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ABSTRACT
For granular debris flows, two characteristics play a crucial role in their dynamic behavior: the pore-
pressure feedback, which reduces the intergranular friction and, therefore, enhances the mobility of 
the whole mixture, and the non-linear deformational behavior that stems from the internal contact 
stress between grains. In a previous work, the entropy principle based on the formulation of Müller 
and Liu was exploited in order to find restrictions on the constitutive equations of a general grain-fluid 
multiphase mixture, including two additional internal variables. In this report, a thermodynamically 
consistent model for debris flows is depth-integrated and employed for numerical simulation.

Including extra pore-pressure and hypoplastic stress, internal variables that are, respectively, 
described by a pressure diffusion equation and a transport equation related to the hypoplastic material, 
are considered. Comparison of the obtained results with those from classical debris flow models shows 
that the proposed thermodynamic model provides a phenomenological insight into the influence of the 
pore-pressure feedback and intergranular friction in the flow dynamics.

To better understand the significance of the pore-pressure feedback and the intergranular friction, a 
simple grain-fluid material sliding on a slope with runout is numerically investigated by using depth-
integrated model equations. A non-oscillatory, shock-capturing central-upwind scheme with the total 
variation diminishing property is applied for this purpose. Numerical results indicate the significant 
importance of the pore-pressure feedback and the hypoplastic behavior on determining the flow dynamics 
of debris flows. 
Keywords: debris flow, extra pore fluid pressure experiments, granular-fluid mixture, hypoplasticity, 
Müller-Liu entropy principle

1 INTRODUCTION
Debris flows are large mixtures of granular materials and fluids that can, due to their rapid 
mass movement driven by gravity, travel long distances in mountainous regions. Since debris 
flows occur both in nature and technical processes, they represent an important case of gran-
ular-fluid flows. Furthermore, these kinds of flows are dangerous for people and structures, 
causing severe casualties and destruction due to the immense masses they carry. Prevention 
measures require an advanced understanding of the flow dynamics, which are hard to exam-
ine due to the complex physical mechanisms, arising from the interaction of multiple phases. 
Unlike mud flows, which tend to be rather fluid-like, or dry rock avalanches, being hindered 
in their dynamics by the relatively large frictional forces, in debris flow, the concurrence of a 
lubricating fluid phase and a ponderous solid phase enhance the flow dynamics. The follow-
ing work tries to gain insight into these dynamics and the underlying physical mechanisms of 
their driving forces.

Since modeling faces the problem of depicting complex interactions by fairly simple equa-
tions, one needs to disregard insignificant mechanisms. Therefore, proposing a new model, 
careful investigation of the influence of included physical mechanisms is necessary for further 
and deeper understanding of the internal behavior as well as for the conceivable exclusion of 
particular mechanisms. On account of this, in our model, the incorporation of additional vari-
ables, an internal frictional stress and the extra pore pressure goes back to previous findings in 
experiments and resulting attempts to model the behavior of granular materials and debris flow.
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Hypoplastic models for the deformational behavior of granular materials, describing the 
different paths of loading and unloading, have been developed in a series of publications by 
Refs. [1–3]. Hypoplasticity itself is a rather simple model, developed in soil mechanics to 
facilitate previous, more sophisticated concepts, while retaining the core ability of accurately 
predicting the deformation of granular material as both anelastic and non-linear. Hypoplasti-
city predicts a certain relation between the strain rate, i.e. the deformation due to shear, and 
an internal contact-stress, modeled as a symmetric second-order tensorial variable.

In addition, another well-known concept from soil mechanics is considered due to its explan-
atory power in terms of the increased mobility of debris flow. According to Terzaghi’s concept 
of effective stress in porous media, see Refs. [4, 5], a dynamic extra pore-fluid pressure is con-
sidered to mediate emerging load on the solid structure to the fluid. This line of tradition in 
debris flow modeling goes mainly back to the works of Iverson et al., see Refs. [6–9].

Because of the physical mechanisms apparent in debris flow, both hypoplastic behavior 
and the evolution of a dynamic extra pressure were incorporated in the model. The develop-
ment of a thermodynamically consistent model according to the entropy principle in its 
formulation by Ref. [10], see also Refs. [11, 12], has been carried out in a previous publica-
tion, see Ref. [13]. Firstly incorporating these two quantities in the modeling process, we 
proceed here with the derivation of an applicable model for debris flow. With this, the influ-
ence of these additional quantities on the material equations is identified and, therefore, their 
interaction and the general flow dynamics can be further depicted. It is shown that especially 
during the onset and the settling of flows, the extra pore-fluid pressure and the internal fric-
tion capture significant aspects of debris flow behavior that have not been considered yet.

In this work, the set of depth-integrated equations is utilized for the numerical simulation 
of a simple debris flow with an Central upwind scheme and the influence of the distinct terms 
is examined.

2 EQUATIONS
In previous work, see Ref. [13], we developed restrictions posed by the second law of ther-
modynamics on the constitutive relations, for a system of equations within the framework of 
mixture theory, based first and foremost on the work of Ref. [14].

The point of origin of the modeling process is the definition of a set of equations that 
describe the physical mechanisms of the system via a range of fields. The fields described by 
these balance equations are the true density ρα  and the volume fraction vα  of the constituents 
α, the partial velocity vi

α , the inner stress Zij
α  and the partial pressure ϖα. Within the momen-

tum balance, the stress tensor Tij
a describes the mechanisms of load transmission within the 

material, as does the momentum interaction term mi
a  between the different phases. By this 

means, thermodynamically consistent constitutive equations were developed most notably 
for the stress tensor and the momentum interaction term with regard to the chosen set of 
balance equations. In consequence, the property of consistency here also means that the 
structure of the constitutive equations reflects the initial system of equations, for which the 
constitutive equations themselves are developed. Here, we tie in with closure suggestions 
made by Refs. [15] and [16], linking the results of the Müller-Liu derivation to the pore-fluid 
pressure. After this step, a closed set of equations has been developed. Also note that, although 
we employed the energy balance and the mass balance for the exploitation of the entropy 
principle, for this work, we assume the partial density and the mixture temperature to be 
constant.

In Ref. [13], it follows for the solid and fluid stress tensor, that
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with a drag coefficient

 c v v gD
s s f
=  (3)

where g is the acceleration due to gravity. At this point, we refrain from the implementation of 
a far more complex drag term, as postulated by Ref. [17], in order to firstly investigate the newly 
introduced quantities. The stress tensor exhibits the classical splitting with a pressure-like 
spherical part ϖ αav  and a deviatoric extra stress Tij

e a, . While the momentum interaction term 
also possesses classical structure, including a drag term and a buoyant term, it is worth noting 
here that an additional term in conjunction with the configurational pressure ϖ v

s exists. This 
term is a direct result from the thermodynamically consistent derivation, usually not included in 
postulated buoyant terms of debris flow models. The structure of the terms (1)–(2) is a result 
from the thermodynamically consistent derivation and distinct closure assumptions.

We now proceed towards an application for two phase debris flow, by taking into account 
a slope without complex terrain or bed curvature. After the scaling analysis, a set of depth-in-
tegrated equations is derived by employing the shallow layer assumption. This reduction 
from 2D to 1D by vertical integration is a preliminary work to efficient numerical simulation 
in the following. Unlike in the model of Ref. [18] and the many successive works, this reduc-
tion is not strictly necessary for closure, since a constitutive model for the stress tensors of 
the solid and the fluid has been developed. Please note that, for the sake of brevity, we do not 
give any details on the derivation of the balance of mass and momentum. Furthermore, we 
omit overbar symbols, accounting for depth-integrated quantities. For the mass balance of the 
solid and fluid phases, it follows that
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The solid momentum balance in downslope direction is

ϖϖ
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and for the fluid
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For the development of the pressure, the depth-integrated evolution equation states
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For this, it is assumed that the diffusion coefficient κ
ϖ

f  is not changing with depth. Further-
more, stating that the volume fraction is approximately constant with depth, ∂ ≈z

fv 0 is 
applied, following from the depth-integrated versions of the mass balance (4). To close this 
eq. (7), we consider the following relations
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with a depth-integrated, non-dimensional source term
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is introduced into the non-dimensional stress tensor, describing the influence of different 
terms. The relation of gravitational forces to inner friction is depicted by the Galilei number, 
Ga. It appears with the viscosity terms. For the dimensionless intergranular friction, we intro-
duce a number Nz in conjunction with the hypoplastic frictional stress terms. It is assembled 
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with the proportion of hypoplastic forces to inertial forces. Furthermore, the Euler number Eu 
gives the influence of a partial pressure C gHe

f f
ρ ϖ ∆  in relation to inertial forces ρ ρυgL  2. 

It specifies the influence of the pore-fluid extra pressure and appears in conjunction with the 
non-dimensional extra pore-fluid pressure in the following.

3 NUMERICAL SIMULATION
Below, the partial differential system assembled is numerically solved. The numerical instabilities 
apparent in the simulations of these kinds of systems have already been discussed by Ref. [18] and 
call for a sophisticated scheme. Subsequently, different schemes for systems with large spatial 
gradients and dominant convection terms have been compared in Ref. [19]. According to their 
results, a high-resolution scheme with total variation diminishing property is chosen. We deploy a 
central-upwind (CU) scheme, developed in the works of Kurganov et al., see Refs. [20, 21], and 
further deployed with special focus on depth-integrated Saint-Venant systems and Savage-Hutter 
type models in Ref. [22]. These robust schemes are Godunov-type finite volume methods, capable 
of solving systems of balance laws by specially treating source terms, non-conservative products 
and flux terms in conjunction with local propagation speeds. As a core property, the scheme is 
both shock-capturing and non-oscillatory due to the satisfaction of the total-variation diminishing 
property. As for discretization in time, a classical two-step Runge-Kutta scheme is applied. For the 
explicit time stepping, the CFL condition gives the time step size. For details on the derivation of 
the scheme, its properties and limitations, please see Ref. [22]. The Nessyahu-Tadmor (NT) 
scheme, a forerunner of these schemes, has been proposed by Ref. [23]. Please note that, for the 
sake of brevity, we do not give details on the discretization here.

To solve the system, the balance equations are rewritten in vectorial form,
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the down-slope flux F(U), a source-term S(U) and the non-conservative term C1 2(U) (C (U))x∂ . 
In contrast to the NT-scheme, the flux is propagated with local speeds of propagation, which 

Figure 1: Debris flow problem geometry: initial pile on a slope.
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leads to less numerical dissipation. Furthermore, no staggered grid is needed. For the treatment 
of the non-conservative products in the form of ø1∂xø2, described in Ref. [22], numerical deriva-
tives are constructed with non-linear limiters. Please note that desingularization, as it is described 
in Ref. [22], is not considered here.

Below, we present the results of different numerical studies. First, we apply numerical 
simulations for the case of a simple inclined plane without bed curvature or any complex 
terrain, which runs out into the horizontal plane. The transition between ramp and horizontal 
plane is smooth. The pile is released out of rest at time t = 0, with a parabolic initial geometry, 
given as h(t = 0,x) = h0 (l – (x–x0)

2/16), with h0 = 1,x0 = 5. The computational domain is x ∈ 
[–10, 80], discretized by a number of grids, nx = 500. The basic parameters are given in the 
appendix. The inclination angle is given as
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3.1 Development of height

The height profile for the basic system, i.e. without the influence of the both extra pore-fluid 
pressure and hypoplastic stress, is displayed in Fig. 2. Released from rest and driven by grav-
ity, the pile accelerates and elongates, as the front moves faster than the tail. In the runout, the 
front decelerates and piles up. Here, we reproduce the results of Ref. [24], since the different 
forms of flux-discretization between their NT-scheme and the Central Upwind scheme do not 
considerably affect the results. Please note that the resulting height profile in Ref. [24] is 
shown for a 2D flow with an ellipsoidal shell, so the pile also propagates in the cross-slope 
direction. The similarity of the results shows that, for this particular case, the additional buoy-
ant term plays no major role. The apparent height profile is considered as a referential basis 
in order to compare results in the following. 

Figure 2: Height-profile development for times t = 0 (dashed line), t = 3, t = 9, t =15 and 
t = 21, with Nz = 0, Eu = 0.



392 J. Heß & Y. Wang, Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 2 (2018)

3.2 Influence of extra pore-fluid pressure

We now impose the influence of the pore-fluid extra pressure via the variation of the dimen-
sional number and also of the initial value ϖ e

0 . While the consideration of a dynamical extra 
pore-fluid pressure in the development of the velocities is adjusted through changes in Eu, an 
increased initial pressure represents the destabilization of soil after heavy rainfall, see 
Ref. [9]. As it can be seen in Fig. 3, the mobility of the flow is increased due to extra pore-
fluid pressure. This results of the  reduced solid bed friction and the influence of the extra 
pressure on the driving pressure gradient. It is apparent that the influence of the extra pressure 
is most visible at a later time. This implies firstly, that the extra pressure develops with the 
flow dynamics and secondly, that the effect of extra pressure is to prolongate the movement 
of the debris flow after it has accelerated. Both observations match expectations.

Next, the influence of an increased initial pore fluid pressure is investigated. In nature, this 
kind of triggering mechanism can condition the onset of the avalanches. Here, as the debris 
flow accelerates due to gravity, an immediately increased mobility can be observed, i.e. the 
initial level of the extra pore fluid pressure significantly influences the acceleration, as it can 
be seen in Fig. 4 and in contrast to Fig. 3.

3.3 Influence of Hypoplastic stress

The dimensionless number Nz is now set to a non-zero value. Due to the introduction of an 
intergranular stress, the debris piles up with a steeper front and a visible peak, as it is known 
from piles of granular material. It appears that the dynamics of the flow are influenced rather 
little, but interesting variation can be observed at the areas in which the bulk piles up again 
after being slowed down, as can be seen in Fig. 5.

In order to further investigate the influence of the hypoplastic stress-term in the solid x 
momentum balance, another case is considered. In a horizontal plane, i.e. ϑ( )x = 0, a pile 
with flat heading, dissolving out of rest is investigated. This corresponds to the deposition of 
granular material. In doing so, the structure-preserving influence of hypoplasticity is 

Figure 3: Height-profile development for times t = 0, t = 3, t = 9, t =15 and t = 21, with Nz = 0 
and varying influence of the extra pore-fluid pressure, i.e. changing Eu. The initial 
extra pore-fluid pressure is considered as ϖ

e
0  = 0. The results with Eu = 1.5 are plotted 

with dashed lines, the solid lines are for Eu = 0.
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examined, since this this flow regime seems to be most likely affected by the intergranular 
stress. Figure 6 displays the influence of hypoplastic internal friction on maintaining a steep 
front, i.e. preventing the material from dissolving fluid-likely due to a resisting intergranular 
contact stress.

3.4 Discussion

In a first attempt to investigate on the influence of an extra pore-fluid pressure and an inter-
granular contact stress, implemented in terms of hypoplasticity, the results match expectation. 
The extra pore-fluid pressure increases the mobility of the mixture, as it reduces the friction 
and increases the driving pressure. The implementation via an own evolution equation ena-
bles the system to consider the temporal development due to the development of the soil 
structure, i.e. dilatancy. Furthermore, via the initial conditions, the extra porefluid pressure 
can serve an initially driving mechanism as well. Moreover, the intergranular contact friction 
shows its influence on the height profile for the process of deposition and processes close to 

Figure 4: Height-profile development for times t = 0, t = 3, t = 9, t =15 and t = 21, with Nz = 0, 
Eu =1.5 and changing initial extra pore-fluid pressure ϖ

e
0 .

Figure 5: Height-profile development for times t = 0, t = 3, t = 9, t = 15, and t = 21, with 
Eu = 0 and changed Nz (dashed line). Initial hypoplastic stress Zxz

s0 100= .
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equilibrium. In this range with rather small velocities, the intergranular friction prevents the 
granular body from dissolving in a fluid-like way.

First investigations show the potential of the comprehensive consideration of these specific 
physical mechanisms. Nonetheless, further work both in modeling the interdependency and 
in numerical investigations are considered fruitful to fully understand the impact of the new 
modeling approach. Since, to the best of the authors’ knowledge, the combined integration of 
both hypoplasticity and extra pore-pressure evolution has not been carried out in previous 
works, the modeling of the mutual interferences is still in an early stage. An important link is 
granular dilatancy and, in general, the deformational behavior of granular materials. The 
apparent rate-dependency of granular material manifests in hysteresis-like de-formational 
behavior. Dilatancy describes the relation between shear and volume changing, which is 
dependent on the intergranular forces. In return, these intergranular contact forces are them-
selves depending on the pore pressure. Like this, the modeling of the dilatancy part, tan(φ), 
in the extra pore-fluid pressure source term could be connected to the hypoplastic stress ten-
sorial variables Zij

s  and the implementation of the hypoplastic intergranular friction in the 
solid-stress could be linked to pore-fluid pressure.

Consideration of the source term in the balance equation for the development of the solid 
volume fraction nα could account for the specific peculiarity of the microstructures of gran-
ular materials in their development, and account for e.g. dilatancy, as it is done by Ref. [9]. 
Also of importance is the investigation on the possible cases in which the additional buoyant 
term gains significant influence.

Beside these modeling aspects, further investigation of 3D flow with a system of depth 
integrated equations and a full set of hypoplastic equations will be considered in future works 
as well as comparison with experimental findings. Also here, detailed insight in the stress-
strain relations and the modeling of distinct coefficient will take place.

4 CONCLUSION
In this work, we propose a debris flow model that accounts for the evolution of both an extra pore-
fluid pressure and intergranular friction. Based on the results of the exploitation of the entropy 
principle in its formulation by Müller and Liu, we non-dimensionalize and depth-integrate the 
balance equations. Comparison shows that the model is capable of reproducing previous mode-
ling attempts but enhances the basic framework of momentum balances with additional terms, 

Figure 6: Height-profile development for times t = 0, t = 0.5 and t = 31.3, with Eu = 0 and 
changing Nz.
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accounting for distinct physical mechanisms. The extra pore-fluid pressure enhances mobility and 
reduces the apparent friction, whereas the hypoplastic stress incorporates the anelastic deforma-
tional behavior of granular flows. Numerical simulation proves the meaningfulness of these 
additional quantities. The dynamic pore pressure increases the mobility of the flow, while the 
intergranular friction counteracts fluid-like dissolving and gains importance during the 
deposition.

In subsequent works, the model will be tested for 3D cases and compared to findings with 
other models and experimental data. Extended parametric studies will be applied.
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APPENDIX

Parameter Case 1 Case 2 Description

ρ
s 2500 kg/m3 2500 kg/m3 Solid density

ρ
s 1000 kg/m3 1000 kg/m3 Fluid density

g 9.81 m/s2 9.81 m/s2 Gravitational acceleration
J0 J0 0° Inclination angle

φbed
33° 33° Bed friction angle

α
f 20 20 Navier fluid friction coefficient

cD
s 6 6 Drag Coefficient

κ0
7.5 • 10-9 - Hydraulic permeability coefficient

aD 1715 - Compressibility factor

σ 0
100 kg/m s2 - Intergranular basic stress

δ p
0.001m - Average particle size

vc
s 0.64 - Critical volume fraction

vs
max

0.75 - Maxmimum volume fraction solid

κ
ϖ 1

1.1 - Dilatancy Coefficient 1

κ
ϖ 2

3.3 - Dilatancy Coefficient 2

µ
s 0.54 kg m-1 s - Dynamical viscosity

vs
0

0.5 0.5 Initial volume fraction solid

v f
0

0.5 0.5 Initial volume fraction fluid

υ0
x 0 0 Initial velocity

Zxz
s0 100kg/ms2 100kg/ms2 Initial intergranular stress

e
0 0–1000kg/ms2 – Initial extra pressure

∈ 1 1 Height versus length ratio
fs, fD 1 1 Hypoplastic coefficients

ϖ


