
© 2019 WIT Press, www.witpress.com
ISSN: 2046-0546 (paper format), ISSN: 2046-0554 (online), http://www.witpress.com/journals
DOI: 10.2495/CMEM-V7-N1-57-67

 S.J.D. D’alessio, Int. J. Comp. Meth. and Exp. Meas., Vol. 7, No. 1 (2019) 57–67
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ABSTRACT
This research investigates the unsteady free convective flow of a viscous incompressible fluid from a 
differentially heated rotating sphere. The flow is assumed to remain laminar and to possess equatorial 
and azimuthal symmetry. The governing Navier-Stokes and energy equations are posed in terms of a 
scaled stream function - vorticity formulation and are solved subject to no-slip and specified surface 
temperature conditions. At t = 0 an impulsive heat flux is applied in the form of a jump in surface 
temperature. An asymptotic solution valid for large Grashof numbers and small times following the 
impulsive startup is constructed. Two small parameters have been identified and based on this the flow 
variables are expanded in a double series in powers of these parameters. The non-zero leading-order 
terms in the asymptotic expansions have been determined analytically and the corresponding heat trans-
fer coefficient has been found. Future work will involve obtaining numerical solutions.
Keywords: asymptotic, free convection, incompressible, rotation, thin flow, viscous.

1 INTRODUCTION
Free convective flow from a differentially heated rotating sphere occurs naturally in the 
atmosphere and thus represents an important and well-studied problem. Numerous investi-
gations, some of which are listed in [1], focussing on various aspects have been devoted to 
this subject. The present study represents a continuation of the work reported by D’Alessio 
et al. [1] which emphasized the stability of the steady-state flow for small Rayleigh 
numbers.

The current work addresses unsteady free convective flow at large Grashof numbers. Here, 
the flow is taken to be laminar and to possess equatorial and azimuthal symmetry while the 
fluid is viscous, incompressible and Newtonian. As shown in Figure 1 the sphere rotates 
about the polar axis and with respect to a reference frame that rotates with the sphere the fluid 
is initially isothermal and at rest. At t = 0 the fluid is impulsively set into motion as a result of 
a specified surface temperature distribution that varies sinusoidally with the polar angle and 
exceeds the temperature of the surrounding ambient fluid. An asymptotic solution describing 
the abrupt startup has been derived.

The paper is structured as follows. In the next section the mathematical formulation of the 
problem is presented. The governing equations are introduced in dimensionless form along 
with their corresponding boundary and initial conditions. Following that, in section 3, the 
equations are rescaled to better capture and resolve the early development of the flow. Then 
in section 4 an asymptotic solution procedure valid for small times and large Grashoh  
numbers is outlined. The paper is summarized in section 5.

2 MATHEMATICAL FORMULATION
Because of the assumed azimuthal and equatorial symmetry, the governing unsteady  
Navier-Stokes and energy equations can be expressed in terms of a stream function (ψ ) and 
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vorticity (w). The velocity components ur, uq in the r, q directions, respectively, are related  
to the stream function through the relations
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In the spherical coordinates (r, q ) and cast in dimensionless form the equations can be  
formulated as [1,2]
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Figure 1: The flow set up.
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In the above t denotes time, r is the radial coordinate, and q  is the angle with the polar axis. 
The flow variable W denotes the scaled zonal velocity while T is the scaled temperature. 
The dimensionless parameters appearing in the above equations include the Grashof number 
(Gr), the Froude number (Fr) and the Prandtl number (Pr) which are defined as follows

 Gr
gR T

v
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R
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v
= = =
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3

3
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Ω

, , .  

Here, the fluid properties ν, κ  and a represent the kinematic viscosity, thermal diffusivity and 
thermal expansion coefficient, respectively, whereas g is the acceleration due to gravity, R is 
the radius of the sphere, DT is the maximum temperature difference between the surface and 

the top of the fluid layer, W is the rotation rate about the polar axis and U gR T= α ∆  is the 

convective velocity scale which is chosen to reflect the convective nature of the problem for 
early times. The thinness of the fluid layer will be taken into account later when we introduce 
the boundary-layer coordinate y.

In deriving the vorticity transport equation (2) we have made the Boussinesq approxima-
tion whereby the fluid density (r) varies linearly with temperature according to

 ρ ρ α= − −( )
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
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where ρa  represents the reference density corresponding to the ambient temperature Ta . The 
time and length are scaled as follows
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



 ψ ψ, , , , , , .w wW T R U U RUW T T Ta( ) → + ( )( )2 ∆

In the above, the tilde denotes a dimensional quantity. Lastly, the differential operators D2 2,∇  
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Equations (1)–(4) are to be solved in the region
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subject to the no-slip boundary conditions given by
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The dimensionless parameter d  = H/R represents the thickness of the fluid layer with H 
denoting the dimensional thickness. As we will see, the parameter does not enter the problem 
because for early times the flow will be confined to a very thin thermal boundary layer adja-
cent to the surface of the sphere. Effectively, we will replace the no-slip conditions at r = 1 + 
d by the far-field conditions y, w, W, T→0 at a sufficiently large distance from the surface. 
This condition corresponds to a quiescent far-field flow maintained at a constant temperature. 
Even though the fluid layer is thin, initially everything is happening near the surface and it 
will take some time before the flow reaches the outer boundary located at r = 1 + d.

The assumed symmetry requires that we impose the following conditions at q = 0, p/2
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We observe that the stream function is overspecified while the vorticity is underspecified. 
Later we will explain how the extra conditions for the stream function can be used to furnish 
the missing conditions for the vorticity. For two-dimensional isothermal flows Dennis and 
Quartapelle [3] have shown that the vorticity field satisfies integral constraints which can be 
derived from the no-slip boundary conditions using Green’s second identity. D’Alessio and 
Perera [4] have extended the use of integral constraints to two-dimensional free convective 
flows.

At t = 0 an impulsive heat flux is applied in the form of a jump in surface temperature. Prior 
to t = 0 both the surface of the sphere and the surrounding fluid are maintained at a tempera-
ture T = 0. Then, at t = 0 the surface temperature is suddenly set to

T = 1– g cos2 q on r = 1

to model the equator-to-pole decrease in surface temperature. Here, the parameter g repre-
sents the ratio of the maximum difference in surface temperature to the maximum difference 
in temperature between the surface and the top of the fluid layer. The dimensionless temper-
ature has been scaled so that the maximum difference in temperature between the surface and 
the top of the fluid layer is unity, and the constant temperature at the top of the fluid layer is 
zero. The purpose of the impulsive startup is to keep the problem as general as possible, pro-
vided that we can properly handle the initial temperature discontinuity.

Since the fluid initially has a uniform temperature and the motion starts from rest, the ini-
tial conditions are simply

ψ( , , ) ( , , ) ( , , ) ( , , ) .r t r t W r t T r t tq w q q q= = = > = =1 0 0 at 

Lastly, at q = 0 and q = p/2 we apply the zero heat-flux condition
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3 RESCALED EQUATIONS
To better resolve the early stages of the flow and heat transfer process following the impulsive 
startup at t = 0, we introduce the boundary-layer coordinate, y, which is related to r through 
the relationship

r e
t

Gr
y

= =
λ

λ where 
4

.  (5)

Essentially, this change of variable stretches the thin thermal-boundary layer with l describ-
ing the diffusive growth of the evolving boundary layer. Another advantage of working in 
terms of the coordinate y is that the physical coordinate r becomes a moving coordinate; that 
is, lines of constant y expand in time when plotted in a Cartesian coordinate system. This is 
ideal from a numerical point of view since the grid lines are alive and allowed to expand with 
the growing boundary layer to ensure adequate resolution during the early stages.

The parameter l appearing in the transformation given by (5) follows from the physics of 
the problem. To see this, we examine the dominant terms in the temperature equation imme-
diately following the impulsive startup. Since the flow starts from rest and gradients in the r 
direction are expected to be much larger than those in the q direction, equation (4) can be 
simplified by retaining only the key terms which are
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The above heat conduction equation can be written more compactly as
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where χ = rT. The solution satisfying χ = 1–g cos2q at r = 1 and χ→0 as r →∞ 1 is given by
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Where erfc(x)=1–erf(x) is the complimentary error function while
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is the error function. Expressed this way we see that the solution naturally involves the 
parameter l.

In terms of the coordinate y equations (1)–(4) get transformed to 
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while the associated boundary and initial conditions become
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As a final note we emphasize that although the boundary-layer coordinate y is utilized, the 
fully nonlinear Navier-Stokes and energy equations are to be solved and not the simplified 
thermal boundary-layer equations. We next outline how to construct an asymptotic solution 
to the system of equations (6)–(9) for small t and large Gr.

4 ASYMPTOTIC SOLUTION
Here we present a multiple series expansion technique to derive an asymptotic solution for 
the early development of the flow and heat transfer process. The key advantage offered by 
this method is that it provides a systematic procedure which reduces the problem to a set of 
linear ordinary differential equations.

The procedure involves expanding the flow variables in powers of the parameter l which 
will be small if t is small or if Gr is large. It turns out that if this is done the resulting equa-
tions are still too complicated to solve analytically. If t is taken to be small and Gr is taken to 
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be large then we can identify two small parameters appearing in the problem, l and t, and it 
is then possible to expand the flow variables in a double series as follows. First, we expand T, 
w, ψ and W in a series of the form
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We note that when performing a double expansion the internal orders of magnitudes between 
the expansion parameters should be taken into account. In our case, l and t will be the equal 
when t Gr= 4 / . Thus, for a fixed value of Gr this procedure is expected to be valid for times 
that are of order 1/ Gr  provided that Gr is sufficiently large. Fortunately, asymptotic expan-
sions are known to have the redeeming feature that they often provide good results outside 
the domain of validity. Since the governing equations also involve powers of the exponential 
function ely, the expansion ely = 1 + ly + l2y2/2 + … will also have to be used. We point out 
that this double expansion procedure has been successfully applied to many two-dimensional 
problems involving unsteady flow and heat transfer from cylindrical bodies, such as in [4,5], 
to list a few.

Substituting the above series into equations (6)–(9) produces a hierarchy of problems at 
various orders. At each order the solution strategy is similar; that is, we first solve for the 
temperature and then use the generated solution to determine the vorticity. Next, we solve for 
the stream function and then finally we determine the zonal velocity.

The leading-order term for the temperature, T0, satisfies the equation

1
2 4

2
0
2

0 0

Pr

T

y
y

T

y
t

T

t

∂

∂

+
∂

∂

=
∂

∂

.

It can be shown that the solution satisfying the conditions (10) and (11) is 

 T y Pr y0
21( , ) cos ,θ γ θ= −( ) ( )erfc  (13)

which bears a close resemblance to the solution for χ(r, q) obtained earlier in the previous 
section.
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We next solve for the leading-order term in the vorticity expansion. Owing to conditions 
(11) and (12) it is an easy exercise to show that w0 = 0 and that the leading non-zero term is
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where A(q), B(q) are functions which are yet to be determined. By variation of parameters the 
particular solution, w01,p, has been found to be
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Next, we solve for the stream function. From a straight-forward calculation we find that the 
leading non-zero term is ψ21 and satisfies
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for Pr ≠ 1. We note that y21 does not satisfy the far-field condition. Since the stream function 
is overspecified we chose to apply the surface conditions instead of the far-field condition 
when solving for y21.

Lastly, we solve for the zonal velocity. It follows that the leading non-zero term is W12 and 
satisfies
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subject to the conditions W12 = 0 at y = 0 and W12 → 0 as y → ∞. Although it may be possible 
to find a closed form analytical solution to this equation, it will likely be very complicated 
and will involve Parabolic Cylinder Functions [6].

Summarizing, we have identified the following leading-order non-zero terms in the expan-
sions; the initial solution is well approximated by

T y t T y O

y t t y O t

y t
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+ +

= + +

with the understanding that W12 may need to be determined numerically.
An important quantity related to the flow is the heat transfer coefficient. For a sphere the 

dimensionless average heat transfer coefficient is defined as
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d d

r

= −
∂
∂





∫ ∫

=

1

2 0

2

0
1p

q q f
p p

sin .

In the case of azimuthual symmetry the above simplifies to
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For small t and large Gr we can derive an expression for Nu using the constructed approxi-
mate solution for T given by T0(y, q). Using r = ely and l= 2√t/√Gr it follows that

Nu
Pr Gr

t
≈ −
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2 1
3

γ

π

.

We note that if g= 3, then Nu = 0 as a result of the prescribed surface temperature profile. 
Also, as t→0, Nu→∞ as a result of the initial temperature discontinuity.

5 CONCLUSIONS
Free convective flow from a differentially heated rotating sphere was discussed in this paper. 
An approximate analytical solution was found in the form of an asymptotic expansion which 
is valid for large Grashof numbers and small times following the impulsive startup. Based on 
the analytical solution, the heat transfer coefficient was then determined.

Future work will involve obtaining numerical solutions to this problem which can provide 
solutions for much larger times. The asymptotic solution constructed in this paper can play 
an important role in the numerical solution procedure because, in essence, it can be used to 
furnish initial conditions for the flow variables at a small time beyond the initial singularity 
when the solutions become well behaved. For large Gr it may not be possible for the numer-
ical solution procedure to cope with the discontinuity in temperature at t = 0. At the very least 
the approximate solution can be used to accelerate the numerical solution procedure. For 
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smaller values of Gr the numerical solution procedure may be able to start at t = 0. Then, the 
approximate analytical solution can be compared with the numerically generated solution 
and can therefore be used to test the numerical solution procedure. For large Gr and suffi-
ciently large times the hope is that the numerical solutions will generate flow patterns that are 
consistent with those observed in the atmosphere.
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