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ABSTRACT
Solving potential problems, such as those that occur in the analysis of steady-state heat transfer, elec-
trostatics, ideal fluid flow, and groundwater flow, is important in several fields of engineering, science, 
and applied mathematics. Numerical solution of the relevant governing equations typically involves 
using techniques such as domain methods (including finite element, finite difference, or finite volume), 
or boundary element methods (using either real or complex variables). In this paper, the Complex Vari-
able Boundary Element method (“CVBEM”) is examined with respect to the use of different types of 
basis functions in the CVBEM approximation function. Four basis function families are assessed in 
their solution success in modeling an important benchmark problem in ideal fluid flow; namely, flow 
around a 90 degree bend. Identical problem domains are used in the examination, and identical degrees 
of freedom are used in the CVBEM approximation functions. Further, a new computational modeling 
error is defined and used to compare the results herein; specifically, M = E / N where M is the proposed 
computational error measure, E is the maximum difference (in absolute value) between approximation 
and boundary condition value, and N is the number of degrees of freedom used in the approximation.
Keywords: basis functions, Complex Variable Boundary Element Method (CVBEM), complex variables, 
computational fluid dynamics (CFD), flow nets, ideal fluid flow, Laplace equation

1 INTRODUCTION
The Complex Variable Boundary Element Method (CVBEM) is the topic of many papers and 
books [1–7]. Further, although the theory of complex variables, and the applications thereof, 
are typically limited to two dimensions, the CVBEM type of approximation has successfully 
been applied to three and higher spatial dimensions; for example, on a sphere in R3. For 
details regarding the development of CVBEM type approximation functions in three and 
higher dimensions see Hromadka [8].

The original CVBEM basis functions were derived by using polynomial interpolation of 
given potential and streamline values along the problem boundary to generate an approxi-
mate boundary. If linear trial functions are used in the interpolation, then the CVBEM basis 
functions that result from numerically solving the Cauchy integral are products of complex 
linear polynomials with complex logarithmic functions. Likewise, when higher-order poly-
nomial trial functions are used in the interpolation of the problem boundary, the resulting 
CVBEM approximation function is similarly composed of basis functions that are products 
of complex polynomials with complex logarithmic functions. However, while the use of 
higher-order polynomial trial functions in the interpolation of the problem boundary is pos-
sible, in this research, the basis functions resulting from linear interpolation along the problem 
boundary are used.

It is noted that the term CVBEM refers to the general use of complex basis functions to 
solve boundary value problems, provided that the basis functions are analytic within the 
problem domain. Further, it is possible to mix families of basis functions to better fit particu-
lar problem geometries, although, such hybridizations are not considered in this research.
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This research examines the solution success of families of basis functions in addition to 
those derived from the numerical solution of the Cauchy integral. All of the CVBEM approx-
imation functions considered have the desirable property that they are well-defined and 
analytic throughout the problem domain as well as along the approximate boundary that is 
being modeled, see Johnson, et al. [9]. A CVBEM approximation function is a linear combi-
nation of members of the basis function family being used in the approximation. Since the 
basis functions examined in this research are analytic in the problem domain and along the 
boundary, the CVBEM approximation function is itself analytic in that region. There are two 
properties that follow directly from the fact that CVBEM approximation functions are ana-
lytic within the problem domain and along the approximate boundary:

1. CVBEM approximation functions are capable of providing computational estimates 
continuously throughout the problem domain and approximate boundary,

2. and, both the real and imaginary parts of a CVBEM approximation function exactly 
solve the two-dimensional Laplace equation, as well as similar PDEs such as the Poisson 
equation, throughout the problem domain.

These properties of CVBEM approximation functions are not shared with real-variable 
domain discretization techniques such as the finite element (FEM) and finite difference meth-
ods (FDM), which develop point estimates at nodal points defined by meshing the problem 
domain. However, both the real and imaginary components of the approximation function 
resulting from the CVBEM do exactly solve Laplace’s equation in its strong formulation.

Another advantage afforded by the use of CVBEM approximation functions is that both 
the real and imaginary parts are conjugate functions. So, when solving potential problems 
such as ideal fluid flow problems, the resulting imaginary part of the CVBEM approximation 
function is the streamline function whose isocontours are orthogonal to the isocountours of 
the potential function (the real part) and, when plotted, produce the standard flow net graph-
ical display, see Johnson et al. [10].

Thus, given potential boundary values, when using the CVBEM to generate flow net dis-
plays, it is not necessary to use another software program, or another post-processing routine, 
to generate orthogonal streamlines to the calculated potential lines. Rather, the orthogonal 
isocontours associated with flow nets are a direct outcome of the CVBEM itself. Further, 
these streamline functions are analytic at all points at which the potential function is analytic. 
So, the streamline function can similarly be evaluated at all points in the problem domain. In 
comparison, the FDM and FEM approximations require another analog to estimate stream-
lines using the point set of potential function estimates developed therefrom.

In all cases tested, modeling nodes and collocation points are positioned identically. To 
compare modeling error, a computational measure is used defined by M = E / N, where M is 
the proposed computational error measure value, E is the maximum departure between 
approximation and boundary condition value along the problem boundary (in absolute value), 
and N is the number of degrees of freedom used in the approximation. Further, flow nets are 
developed for illustration and comparison purposes.

In the diagrams provided, there are no nodes or computational grid type points used or 
shown in the interior of the problem domain, and no companion interpolation scheme or 
computer program is used in the development of the displayed flow net diagrams. Rather, the 
values of the potential and streamline functions, which are used to generate the accompany-
ing flow net diagrams, are developed by evaluating the CVBEM approximation function for 



 B. D. Wilkins, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 7, No. 1 (2019) 47

both the potential and streamline functions throughout the interior of the problem domain. It 
is noted that comparisons of this type have been done before, for example, see Barone et al. 
[11]. However, not only does this research demonstrate the solution success of new basis 
function families (those of eqns (4) and (5) below), this analysis is more comprehensive than 
previous research because it includes an analysis of the convergence of each basis function 
family for various degrees of freedom.

2 REVIEW OF THE CVBEM MODELING APPROACH
A CVBEM approximation function, ŵ , has the general form

 w( ) ,z g zj j
j

n

= ( )
=

∑c
1

 (1)

where c j
 is the jth complex coefficient, gj (z) is the jth member of the family of basis func-

tions being used in the approximation, and n is the number of basis functions being used in 
the approximation. The complex coefficients are composed of two real constants; the real and 
the imaginary components, both coefficients are degrees of freedom to be determined as part 
of the CVBEM modeling process. Thus, there are 2n degrees of freedom in a CVBEM 
approximation function. Various techniques for determining these CVBEM coefficients are 
examined in the literature, including Fredholm integral type of formulations, and minimiza-
tion of departure between boundary condition values and CVBEM boundary values with 
respect to least squares minimization or by collocation, among other techniques, see Bohan-
non [12]. In this paper, collocation is used to determine coefficient values.

The error of the CVBEM approximation function can be determined by considering the 
difference between the CVBEM approximation function and the analytic potential solution 
(eqn (6) below). The difference between these two functions is the “error” function, and since 
it is the difference of two analytic functions over the problem domain and approximate 
boundary, it is itself analytic over that region. Thus, the error function attains its maximum 
(and minimum) values on the problem boundary by the Maximum Modulus Theorem. There-
fore, in the case of a Dirichlet boundary value problem, modeling error in the approximation 
potential function can be assessed by examination of the maximum departure between the 
boundary values of the CVBEM approximation potential function and the boundary values of 
the analytic potential solution. It is noted that modeling error can be reduced by inserting 
additional collocation points in the vicinity of areas of large modeling error values.

The fundamental goal of modeling with the CVBEM is to produce an approximation func-
tion that is analytic over the entire problem domain and its boundary (provided that modeling 
nodes are located exterior to the domain union boundary). It is noted that the choice of the 
analytic basis functions to be used in the prescribed linear combination of eqn (1) may be 
motivated by the problem boundary geometry in order to simplify the modeling requirements 
and to better fit the boundary geometry.

Because the CVBEM approach yields an approximation function that is analytic over the 
entire problem domain, and along the approximate boundary for properly-formulated mod-
els, the real and imaginary component functions are both well-defined functions over the 
entire domain and boundary (and, therefore, do not require employment of interpolation 
functions to estimate modeling values of either function in the interior of the problem domain 
or on the problem boundary). Further, both the real and imaginary component functions of 
the CVBEM approximation function exactly satisfy the two-dimensional Laplace equation 

ˆ
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continuously over the entire problem domain and on the problem boundary. This property 
enables considerable advantages over discrete domain methods such as FEM and FDM, for 
example, that estimate point values at discrete locations throughout the interior of the prob-
lem domain and do not satisfy, but only approximately solve, the Laplace equation (or other 
target PDE).

The four basis function families considered are:

1. products of complex linear polynomials and complex logarithms with properly-rotated 
branch cuts so that the branch associated with each logarithm lies outside of the problem 
domain (these follow from numerically solving the Cauchy integral);

 z z z zj j−( ) −( )ln ; (2)

2. complex monomials (known in the literature as the Complex Variable Polynomial Meth-
od or “CVPM”), which is similar in principle to a Taylor series approximation and evalu-
ated about a target expansion point, z0;

 z z
j

−( )0 ; (3)

3. a Laurent series expansion (reciprocals of complex monomials evaluated at a target ex-
pansion point, z1);

 
1

1( )
;

z z j
−

 (4)

4. and, the sum of reciprocals of complex linear polynomials evaluated at a set of nodal 
points (positioned identically to the nodes used in the implementation of the CVBEM 
using the basis functions of eqn (2))

 
1

z z j−

 (5)

In eqns (2)–(5), z is a complex variable, zj is a node, and z0 and z1 are points in the complex 
plane that are located exterior to the problem domain union boundary. The nodes that are 
used in eqns (2) and (5) are placed identically.

3 APPLICATION AND COMPARISON OF FOUR CVBEM BASIS 
FUNCTION FAMILIES

The four basis function families herein considered are eqns (2)–(5). The choice of these basis 
function families was arbitrary with the condition that the basis functions must be analytic 
over at least the domain of interest. However, the selections that were made follow the con-
struct seen in the commonly used series expansions such as linear interpolation in numerical 
approximation of the Cauchy Integral, Taylor series, Laurent Series, and distributed source 
terms (in polar coordinates). Other basis function families are readily available, and it is 
noted that the choice of basis function family can lead to better approximation performance 
for some types of boundary value problems and poorer approximation performance for other 
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problems. Nonetheless, regardless of basis function family type, the resulting approximations 
are analytic over the problem domain and, hence, all have the various properties associated 
with analytic functions.

The point z0 = 20 + 20i is used as the point of expansion for the complex monomials of eqn 
(3), and the point z1 = 20 + 20i is used as the point of expansion for the Laurent type of basis 
functions of eqn (4). As done in Johnson et al. [13], the modeling nodes used in eqns (2) and 
(5) are specified exterior to the problem domain union boundary (shown in the figures of 
Section 4).

The problem under consideration is modeling the flow of an ideal fluid around a 90 degree 
bend. The analytic solution describing such ideal fluid flow is the complex-valued function

 f z z( ) .=
2  (6)

The problem domain is a rectangle with corners located at (0, 0), (2, 0), (2, 1), and (0, 1). 
For the test problem, the monomial (z–z0)

2 is eliminated from the basis of eqn (3). Colloca-
tion points were spaced evenly along the boundary with the first collocation point being 
located at the origin and the other collocation points being placed equidistant around the 
boundary in a counterclockwise direction. Model nodes are positioned equally spaced along 
a circle of radius 1.8 that was centered at the center of the rectangle (1, 0.5). All nodes are 
located exterior to the problem domain union boundary. Additionally, when the CVBEM 
basis functions of eqn (2) were used, the respective branch cuts were rotated so as to be 
directed 180 degrees away from the directed line segment from each node to the center of the 
rectangular domain. The first node was located at (–0.8, 0.5) and all subsequent nodes were 
equally spaced along the described circle.

For each family of basis functions, the CVBEM approximation functions were generated 
by using only the position and value of each collocation point, as well as the position and 
branch cut rotation of each node for the basis function families of eqns (2) and (5). As with 
any technique for solving boundary value problems, the CVBEM operates only on the bound-
ary values of the problem. In this research, only boundary values from the potential function 
were used as the collocation points. So, the streamlines in Section 4 were generated without 
collocating the CVBEM approximation function with any streamline boundary values. That 
is, they are a direct product of the CVBEM technique itself. The ability to accurately approx-
imate streamlines is essential to modeling ideal fluid flow.

The CVBEM approximation functions used in this research were obtained in the following 
way. By eqn (1), CVBEM approximation functions have the form

w( ) ( ) ( ) ( ).z g z g z g zn n= + + +c c c1 1 2 2 

Further, since each Cj is a complex constant, it has a real and an imaginary part, aj and bj, 
respectfully. Thus, the general CVBEM approximation function is

( ) ( ) ( )w a b a b a b= + + + + + +1 1 1 2 2 2
ˆ ( ) ( ) ( ) ( ).n n nz i g z i g z i g z

Letting lj(z) and μj(z) represent the real and imaginary component functions, respectively, 
of gj(z), then

( )( ) ( )( ) ( )( )w a b l m a b l m a b l m= + + + + + + + + +1 1 1 1 2 2 2 2
ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) .n n n nz i z i z i z i z i z i z

ˆ
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Thus the real part f of the CVBEM approximation function ŵ , which represents the 
potential function, is 

 f a l b m a l b m a l b m( ) ( ) ( ) ( ) ( ) ( ) ( ).z z z z z z zn n n n= − + − + + −1 1 1 1 2 2 2 2   (7)

Likewise, the imaginary part, ψ, of the CVBEM approximation function, ŵ , which repre-
sents the streamline function is

 ψ ( ) ( ) ( ) ( ) ( ) ( ) ( ).z z z z z z zn n n n= + + + + + +a m b l a m b l a m b l1 1 1 1 2 2 2 2 
 (8)

In this research, boundary conditions of the potential function are specified at the colloca-
tion points. Thus, for 2n collocation points, the necessary CVBEM approximation 
functions are

f a l b m a l b m a l b mz z z z z z zn n n n1 1 1 1 1 1 1 2 2 1 2 2 1 1( ) = ( ) − ( ) + ( ) − ( ) + + ( ) −� 11
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The final step is to solve the matrix system. Once these values are known, they can be 
substituted back into eqn (7) and can then be used to approximate all of the potential values 
within the problem domain. Likewise, these values can be substituted back into eqn (8) and 
can be used to approximate all of the streamline values within the problem domain. Note that 
it is possible to approximate all of the streamline values within the problem domain without 
knowing any streamline boundary conditions. That is, the equation for the streamline func-
tion is a direct product of the CVBEM.

From the Maximum Modulus Theorem, the maximum error of the CVBEM approximation 
function occurs on the boundary. Therefore, in order to determine the maximum error, the 
CVBEM approximation potential function was evaluated at 600 points along the boundary 
and the value of the CVBEM approximation potential function at each point was compared 
to the analytic potential solution given by f(x, y) = x2–y2. The maximum error corresponded 
to the maximum departure (in absolute value) of the CVBEM approximation of the potential 
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function from the analytic potential solution. The 600 test points were spaced evenly along 
the boundary with 200 test points located along the long ends of the rectangular boundary and 
100 test points located along each of the short ends of the rectangular boundary.

4 RESULTS
In all of the figures below, the plot labeled (a) shows the complete problem domain as well as 
the location of all modeling nodes and collocation points. The nodes are represented by black 
circles, and the collocation points are shown as red circles. The problem boundary is outlined 
by a white rectangle. Additionally, for the basis functions of eqn (2), the white lines extending 
from the nodes represent the branch cuts of the complex logarithms (rotated as described 
above). The plot labeled (b) shows the approximate solution, and, importantly, the potential 
and streamline isocontours. These plots demonstrate the approximation generated by each 
basis function in modeling ideal fluid flow around a 90 degree bend.

4.1 Numerical Results

In the following table, each of the error values are calculated using the new error measure 
defined by M = E / N.

Table 1: Error Values for Each of the Families of Basis Functions

d.o.f.

Error for Original 
CVBEM Basis 
Functions eqn (2)

Error for Complex 
Monomials eqn (3)

Error for Laurent 
Series eqn (4)

Error for Singularity 
Basis Functions 
eqn (5)

4 2.1704e-01 8.8033e-03 4.7539e-02 5.7742e-01
8 4.9659e-03 2.1973e-06 8.9483e-05 8.5576e-03
16 5.4397e-05 8.2509e-13 2.9467e-10 3.2290e-03
32 1.4154e-07 4.6615e-14 7.8320e-12 2.9537e-05
64 2.0602e-12 9.0428e-14 6.4503e-12 1.4917e-09
128 7.7141e-17 6.9337e-14 3.5780e-13 2.8271e-15

Figure 1: Products of complex Linear Polynomials and Complex Logarithms (8 d.o.f)
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Figure 2: Products of Complex Linear Polynomials and Complex Logarithms (128 d.o.f.)

Figure 3: Complex Monomials - Taylor Series Analogy (8 d.o.f.)

Figure 4: Complex Monomials - Taylor Series Analogy (128 d.o.f.)
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Figure 5: Reciprocals of Complex Monomials - Laurent Series Analogy (8 d.o.f.)

Figure 6: Reciprocals of Complex Monomials - Laurent Series Analogy (128 d.o.f.)

Figure 7: Reciprocals of Complex Linear Polynomials (8 d.o.f.)
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5 DISCUSSION OF COMPUTATIONAL OUTCOMES
The figures display the flow nets produced by the CVBEM for each of the four basis func-
tions examined. In all four cases, the identical problem geometry and boundary conditions 
are imposed for solution of the governing PDE; namely, the Laplace equation. The same 
number of modeling degrees of freedom are involved for each of the four approximation 
efforts. The locations of nodes and collocation point are all identically specified and evenly 
spaced along the problem boundary. The computational error, M = E / N (as defined previ-
ously) provides a convenient measure to compare computational results and accuracy for 
the various degrees of freedom used in each approximation. The tabulation of Table 1 
compares the computational effectiveness in using the four considered basis function 
families.

The computational outcomes depend on the distribution of modeling nodes and collocation 
point locations as well as the locations of the expansion points for the Taylor Series (CVPM) 
and Laurent Series type of basis function approximations. Multiple source points for the 
Taylor and Laurent Series can be considered as well. Further, considering the possibility of 
producing CVBEM hybridizations by mixing basis functions, more research is needed to 
assess whether introducing different types of basis functions provides computational advan-
tage over using higher dimension in any one particular basis function family. For example, in 
a Taylor Series type of approximation, it is not clear whether inclusion of higher degree 
monomials is preferable over the introduction of another type of basis function such as a 
complex logarithm basis function or other type.

6 CONCLUSIONS
Recently, the Complex Variable Boundary Element Method or “CVBEM” has been the sub-
ject of several threads of computational research leading to multiple advances including, but 
not limited to: relaxing the usual approach of locating model nodal points on the problem 
boundary and, instead, placing the nodes in the exterior of the domain union boundary; using 
products of higher degree complex polynomials and complex logarithms as basis functions in 
the CVBEM approximation, as well as using different basis function families; and, evaluat-
ing different methods of minimizing numerical error in fitting problem boundary conditions 

Figure 8: Reciprocals of Complex Linear Polynomials (128 d.o.f.)
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such as collocation and least squares minimization. In this paper, we assess the advantages 
afforded by the four different families of basis functions in eqns (2)–(5) as to their possible 
success in modeling an important two-dimensional ideal fluid flow problem: namely, flow 
around a 90 degree bend.

The four families are applied to the identical ideal fluid flow problem setting using collo-
cation to determine the necessary complex constant coefficient values. In all cases tested, 
nodes and collocation points are positioned identically. To compare modeling error, a new 
computational measure is applied defined by M = E / N, where M is the computational meas-
ure value, E is the maximum computational departure between approximation and boundary 
condition value along the entire problem boundary (in absolute value), and N is the number 
of degrees of freedom used in the approximation (equivalently, the number of real-valued 
co-efficients determined in the CVBEM modeling process for use in the approximation func-
tion linear combination.) Flow nets are developed for graphical comparison purposes. 
Computational results indicate that choice of basis function family primarily impacts the 
rapidity of convergence of the approximation function.
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