rec-
ognized, thereby, that the evolution of rotational motion can be studied without a detailed 
knowledge of the process by which vortical structures are formed within the physical flow 
device. It is the possible effects of the electric field on the global flow evolution that are of 
major interest in the present context.

1.2 Consequences of the Linear Momentum Equation.

The linear momentum equation for a constant density fluid is standard save for the nature of 
the stress field throughout the fluid. That is, the stress field provided by the fluid pressure and 
the (assumed) linear viscous fluid model must be augmented by the addition of the so–called 
Maxwell tensor M(x, t) (see equation (2.1). below) that arises from the action of the electric 
field. Specifically:
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where the Lorentz force, F(x, t) = div(M) = re E, with net charge density re(x, t) = ε div(E) ≡ 
F Σ(z aca) (with summation taken over all distinct ions present). Properties of the tensor M 
are considered in more detail in Section 2 below. The curl operator applied to equation (1.2) 
produces the vorticity diffusion equation:
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with z e ui ijk k jt x( , )x /= ∂ ∂  being the vorticity vector where the divergence, div(ζ), is identi-
cally zero: there being no sources or sinks of vorticity in the flow field. Indeed, the divergence 
of equation (1.3) vanishes identically for constant density fluid flow. However, the last term 
on the right of equation (1.3) shows that the curl of the Lorentz force is the driving mecha-
nism for vorticity generation. This vorticity generation says nothing about the development 
of vortical structures in the flow field; which are, in significant part, related to the device 
geometry. It also does not fully address the vorticity generation in wall viscous layers. The 
vorticity vector also participates in the generation of the scalar enstrophy, η ζ(x, ) ,t = ζζ /2, 
which is given as:
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and, again, is non–linear. Here, the vorticity vector interacts with the curl of the Lorentz 
force (or, equivalently the electric field) to hasten the evolution of the enstrophy. This action 
is not viscosity related and does not depend upon the fluid pressure, P(x, t). There is also 
viscous dissipation at work that tends to dampen that same enstrophy evolution. Evolution 
of both the helicity tensor, H = z ⊗ v, and its scalar counterpart h = ζζ ,v , are discussed 
below in Section 3.1.
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1.3 The Maxwell Equations.

It is assumed that no magnetic fields are acting upon the device of interest. Hence the Max-
well field equations can be stated in the reduced form:

 ∂ ∂ = − = =E j E E/ / /t curl div ee r e; ( ) ; ( )0  (1.5 a,b,c)

where, as above, E(x, t) denotes the applied electric field, j(x, t) ≡ s E the local current den-
sity and ε the (assumed constant) permittivity of the fluid. Finally, s denotes the (scalar) 
conductivity of the fluid. The properties of these field equations are discussed in Korvetz [9] 
for example. In the above equation, re = F Σ(zaca), denotes the net charge density and con-
trols the change in the electric field strength via equation (1.5c). Also, za is the ion valence 
and ca the corresponding ion concentration. No existence or uniqueness results for the entire 
set of field equations will be provided herein. Indeed, such results are not complete for the 
classical Navier–Stokes component of the above system of equations.

1.4 Ion Conservation.

The theory written down above is not closed until the ion conservation equations are intro-
duced. Let J(a)(x, t) denote the Nernst–Planck flux as a function of spacetime. The ca ion is 
conserved according to the statement:
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and, for each of the a−components, ca(x, t) is time invariant if div(J(a)) vanishes identically. 
Finally, the components of the Nernst–Planck flux, Ji(a), are taken in the standard form:
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Note here that the Nernst–Planck flux is related to the velocity field via the, non–linear vca, 
term in equation (1.7). In that equation, Da represents the a−ion diffusion coefficient which, 
herein, is assumed to be constant. Also, μep is the ionic mobility (again assumed to be 
constant).

Equations (1.1−1.7) define the electro–fluid mechanics of the problem under discussion. 
Several questions naturally arise: for example “does this set of equations have a solution and, 
if so, is that solution unique?” being the most fundamental. Subsection 3.2 below makes a 
few comments (but does not answer such questions in their totality; indeed they have not been 
answered for the basic Navier Stokes equations — see Galdi et al. [10] for a summary of what 
is known about that set of equations). The form of the Ji(a) term in equation (1.7) ensures that 
equation (1.6) is non–linear. Hence there is, from equations (1.6) and (1.7), the statement:
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for the specification of ion conservation. This (scalar) equation contains an interaction 
between the electric field, E(x, t), and the concentration, ca, of the a–ion as a contribution to 
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the evolution of dca/dt. In addition, there is an interaction with the velocity field in that mate-
rial derivative term. Without the electric field acting, there is only convective diffusion of each 
ca(x, t) component (which is akin to the action defined by the Navier Stokes equations in the 
absence of body forces or pressure gradients).

It is assumed in what follows that the fluid is entirely enclosed in the device of interest so 
that no free surface boundary conditions are required.

2 THE MAXWELL TENSOR, M(x, t)
Since electric fields are a central consideration for the flows of interest herein, it is neces-
sary to introduce the Maxwell tensor, along with the Maxwell equations, that define the 
electric field. No magnetic fields are considered in the present development but those 
fields could be added without undue toil. Let M(x, t) denote the Maxwell stress tensor. In 
the absence of any magnetic field, B(x, t), acting on the fluid, this stress tensor has the 
explicit form:

 M [ / ]= ⊗ −e E E E E I, 2  (2.1)

as generated by an electric field E ∈ R3 applied to a conducting fluid. Here, the (assumed 
constant) quantity, ε ∈  R, denotes the fluid permittivity. From equation (2.1), there is 
trace ( ) /M E E= − e , 2 . The eigensystem of the tensor M relates to that of E as shown in 
subsection 2.1.

It follows directly from equation (2.1) that div(M) = re E [with net charge density 
re = ε div(E)] and defines the Lorentz force, F(x, t), acting on the conducting fluid. This  
force acts in unison with the viscous force, ν υdiv( )T , where under the Stokes model of the 
linear viscous fluid there is:
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an equation which defines the Cauchy stress tensor. Then div(Tu) represents the viscous force 
defined by the Cauchy stresses. It is a basic assumption herein that the fluid adopted in the 
experiments is linearly viscous. Then, to this viscous stress must be appended the stress  
associated with the above mentioned Lorentz force F(x, t). That is, for the conducting fluid, 
the viscous stress tensor, Tu, must be extended to the form: T M Tυ

+ ≡ , say. Hence, there is 
the total stress tensor, T(x, t), given in the form:
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In addition, the Lorentz force is given explicitly as: F = re E ≡ div(M) in terms of the  
Maxwell tensor. The issue of uniqueness is mentioned below in Section 3.2 but cannot be 
given in a complete and final form. The mathematical difficulties in the development of such 
a theory being similar to those associated with the Navier–Stokes equations (see Galdi et al. 
[10]). Section 3.2, below, makes additional comments on the properties of these equations. It 
is assumed that the present micro/nano scale flows are all laminar so that turbulence models 
are not required in the following discussion.
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2.1 The Eigensystem of M.

The eigensystem of the tensor M (from the definition M X = lX) can be given in the explicit 
form:

l e1 2= =E E X E, ; { }/ 1 span  

along with the repeated eigenvalue λ2 3 2, ,= − E E /   and with its associated eigenvectors X2,3 
(which reside in span{ }E ⊥ the orthogonal complement of X1 and can be made orthogonal in 
that subspace). The X1 eigenvector, residing in the space span{E}, has significance for the 
overall flow development.

Let d(x, t) = Mn denote the Maxwell stress vector on the surface S (if n is the outward 
normal to that surface). From the definitions:
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so there must be the constraint d n/⊥  unless the equality E ≡ 0 holds (which, of course, 
implies that the Maxwell tensor vanishes). That is, the stress vector does not lie in the plane 
that is perpendicular to the one– dimensional subspace, span{n}. In fact it is found that:

4 32 2 2 2| | | | | |d E E n E+ =e e2 ,

Note that |d|2 is linearly related to |E|2, so that: | |d ≡ 0 if either | |E ≡ 0 or E n, = 1 3/ ; equal-
ities that lacks generality for real flow applications.

2.2 Causality Issues

The basic field equations, equations (1.2), (1.3), (1.4), are material evolutionary equations so 
that their solution represents the changes in initial data due to the boundary conditions 
imposed. As in Moulden [2], this causality can be expressed in terms of a Greens function. 
Thus, for a differential equation of the form D(y) = f(x), there is explicitly:

 y f x x( ) ( ) ( , ) ( )x G d= +∫ x x H
D

x  (2.4)

for the solution. Here G x( , )x  is the Green’s function associated with the differential operator 
D. Equation (2.4) shows that changes to the vector y(x, t) are caused by two distinct factors:

a). The forcing function f(x) when weighted by the Green’s function.
b). The structure of the function H(x) due to the initial and boundary conditions imposed.

and applies separately to each of the field equations listed above. Similarly, the uniqueness of 
simple turbulence models was discussed in Moulden [11].

A Reynolds decomposition can be applied to equation (2.4) so that turbulent flow can be 
discussed if, indeed, the need for such a study were to arise. Such is not, however, the present 
interest.

The structure of causality in the fluid mechanics of electrically driven flows is a separate 
issue and will not be discussed herein. Some introductory comments on causality, in a 
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different context, were given in Moulden [2]. It can be noted, however, that the electric field 
defines the Lorentz force, F(x, t), which enters both the linear momentum equation (1.2), and 
the vorticity equation (1.3). Hence, its effect on the entire flow development is significant. 
The vorticity equation is transparent to the pressure field but not to the curl of the Lorentz 
force which acts as a driving force for vorticity generation.

2.3 A Comment.

Leng [12] raises questions concerning the nature of the models adopted in both fluid dynam-
ical theory and in experimental testing: in particular the hypothesis that fluids can be treated 
as continua rather than via a molecular model. It is, of course, this assumption that allows 
fluid properties to be treated as a continuous function over x ∈ R3 at each time t ∈ R. Is this 
question more of a concern at the micro–nano scale flows considered herein? Not so, since 
the experimental devices of interest are only two or three orders of magnitude smaller than 
classical wind tunnel models. Leng’s point would be well taken by the idealist, but not by the 
pragmatic observers required in a scientific study. It does, however, fall in line with the writ-
ing of Cartwright [13] who expresses a certain measure of caution concerning the mathematical 
models used in science. The latter text does, in fact, question the value of the entire set of 
theories put forward in that science. Much of the arguments used against the notions adopted 
in science are, however, understood background for those involved in the creation of that 
science. Science studies models of natural events and compares the properties of those mod-
els with reality. In no sense are these models the physical reality (however well they may 
mimic that reality).

3 THE VORTICITY EQUATION
As above, start from the linear momentum equation (see equation (1.2)) and apply the curl 
operation to obtain the non–linear vorticity evolution equation (1.3). It is then direct that the 
curl of the Lorentz force F(x, t), is the contribution to vorticity evolution due to the applied 
electric field. This electric field–induced vorticity field arises throughout the entire flow field 
and not just from the wall boundary conditions. While it is demanded that the velocity field 
vanish on a solid surface, there is no such constraint on the vorticity field. However, the heli-
city tensor, H(x, t) = ζ ⊗ v, will vanish on such a solid surface as does the scalar helicity 
h t( , ) ,x v= ζζ . Section 3.1 discusses these issues in more detail. The so–called viscous layer 
develops adjacent to solid walls and is one seat of the flow induced vorticity production that 
is the main concern herein. Equation (1.3) defined that vorticity evolution which also depends 
upon the curl of the Lorentz force, F(x, t), as well as an interaction of the vorticity field with 
the velocity gradient. Some specific issues that are of interest in micro/nano scale fluid motion 
will be discussed below.

3.1 Helicity Evolution

As defined above, let H(x, t) = ζ ⊗ v be the helicity tensor and also let h( , ) ( ) ,x H vt trace= ≡ z  
be the corresponding scalar helicity. Then there is a pair of evolution equations

 
d

dt
v

x x
H

x

P

x
v

x xk k
ki

i

k

i

i

i

k

i

k

i−
∂

∂ ∂








 =

∂
∂

−
∂
∂

−
∂
∂

∂
∂

+
2

2h
u z

r
z u z

r
∂∂
∂

+
M

x
kil

l

 (3.1)



 T. H. Moulden, Int. J. Comp. Meth. and Exp. Meas., Vol. 7, No. 1 (2019) 75

and
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for the evaluation of h(x, t) and H(x, t) respectively. In the above equations the quantities  
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as the contribution from the Maxwell stresses, M(x, t), interacting with the velocity field in a 
non–trivial way. As is appropriate, equations (3.1) and (3.2) also contain contributions from 
the vorticity, ζ(x, t), interacting with the Maxwell stresses and certain other kinematic quan-
tities, as well as the pressure gradient. As is familiar from classical fluid mechanics, the 
vorticity vector, ζ(x, t) from equation (1.3), is not dependent upon the pressure field, P (x, t) 
but in equations (3.1) and (3.2) the pressure gradient does interact with the vorticity field to 
modify the helicity evolution. The above definitions for k(x, t) and K(x, t), which constitute 
the diffusive components of the helicity evolution, show that these quantities must vanish on 
solid surfaces. Of course, h(x, t) vanishes on a solid surface as do the components of H(x, t) 
(and of the divergence ∂Hij / ∂xj).

3.2 On Uniqueness

The following question must always be considered before any discussion of fluid motion can 
commence: is a given flow field unique? That is, from a given initial state, is it possible (with 
the same boundary conditions) for the flow to evolve in two distinct ways? That is the practi-
cal question and, apart for certain specific flow geometries, the answer is negative. On the 
other hand, it can be noted that very little can be said theoretically in this context since a full 
theory of uniqueness for this type of non–linear system has not been written down. What is 
known can be briefly stated in the following terms:

1. The linear mass invariance equation (1.1) must have a unique solution for properly pre-
scribed initial and boundary conditions. Nothing more need be said herein.

2. The situation for equation (1.2) is not trivial and a full theory of uniqueness is not yet 
available (see Galdi et al. [10] as noted above). It is assumed herein that a unique so-
lution does, in fact, exist for all boundary conditions of interest in the applications of 
micro/nano scale flows.

3. Little appears to have been clarified in the literature about the mathematical structure 
of the non–linear equation (1.8). Similar difficulties to those encountered for the Navier 
Stokes equations prevail for that equation also. Since the existence/uniqueness theory 
for the Navier Stokes equations is not complete, and the velocity field appears in equa-
tion (1.8), very little can be added, at this point, about its uniqueness. However, the 
Lorenz force is proportional to the vector E, which is defined by the Maxwell equations 
(1.5a,b,c) and is unique for a prescribed electric field, j(x, t).

If there is any non–uniqueness present then the difficulty becomes one of determining which 
solution (if any) has physical meaning. An extension of uniqueness theorems for the Navier 
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Stokes equations, to include a simple turbulence model, was given in Moulden [11]. But that 
theory was not sufficiently general to satisfy most practical needs and the inclusion of the 
more complex turbulence models adopted in the applications.

3.3 Viscous Layer Theory

Classical boundary layer theory can be extended to treat the present physical situation where 
the effects of electric fields are significant close to any solid surface (as discussed in Probstein 
[14]). Following that reference it can be noted that close to a solid surface there is an electro–
viscous layer that is characterized by the processes of electro-osmosis and electrophoresis. 
These effects are not the current interest and need not be discussed at this point. As the wall 
boundary conditions for velocity it is assumed that a no–slip velocity condition prevails. This 
no–slip boundary condition naturally introduces a vorticity field as part of the wall viscous 
layer. Equation (1.8) introduces its own wall visco–electric layer involving both the ion con-
centration ca(x, t) and the velocity field v(x, t). That is the electric field E(x, t) is associated 
with both the velocity and ion concentration fields via equations (1.2) and (1.8) and hence 
features in both the velocity and electric wall viscous layers.

3.4 Vorticity Evolution

As noted above, the evolution of discrete vortical structures is strongly dependent upon the 
geometry of the device of interest. Mao et al. [5], Park et al. [6] and Silber-Li et al. [1] all 
describe vortical motion evolving in micro–nano scale devices. The vorticity field, defined 
by equation (1.3), gives rise to a distribution of scalar helicity, h(x, t) and the tensor H(x, t), 
as shown in equations (3.1) and (3.2). By definition, the helicity vanishes on a solid surface 
where the velocity field is zero. The same is not true of the vorticity vector field (in general) 
since the velocity gradient normal to the wall is not zero (except at points of flow separa-
tion). Hence on any solid surface, where v|wall ≡ 0, (which implies that both h|wall = 0 and 
H|wall ≡ 0) it follows that the equation (3.2) above reduces to:
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with a contraction to give the limit form for equation (3.1) as a constraint upon the wall pres-
sure gradient written in terms of the vorticity field (all components of which do not vanish 
due to the wall boundary condition). These conditions, h = 0 and H ≡ 0, are trivial for irrota-
tional flows but not for the general viscous flows of current interest. These conditions involve 
the pressure gradient that exists on the bounding solid surface.

4 CONSEQUENCES AND DISCUSSION
It would be naive to assume that the Plato problem has no role to play in the discussion of this 
class of flow since the observation of vortical motion is very observer location dependent. In 
what follows, it is assumed that there are multiple observers who have the capacity to share 
and assimilate each other’s data that was obtained from a given micro–nano scale fluid 
motion. The results of this assimilation provides the information upon which the comments 
below are based.
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1. Vorticity evolution in the flow is a direct consequence of the basic fluid property, n, the 
kinematic viscosity coefficient, as characterized by the Reynolds number. In addition, 
the geometry of the bounding domain serves as a source of vorticity via the wall bound-
ary condition for viscous flow.

2. The applied electric field also causes, via the curl(F) term in equation 1.3, the generation 
of an incremental vorticity field within the flow field. This vorticity field will extend into 
the interior of the flow as the flow field develops. Discrete vortical structures may then 
evolve in the flow field.

3. It is not directly evident that vortical structures play any major role in the flow field evo-
lution as far as the basic operation of the micro– nano scale device is concerned. They 
do, however, add interest to the structure of the flow field.

4. Other issues have not been discussed herein: the importance of the composition of the 
fluid; its Ph value (for example). Also, changes to the geometry of the device has not 
been considered. Certainly, these are important practical issues for the generation of 
vorticity in this class of flows.

The extent to which the problems discussed in Constantine [15] are significant for this class 
of flows has not been clarified. One such question concerns the inviscid limit of the field 
equations. Equation (3.3) would then reduce to the requirement that the set of quantities: 
[ζi (∂P/∂xj)] |wall, must all vanish on a solid wall (for all i and j). Since the pressure gradient 
need not vanish under such circumstances, and not all components of the vorticity need van-
ish, this set of conditions need not be satisfied. Hence, this demand for an inviscid flow limit 
is of no interest for the present deliberations and will be rejected (at least for the class of flows 
under discussion).

5 FINAL REMARKS
The above discussion is mainly addressed to the production of vorticity in electric field driven 
fluid mechanics at the micro/nano scale. In particular, it has been shown that the curl of the 
Lorentz force is the source term for that evolution of vorticity. Just because vorticity is pres-
ent in the flow field it does not imply that distinct vortical structures will be generated in that 
same flow field: these represent two distinct flow field structures (with their own develop-
mental conditions) and are very device–geometry dependent.

However, the essential question concerning the existence and uniqueness of solutions to 
these non–linear field equations (even without the presence of an applied electric field) has 
not been clarified. The above cited references give some overview of the difficulties involved. 
This lack of a theory does not, of course, limit practical applications of the physics involved 
in this class of fluid motion.

As a final comment note that numerical solutions of the field equations discussed above are 
required before practical applications can be modeled. Such numerical studies are discussed 
in some of the references that are cited above.
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