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ABSTRACT
This research aims at investigating the direct and indirect influence of network structures on urban 
transportation performance with a macroscopic perspective. Transport systems are complex – the func-
tional properties of a transportation network can affect mobility patterns which in turn changes the 
network performance. Understanding the topology of transportation networks is important in order 
to upgrade transport network design and to improve transportation performance. This paper attempts 
to determine important network indicators such connectivity, centrality and clustering measures for 
different network types (road, rail and bike) from 86 urban areas and 32 countries, based on compa-
rable, directly observable open-source data such as OpenStreetMap (OSM) and the TomTom conges-
tion database. Relations between indicators are identified through correlation measures. In addition, 
regression models are calibrated which quantify the relations between infrastructure accessibility (IA) 
and network indicators and average traffic delay times. The indicator average road connectivity over 
average road circuity (RCRC), which is proposed in this study, has not been cited before in literature. 
The main results suggest that the determination of distance-based connectivity of networks is an im-
portant proxy to understand road transportation performance. Consequently, two main results were 
obtained: (1) an increase in average short-distance connectivity of road networks (average closeness 
centrality and RCRC) eases road congestion, presumably because the network distributes road traffic 
more homogenously while decreasing low-permeability choke points, (2) an increase of the average 
short-distance connectivity of networks of alternative modes such as rail or bike (average weighted rail 
clustering coefficient and average cycle closeness centrality) does alleviate road congestion. In particu-
lar, for cities with over 0.4 km per km2 cycleway density, an increase in cycleway closeness centrality 
decreases road congestion and it does so almost as efficiently as an increase in road infrastructure ac-
cessibility. Presumably, well-connected, alternative networks with short and direct routes convince car 
users to shift to the alternative mode, which decreases road traffic volumes.
Keywords: network design, topology, infrastructure accessibility, congestion, open-source data, OSM, 
TomTom; transportation performance, transport planning.

1 INTRODUCTION
Transportation networks are complex dynamic systems which have been compared with the 
neural networks of the brain where neural cells distribute information by exchanging chemi-
cal transmitters between synapses. [1]. Urban transportation networks are the distributors 
of cities for energy, materials and people to specific zones of the city, in the same way as 
a cardiovascular network distributes energy and materials to cells in an organism [2]. The 
term complexity for transport networks results in a rich behaviour arising from system con-
nections, interactions with subsets and the dynamic processes where vehicles and people act 
within a network structure (pattern and configuration) [3]. In recent years, understanding the 
structure and dynamics of urban transport networks has been improved through analyses of 
network topology measures using the mathematical tools of graph theory [4]. The configura-
tion of networks helps to detect travel behaviours of inhabitants [5, 6], to evaluate transporta-
tion performance [7, 8] and to understand how cities are organized [1, 9]. Complex network 
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analysis allows important feedback for urban modelling. It is also an effective evaluation tool 
since providing feedback of the system is important for correcting, improving or upgrading 
urban models before executive plans are drafted [10]. Dynamic system variables such as 
population and traffic volume account for the state of the system as it changes over time [3]. 
On the other hand, one can evaluate cities through co-evolution, where humans shape their 
city and are shaped by the city, thus making topological measures an important proxy. Vari-
ous concepts of graph theory are used to describe network features. Topology of a network 
can be described as the arrangement (centrality and clustering) and connectivity of a network 
[11]. Geometric variations of their structure such as shape, density and circuity become more 
visible when complexity is analysed at a more macroscopic level.

Neglecting the effects of alternative transportation networks (railways and bikeways) is 
one of the limitations to create general models by means of network analysis [8]. Also, focus-
ing just on local analyses (within cities from same country) would not show certain effects 
on a worldwide scale. The aim of the present analysis is to investigate the influence of the 
network configuration of different layers (road, railway and bikeway) on road congestion. A 
holistic approach has been applied by merging infrastructure accessibility (IA) and network 
configurations for 86 cities from 32 countries at a macroscopic level. The following section 
provides a literature review. Network indicators are described and their influence on trans-
portation are summarized. Section 3 motivates data collection for this work and explains the 
principle data-processing steps and limitations. The analysis and results are presented and 
discussed in Section 4, while discussions and conclusions in Section 5 interpret and sum-
marize the main findings.

2 LITERATURE REVIEW

2.1 Definition of network design indicators

Various indicators are identified in the literature as a measure of network patterns. The qual-
ity of a transport system can be evaluated based on the intensity of connections between road 
segments through connectivity measures [12]. There are several indicators to evaluate the 
connectivity pattern of the networks such as alpha index, beta index, gamma index and eta 
index [13]. Average node connectivity is a useful network proxy, defined as the average over 
all pairs of vertices of the maximum number of internally disjoint edges connecting a pair of 
vertices [14]. It is a measure of network resilience: in networks with low average connectiv-
ity, circulation is forced through low-permeability choke points, which increases the risk of 
traffic jams and network disruptions [3]. Another important indicator is the average circuity 
of a network (or directness) which is the ratio of shortest distance on the network over the 
Euclidean distance averaged over all origin–destination pairs in the network [5, 6, 15]. The 
degree centrality is a local measure which offers a hierarchical view of the city where close-
ness centrality is mainly radial with a strong side effect. The average degree of centrality is 
described as an average connection of each road segment to all segments in a network [16]. 
The average closeness centrality is the average distance of the shortest paths between any 
node and all other reachable nodes of the network [16]. This captures the notion of accessibil-
ity in a city. The average clustering coefficient is a measure of the network structure of nodes, 
defined as the average number of triangles between each node in a network. The clustering 
coefficient is a measure of accessibility in terms of directness [10].
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2.2 Relationship between network design and travel behaviour

Some studies have analysed the relationship between network configuration and travel behav-
iours. Differences of the average network centrality among subzones of cities affect inhabit-
ant life and behaviours through various spatial factors [9]. Eighteen cities across the world 
have been analysed through multiple centrality assessment by primal geographic network 
graphs (degree, closeness, betweenness, etc.), and 1-square-mile network comparisons have 
been conducted [9]. The results have demonstrated that a set of different centrality indices 
allows capturing the skeleton of most central routes. They are determined by the city struc-
ture and subzones which appear to affect spatial cognition and collective dynamical behav-
iour. Public transit networks are more circuitous than roads, which means that the shortest 
route is much longer than the line of sight. This is one of the reasons behind the preference 
of the private auto over public transit [6]. The increase in average circuity of public transit 
networks can drop transit ridership and can cause a mode shift towards road mobility. Net-
work circuity is also used to explain residential place choice of employers for commuting in 
US metropolitan cities [5].

2.3 Relationship between network design and transport performance

Some works have investigated the role of the network configuration in transportation per-
formance. A positive correlation has been demonstrated between delay time and average 
circuity of networks and a negative correlation between average circuity and disconnectivity 
of the networks for 48 cities in the United States [8]. Another paper has compared road trans-
portation performance of the 50 largest metropolitan areas in the United States by comparing 
hierarchy, connectivity and directness (circuity) of the road networks [7]. The results have 
shown that a 1% increase in network connectivity reduces the commute time by 0.1%, a 1% 
increase in road accessibility reduces the average metropolitan commute times by 90 s and a 
1% increase in disconnectivity reduces the auto mode share by 0.061%. The circuity of the 
network is an important measure of transportation efficiency and is determined by the trans-
port network configuration, transport planning and the underlying terrain. The circuity in turn 
shapes how inhabitants use urban space for settlement and travel [4]. Circuity of transit net-
works has been examined for 36 metropolitan areas (excluding the fringes and low accessible 
zones) in the United States through maps generated by the OpenStreetMap (OSM) [6]. The 
results have shown that transit circuity exponentially declines as travel time increases, thus 
helping to understand mode choices. Furthermore, the average circuity of transit networks 
which is typically greater than the average road circuity in the cities demonstrates how public 
transit network systems expanded. Networks can be well connected but at the same time 
poor in terms of directness. Therefore, connectivity and directness can be coupled effectively 
without impeding each other [17], and in combination they are important measures for road 
traffic. A recent study [18] has shown that optimizing the closeness centrality and the degree 
of centrality in a network system reduce travel times and increase route diversity.

2.4 Relationship between infrastructure dynamics and transport performance

Unprecedented urbanization generated accelerating demand on mobility systems and put 
high pressure on urban road networks. As a result, there have been traffic congestion and 
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in general a decreasing service level of the roads. Consequently, also fuel consumption and 
traffic-related air pollutions [19] have increased. A number of studies have found that an 
increase in road infrastructure increases car ownership and usage [20–22] and an increase in 
rail network infrastructure increases rail mode share, resulting from a modal shifts from car 
to public transport [22–]. It has been demonstrated that an increase in demand rises the travel 
delay time, while an increase in IA (as road length per inhabitant) decreases the travel delay 
time [25]. Some studies have also shown that an increase in alternative transport systems’ 
infrastructure alleviates traffic road congestion. This effect has been demonstrated in [25, 26] 
for rail transit systems, in [27, 28] for public transportation in general and in [25] for cycling. 
These results suggest that the IA, in terms of infrastructure per capita, is an important factor 
for determining the usage of transportation systems. Linking IA and network configuration 
can help to draw a more general view.

3 Data selection, collection, processing and limitations

3.1 Infrastructure dynamics-related indicators from cities

An indicator for the amount of installed infrastructure in a city is the IA, which is expressed 
as infrastructure length per inhabitant as described in [22]. In this study, IA is chosen to be 
investigated since it is closely correlated with urban dynamics and transport performance 
[22, 25]. Recent population densities and OSM data are used from a previous study [25]: 
The road infrastructure accessibility (RIA) is expressed in road length per inhabitant, the 
train infrastructure accessibility (TIA) is expressed in rail length per inhabitant and cycleway 
infrastructure accessibility (CIA) is expressed in bikeways per inhabitant. As congestion is 
more challenging for larger cities, this study considers only large cities with over 1 million 
inhabitants. This selection resulted in a database with 86 cities from 32 countries. 

3.2 Transport performance-related indicator from cities

The central performance indicator used for this study is the congestion level in terms of aver-
age daily extra travel time (ADETT), which is the extra travel time in a day with respect to 
the free-floating traffic scenario, averaged over all monitored traffic participants of a distinct 
urban area. Comparable data on the congestion level are retrievable through the TomTom 
database. TomTom is used by more than 6 million connected GPS devices and traffic is moni-
tored by many million GSM probes and millions of government-owned road sensors [29]. As 
TomTom’s methodology is sufficiently accurate and unified all over the world, it is a suitable 
data source for the present study. However, errors may occur because the TomTom data are 
not produced by a representative selection of the population and the special distribution may 
not be homogeneous.

3.3 Network design-related indicators from cities

Several network connectivity measures used in the literature such as alpha index, beta index, 
gamma index and eta index [13] and average node degree (AND) [30] are selected to inves-
tigate. The average closeness centrality is examined here since this indicator is used as over-
all accessibility of a network and is a good measure of distance-based connectivity (DBC). 
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Another distance-based indicator is proposed as the average road connectivity over average 
road circuity (RCRC). The RCRC is investigated in conjunction with another proxy with 
regard to traffic congestion. The average weighted clustering coefficient (weighted by edge 
length) is also considered in the study since an increase in average short triangle connectivity 
of railways can reduce transit circuity which in turn may impact travel choices. 

In literature, comparative topology analyses are generally conducted with samples of the 
same network size and extracted from mature urban cores. The motivation behind is to com-
pare encapsulated, dense zones in order to make more effective comparison at the same 
network levels [31]. The threshold: 50km2 land area [32] for metropolitans is used to justify 
extraction size of the samples with the bounding box method.

The Python software package OSMnx [30] is used to calculate node and edge numbers 
of networks and some topological indicators. OSMnx imports any OSM  network data of a 
desired location into a directed transport graph (which is a graph object of the Python net-
workX package) and allows to perform various topological analyses [33]. OSM is a crowed-
sourced, unified and publicly available map of the world. OSM infrastructure data look trust-
worthy for many cities, although it still needs some improvements on micro-level details. 
However, the OSM data quality is sufficient for macro-level analysis [34]. OSM consists of 
three basic components: nodes, ways and relations [25]. Each component has various charac-
terizing attributes, called tags. The AND of cities is calculated by OSMnx. Other connectivity 
measures (alpha, beta, gamma and eta indexes) are calculated as formulated in [13] where 
node and edge values are provided by OSMnx. The average closeness centrality for roads, 
railways and cycleways (ARCC, ATCC and ACCC) and the average weighted railway clus-
tering coefficient (AWRCC) is also calculated by OSMnx. A list with all network indicator 
acronyms is presented in Table 1.

Table 1: Lists of all the network indicator acronyms.

Average road circuity ARC

Average train circuity ATC

Gamma connectivity γ
Beta connectivity β
Alpha connectivity α
Eta connectivity η
Average node connectivity ANC

Average road connectivity over average road circuity RCRC

Average road closeness centrality ARCC

Average weighted train clustering coefficient AWTCC

Average cycleway closeness centrality ACCC

Road infrastructure m per 10 habitants RIA

Train infrastructure m per 10 habitants TIA

Cycle infrastructure m per 10 habitants CIA
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4 ANALYSES AND RESULTS

4.1 Correlations

The Pearson correlation coefficient between different indicators together with the number of 
samples is shown in Table 2. The software IBM SPSS 25 is used for the Pearson correlation 
analyses of variables, while the 95% confidence level over a 0.2 correlation is taken into 
account. 

Significant negative correlations between ADETT and IA types have already been shown in 
a previous study, and also regression models between ADETT and RIA have been presented 
[25]. A considerably negative correlation between road network connectivity indicators and 
ADETT is seen in Table 1. As expected, the reduction of choke points in the road network 
can increase continuity of traffic flows and simultaneously reduces traffic congestion. All 
road connectivity indicators strongly correlated with each other at a similar level; thus, only 
gamma connectivity is picked to show intercorrelations between connectivity measures. Only 
eta connectivity did not show any considerable correlation with any other indicators. Aver-
age circuity of road and rail networks (ARC and ATC) is positively correlated with ADETT. 
As expected, network connectivity is negatively correlated with network circuity for both 
network types.

Networks can be well connected but at the same time be poor in terms of directness. This 
confirms that connectivity and directness are independent and can be coupled effectively 
as suggested in [17]. Table 3 demonstrates the relation between distance-based network 

Table 2:  Pearson correlation coefficient and the number of samples (N) between different 
indicators.

Correlation ADETT RIA TIA CIA γ β α ANC ARC ATC

ADETT N=87
–0.693

N=85
–0.408 

N=86
–0.324

N=87
–0.490

N=87
–0.490

N=87
–0.490

N=87
–0.490

N=87
0.286

N=87
0.388

Γ N=87
0.991

N=87
0.991

N=87
0.991

N=87
0.950

ARC N=87
0.286

N=87
–0.363

N=87
–0.363

N=87
–0.363

N=87
–0.363

Table 3:  Pearson correlation coefficient and number of samples (N) between different 
indicators.

Correlation RCRC ARCC AWTCC ACCC

ADETT N=87, –0.503 N=87, –0.385 N=54, –0.466 N=29, –0.445

Γ N=87,  0.991 N=87  0.425

ARC N=87, –0.482 N=87, –0,402

ATC N=54, –0.356

RCRC N=87,  0.456
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connectivity measures (ARCC, ATCC and ACCC) and ADETT with some interrelations. 
Average closeness centrality is negatively correlated with ADETT for road and cycle net-
works (ARCC and ACCC). Another distance-based indicator proposed here as ‘average road 
connectivity over average road circuity (RCRC)’ is correlated with ADETT with a coefficient 
of –0.503. As ARCC and RCRC are similar type of measures, they are strongly correlated 
with each other. Presumably, a high average short-distance accessibility of road networks 
decreases low-permeability choke points and distributes road traffic more homogenously and 
consequently eases road traffic. The average weighted clustering coefficient demonstrates 
distance-based directness of the network, as seen by the fact that AWTCC correlates nega-
tively with ADETT with a coefficient of 0.466 and  negatively correlates with the average 
rail circuity.

4.2 Comparative view

Road network connectivity maps of some cities (50 km2 cores) are plotted with the dual graph 
approach where streets are represented as nodes and intersections are represented as edges 
in Figs 1–2. These pairs of cities were selected for comparison as each pair has similar peer 
sociodemographic and infrastructure indicators, as shown in Table 4. Their similarity can 
allow putting in evidence the influence of network structure. Qualitative colour maps increas-
ing luminance through blue, purple and yellow hues where node connectivity decreases from 

Figure 1: Road network connectivity maps of San Antonio and Washington.

Figure 2: Road network connectivity maps of Berlin and Marseille.
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glossy yellow to matte purple are conducted to interpret the graphs more efficiently. It is 
clearly seen in plotted maps and in Table 4 that cities with higher RCRC and higher road 
network connectivity perform lower congestion. 

4.3 Statistical models

As ADETT and distance-based road connectivity measures (DBRCs) are considerably cor-
related, some statistical models have been calibrated with the entire set of cities. ADETT as 
a function of DBRC appears to be of an exponential shape:

   ADETT aexp bDBRC= ( )  (1)

However, the fitting errors with a linear model is only slightly superior. Figure 3 demon-
strates the exponential model which has been calibrated from the exponential relation of eqn 
(1). The best-fitting exponential curve is also shown in Fig. 3. Even though R

2 
= 0.2812 is not 

particularly high, it shows a reasonable goodness of fit and parameters are statistically sig-
nificant. Note that, a similar reasonable fit has also been achieved for ADETT as a function of 
ARCC. Considering the fact that many different network attributes influence the demand and 
road congestions, the quality of this fit is reasonable. The influence of DBRC on congestion is 
minor for cities with very high population densities such as Bangkok and Mexico (see Fig. 3).

The question is how the road-based coefficients behave in cities in the presence of different 
alternative infrastructures such as railways and cycleways of different length and topology. 
Geometric variations of network structures such as density and circuity become more visible 
when network complexity is at a maturated level [11]. This makes infrastructure density a 
good proxy to identify the level of  infrastructure maturity. Two subsets of cities are created 
based on the level of maturity of alternative network systems. The rail infrastructure density 
division has been set at 1 km per km2 and cycle infrastructure density division has been set 
at 0.4 km per km2. Both thresholds have been chosen arbitrarily. The main idea has been 
to isolate non-matured alternative network systems in cities. This will help to understand 
network-related factors of alternative network systems more accurately. All cities possess a 
road network with a density over 10 km per 1 km2 . As IA and ADETT as well as DBC and 
ADETT are considerably correlated, some multiple linear regression models were attempted 
with the entire set of cities as well as on specific subsets (cities matured with railways – 53 
cities and cities matured with cycleways – 28 cities), while only the models with a P value 

Table 4: Comparison of selected cities.

Cities RIA TIA CIA ADETT Population 
density

ARC ANC Γ RCRC

San Antonio 60.309 2.613 0.387 26 1,312 1.0216 5.887 0.9817 0.9609

Washington 57.105 1.893 0.344 33 1,446 1.0284 4.932 0.8225 0.7998

Dublin 24.645 1.453 0.262 50 3,716 1.0736 3.945 0.6579 0.6128

Manchester 24.021 1.643 0.115 44 4,236 1.0469 4.698 0.7832 0.7481

Berlin 18.550 6.477 0.080 28 3,700 1.0276 5.032 0.8392 0.8166

Marseille 17.651 3.177 0.025 41 4,040 1.0608 4.229 0.7050 0.6646
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below 0.2 for each attribute are shown in the tables below. Further models were built, which 
include IA indicators (infrastructure per capita) and DBC indicators:

   ADETT c d RIA e TIA fARCC= + + +  (2)

  ADETT c d RIA e TIA fARCC gAWTCC= + + + +  (3)

  ADETT c d RIA e TIA fCIA gACCC= + + + +  (4)

Tables 5–7 demonstrate the calibration results of  the linear function model eqns (2–5). The 
coefficients d, e, f and g quantify the reduction in traffic congestions due to an increase/
decrease of the independent variables. As units are different, standardized beta coefficients 
are considered. The results of the linear function model from eqn (2) demonstrate that an 
increase in average road closeness centrality reduces congestion at a similar level as does 
an increase in TIA. This is a useful finding which demonstrates that network design is as 
important as increasing the infrastructure length of alternative networks. The significance 
for e, f and g is less clear. However, the results of the linear function model (eqn (3)) dem-
onstrate that an increase in AWTCC decreases road congestion at a similar level as does an 
increase in average road closeness centrality. The results of the linear function model (eqn 
(4)) demonstrate that the influence of RIA on congestion stays a little lower compared with 
model eqn (3) and CIA has the highest influence on congestion alleviation compared with an 
increase in RIA and TIA, while considering cities with over 0.4 km per km2 cycleway density. 
Furthermore, an increase in ACCC decreases congestion more effectively than an increase in 
TIA. However the increase in ACCC is slightly less effective in decreasing congestion than 
an increase in RIA. The influence of TIA is less significant in this model. 

Figure 3:  Scatter graph with congestion level (ADETT) of cities over RCRC; the dotted line 
represents the fitted exponential curve from Eq.(1).
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5 DISCUSSIONS AND CONCLUSIONS
In the past, only limited holistic analysis have attempted to investigate the influence of urban 
network topology on transportation performance mainly due to a lack of diversity in the data 
from alternative network types. We analysed the influence of the topological indicators with 
multinetwork layers on network performance. The 86 analysed cities show diversity, as they 
are distributed over 32 countries. 

Relationships between network topology indicators and congestion level have been investi-
gated. The infrastructure data have been taken from the open-source OSM and traffic-related 
data from the TomTom database. Open-source data-related errors and data limitations have 
been highlighted. Good correlation values between topological variants and congestion levels 
have been demonstrated. Multiple linear regression models were attempted with the entire 
set of cities as well as on specific subsets (53 cities with mature railways and 28 cities with 

Table 5:  Calibration results of the linear function model eqn (2) for all samples. R2 = 0.527, 
sample size N = 85.

Calibration results Coefficient Std Err Beta t P>|t|

c 68.192 10.034  6.796 0.000

d –0.222  0.034 –0.556 –6.603 0.000

e –0.682  0.312 –0.179 –2.186 0.032

f –109,818.322 46,148 –0.193 –2.380 0.020

Table 6:  Calibration results of the linear function model Eq. (3) for cities with mature rail-
ways. R2 = 0.482, sample size N = 53.

Calibration results Coefficient Std Err Beta t P>|t|

c 71.287 16.076    4.434 0.000

d –0.161 0.041 –0.488 –3.926 0.000

e –0.847 0.423 –0.206 –2.002 0.051

f –121,553.58 72,325 –0.180 –1.681 0.099

g –1,017.277 764.075 –0.164 –1.331 0.189

Calibration results Coefficient Std Err Beta t P>|t|

c 46.366 2.803   16.163 0.000
d –0.167 0.054 –0.461 –3.039 0.006
e –0.684 0.393 –0.229 –1.571 0.130
f –2.833 0.797 –0.472 –3.486 0.002
g –20,519.767 9563 –0.321 –2.127 0.044

Table 7:  Calibration results of the linear function model eqn (4) for cities with mature 
cycleways. R2 = 0.593, sample size N = 28.
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mature cycleways). Calibrated regression models were proposed, quantifying the relation 
between transport infrastructure, topology and performance indicators.

The core message of the study is to demonstrate the influence of network design-related 
factors  on road traffic performance. The findings suggest that short-distance connectivity of 
the road network is important for reducing traffic congestion. Another hypothesis is that DBC 
of alternative networks does influence travel mode choices which in turn changes road traffic 
volume. One particular question has been addressed with regard to urban planning: what is 
more sustainable in congestion alleviation, building well-connected road networks with low 
circuity or building well-connected alternative networks with low circuity?  Public transit 
networks are more circuitous than roads, which is likely to be one of the reasons why people 
prefer the auto usage over public transit [6]. 

The main result is that the DBC of networks is an important proxy to understand road 
transportation performance. Following this reasoning, one can draw two main conclusions: 
(1) an increase in average short-distance connectivity of road networks (average closeness 
centrality and RCRC) eases road congestion, most likely because the road traffic is distrib-
uted more homogenously over a network with less low-permeability choke points and (2) 
an increase in average short-distance connectivity of alternative network systems (average 
weighted rail clustering coefficient and average cycle closeness centrality) alleviates road 
congestion. In particular, for cities with a mature cycleway network (cycleway density >0.4 
km per km2), an increase in cycleway closeness centrality decreases congestion with nearly 
the same effectiveness as an increase in RIA. Subsequent cost studies could identify which 
network modification would be the most cost efficient, in average. Presumably, well-con-
nected alternative networks with short direct routes can trigger a mode shift from car to rail 
or bike, thus lightening road traffic volumes. Furthermore, when alternative network systems 
are mature, the impact of road infrastructure indicators on transportation performance is less 
important. With the available average daily travel distance data for each mode, the study 
could be further exploited to determine the relationship between DBC indicators and travel 
distance.
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