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ABSTRACT
This paper presents a proposed methodology for applying statistical techniques as the basis for valida-
tion activities of a computer model of heat transfer. To demonstrate this approach, a case study of a 
Ruggedized Instrumentation Package subject to heating from battery discharge and electrical resistance 
during normal operations is considered. First, the uncertainty in the simulation due to the discretization 
of the governing partial differential equations is quantified. This error is analogous to the measure-
ment error in an experiment in that it is not representative of actual physical variation, and is necessary 
to completely characterize the range of simulation outcomes. Secondly, physical uncertainties, such 
as unknown or variable material properties, are incorporated into the model and propagated through 
it. To this end, a sensitivity study enables exploration of the output space of the model. Experiments 
are considered to be a realization of one of these possible outcomes, with the added complication of 
containing physical processes not included in the model. Statistical tests are proposed to quantitatively 
compare experimental measurements and simulation results. The problem of discrepancies between the 
computational model and tests is considered as well.
Keywords: Heat transfer, mesh resolution, numerical parameters, uncertainty quantification, validation, 
verification.

1 INTRODUCTION
Validating computational models against experimental data is challenging due to the inherent 
uncertainties in both realms [1]. Any uncertainty implies that a model cannot be ‘validated’ 
in a binary sense, but rather must be statistically assessed with regard to its prediction of 
reality within a given configuration. Therefore, this paper proposes that validation activities, 
as applied to computer simulations, focus on obtaining statistical confidence measures to 
provide evidence the model has predictive value. Validation can be viewed then as an appli-
cation of uncertainty quantification (UQ) [2]. Illustrating this point of view is a case study 
involving the temperature response of a Ruggedized Instrumentation Package (RIP) in nor-
mal operating conditions. The RIP contains circuit boards, instrumentation packages and is 
battery powered; therefore, heat is generated through electrical resistance. As an engineering 
application, designers need to know the temperatures reached by the various electrical com-
ponents to design the system such that these hardware pieces will function throughout the 
RIP’s operation. Assessing the degree to which the present model can be used for this task 
involves quantifying all errors in the model, which is achieved through the verification and 
validation (V&V) process [3–5]. Comprehensive V&V processes have been suggested for 
several areas of computational physics, such as computational fluid dynamics [6], as well as 
for some industries, such as nuclear energy [7]. While there are shared best practices across 
the approaches (as captured in [3–5]), to the best of our knowledge, there is no universally 
accepted approach to this problem.

The first step in comparing simulation output to experimental results involves quantifying 
the inherent uncertainties in both processes, i.e. estimating the degree to which they can 
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measure their underlying truth models. In the case of experiments, the underlying truths are 
the laws of physics, but experimental apparatuses are unable to perfectly measure any quan-
tity in the system. In this work, established error estimates for thermocouple measurements 
are used. To approximate the errors associated with the discretization of the partial differen-
tial equations (PDEs) comprising the model, i.e. its truth, solution verification techniques are 
used. Part of the error in the solution is contributed by time integration methods, linear/ 
nonlinear solver tolerances, etc., which are considered the numerical parameters of the model 
[8]. Quantification of these uncertainties for a similar configuration of the RIP was presented 
at the CMEM Conference [9] and is not repeated here. In addition, mesh quality and granu-
larity also significantly impact solution fidelity. The previous paper presented an algorithm 
for generating a family of meshes that can be used for this task. However, a significantly 
improved algorithm has since been developed and is presented in Section 3 along with the 
solution error estimates obtained using meshes generated by it. Section 3 also provides a brief 
summary of the numerical parameter uncertainty estimate to provide a total measure of the 
verification uncertainty of the present RIP model. It is known that solution verification and 
validation are intertwined, with mesh resolution often being the most significant numerical 
parameter as well as a challenging one against which to quantify solution error [10].

Validation is focused on ensuring that the model is a reasonable representation of the phys-
ical system of interest and as such, the process seeks to assess the degree to which the model 
can predict quantities of interest for relevant configurations. In this work, two aspects of vali-
dation are considered. First, a sensitivity study is performed to learn which physical parameters 
included in the model are the primary drivers of output metrics and therefore to prioritize 
uncertainties around which further study will focus. The second part of validation is a compar-
ison between model and experimental results. Any computational model necessarily is missing 
some physical phenomena and not all the relevant phenomena may be known a priori. Many 
metrics for validation are based on standard statistical approaches, e.g. p- values from correla-
tions or confidence intervals [11]. In this work, we propose the use of the Kolmogorov–Smirnov 
(KS) test and assess its applicability; however, we stress much more work is required to 
develop more rigorous and applicable validation metrics. As the sensitivity study, experimen-
tal comparisons can suggest additional calibration activities or other model enhancements that 
can improve the predictive capability of the model. Both these aspects of validation are pre-
sented in Section 4.

2 RIP DESCRIPTION
The RIP is an assembly of electronics, batteries, and circuit boards packaged in metal hous-
ings as seen in Fig. 1. The goal was to create an FEA thermal model using the SIERRA 
Thermal/Fluids code [12] to monitor the temperature in specified locations to ensure that 
electronics remained within their operating temperature ranges. The RIP is approximately 
0.15 m in diameter. Heat sources in the RIP are 48 2/3 A-cell batteries and two electronic 
packages (EP1 and EP2). 

The analysis team received production style ProEngineer [13] (computer-aided design 
software) models of the RIP. To prepare this model for meshing, many of the details needed 
to be removed, such as screws, fillets, threaded inserts, cables, and electrical connectors and 
features used for tolerancing, such as small gaps. Once these changes were made, the model 
was exported as a STEP file and imported into CUBIT [14], a geometry creation, manipula-
tion, and mesh generator created by Sandia National Laboratories. When the geometry was 
completed, the model was comprised of 119 blocks. 
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To simulate the experimental setup, the RIP (Fig. 1) was enclosed in a housing with nat-
ural convection on all surfaces at an initial temperature of 300 K. A radiative boundary 
condition was placed in all enclosures. For the first minute of the test, the batteries each 
produce 0.07 W, while electronics on the boards produce a total of 8.66 W. For the next hour, 
EP1 produces 22.57 W, the batteries’ heat increases to a total of 0.19 W, and the electronics 
on the boards increase to a total of 9.75 W. Finally, for the last 15 min of the test, EP2 turns 
on (22.57 W), the batteries heat increases to a total of 0.31 W, and the electronics on the 
boards increase to a total of 10.84 W. Fifteen thermocouples were located on the RIP, as 
shown in Fig. 1.

2.1 Computation model

A three-dimensional finite element model composed of tetrahedral elements was evaluated in 
the Sierra Thermal/Fluids [15] radiation–conduction code to computationally simulate the 
experimental configuration. The code solves the general heat equation: 

 
∂

∂
= ∇⋅ ∇

rcT

t
k T  + q̇ (1)

where r is the density, c is the specific heat, T is the temperature, t is the time, k is the con-
ductivity, and q

.
 is the internal heat generation. Radiative and convective boundary conditions 

can be applied to the model. The convective boundary condition is defined as:

 q h T Ts inf= ‑( )  (2)

Figure 1:  Locations in the RIP where temperature is monitored in this study. Additional 
locations were added for the validation study. Thermocouples (TCs) 13–15 are 
located on an external housing, not pictured.
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where q is the heat flux, Ts is the temperature of the surface, Tinf is the ambient temperature, 
and h is the convective heat transfer coefficient, which is defined as:

 h
Nu

Dk
D=  (3)

where D is the characteristic diameter, k is the thermal conductivity of the fluid, and NuD is 
the Nusselt number correlation. In this case, the RIP was approximated as a sphere and the 
following imperial average Nusselt number correlation was used:
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where RaD is the Rayleigh number and Pr is the Prandtl number, whose definitions can be 
found in [16]. For the radiative boundary condition, the Sierra Thermal/Fluids code calculates 
the heat transferred between elements in an enclosure by calculating the view factors or each 
element to every other element in the system. A full treatment of radiative heat transfer and 
view factor calculations can be found in [16] and details on the methodology in the code [15].

3 SOLUTION VERIFICATION

3.1 Mesh resolution study

When performing any computer analysis of PDEs, the continuous mathematical problem must 
be converted into a discrete representation (a mesh). The quantification of the sensitivity of the 
solution to the mesh size is accomplished through a mesh resolution study involving a family 
of topologically similar meshes with a range of characteristic length scales. The finest mesh in 
the set is considered to be the ‘true’ solution, because as the mesh size decreases, the mesh-
based approximations to the continuous derivatives also improve. When the coarser meshes 
are compared with the ‘true’ solution, the error associated with discretion can be assessed. 

3.1.1 Original mesh creation
CUBIT (http://cubit.sandia.gov) was chosen as the mesh generator for this project because 
the built-in Python (open source scripting language) interface allowed for the creation a set 
of logical rules that controlled the meshing process. By scripting these logical rules, a tetra-
hedral mesh of the RIP was automatically created that allowed: (1) mesh sizes that were 
determined by the geometry of each block and (2) continuous transitions of mesh size 
between blocks of differing sizes. This algorithm has been applied to both the RIP as well as 
other heat transfer models and has been observed to be much more robust and produce higher 
quality meshes than the algorithm used in the original study [9]. The meshing script worked 
using the following algorithm:

•  Obtain geometric information about the blocks, surfaces, and curves.

 • Iterate through all surfaces, divide the smallest edge length in the surface in half (to guar-
antee the smallest edge will be made of at least two elements), and tentatively set the mesh 
size of all curves in the surface to that value.
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 • Iterate through all vertices and record the minimum mesh size of all connected curves as 
a list of ‘vertex goals’.

 • Set continuously changing intervals on all curves by interpolating mesh size between each 
set of connected vertices.

 • Decompose each surface into two subsets: curves that circumscribe the surface (external 
curves), and curves that are internal to the surface (internal curves).

 • Force internal elements of the surface to interpolate smoothly between external curves and 
internal curves using built-in sizing functions in CUBIT.

•  Attempt to mesh all volumes. 

It was found that applying this mesh scheme to all blocks of the RIP caused the program to 
crash. However, when used only for volumes which failed to mesh on the first iteration, we 
were able to generate a mesh of 4,058,066 elements in approximately 8 min. This mesh will 
be referred to as the nominal mesh, and serves as the starting point for all subsequent meshes 
in this resolution study.

3.1.2 Refined mesh creation
The method used to create the refined mesh is identical to that used for the nominal mesh 
with the exception of one step: scaling the curve and surface meshes using a user-defined 
‘sizeFactor’. By manipulating the ‘sizeFactor’ value (default is 1) before running the script, 
meshes of differing number of elements can be generated. The number of elements in the 
entire model is controlled by manipulating the list of vertex goals. After the list of vertex 
goals is generated for the nominal mesh, the list of vertex goals is multiplied by the ‘size-
Factor’ input. By specifying a ‘sizefactor’ value <1, the script will produce a mesh with 
smaller size and more number of elements, while values >1 produce meshes with larger size 
and fewer elements. The ‘sizeFactor’ also has the same effect on the internal elements of the 
mesh and works in concert with the previous ‘vertex goal’ scaling to globally control the 
amount of refinement of the mesh. Eight meshes were produced by varying the ‘sizeFactor’ 
input to rough scale the number of elements up or down by a factor of 2. Table 1 shows the 
exact number of elements used to create the differently sized meshes from the same nominal 
mesh (4,058,066 elements).

Table 1:  Element counts for meshes generated by the 
remesher program.

Mesh name No. of elements

Coarse 16×    195,103 
Coarse 8×    528,434
Coarse 4×  1,177,552
Coarse 2×  2,161,911
Fine 2×  7,682,930 
Fine 4× 14,073,953 
Fine 8× 28,282,563 
Fine 16× 58,802,650 
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3.1.3 Mesh resolution study results 
The finest mesh in our study, 16× fine mesh, was taken to be the closest approximation to the 
analytical result, and was used as the ‘true’ solution in the convergence analyses. Since this is 
not an exact result, mesh convergence can only be assessed in the Cauchy sense, as discussed 
by Hughes [17]. Thus, the rate of convergence can be identified, but the difference between 
the nominal and 16× mesh only provides an estimate for the absolute difference between the 
numerical results and analytic solution. Two standard norms were used to assess the rate of 
convergence: the L2 and L∞ norms. The L∞ norm is the absolute maximum difference between 
the two solutions, also normalized by the fine mesh. This norm is mathematically defined as 
(in one dimension):

 L
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where W is the domain, TF(x) is the temperature of the fine mesh at location x and TC(x) is the 
temperature of the course mesh at location x. The L∞ norm is expected to converge as h–1, 
where h is the mesh length scale. It provides a measure of the worst-case local error that can 
occur and is useful for verifying that lower dimensional parts of the mesh are accurate, such 
as faces and contacts. In contrast, the L2 norm measures the mean square error between two 
solutions, normalized by the fine mesh, and is expected to converge as h–2. It is useful for 
assessing the overall quality of the solution.

The results of the temperature simulation for a region of interest in the RIP, TC2, demon-
strate the patterns seen throughout the model. The results of three of the meshes (the finest 
mesh, the nominal mesh, and the coarsest mesh) show that the maximum divergence of tem-
perature occurs at the end of the simulation at 60 min (Fig. 2). The maximum difference 
between the finest mesh and the coarsest mesh was 1.222 K, whereas the maximum differ-
ence in temperature between the finest mesh and the nominal mesh was 0.078 K, indicating 
that the solution is converging. To compare the norms with their expected convergence rates, 
the norms were plotted on a log–log plot, and a linear regression was performed. The three 
coarsest meshes were excluded from the regression because their values of L∞ were not indic-
ative of convergence and skewed the regression. After this exclusion, the convergence rate of 
L2 was ‑2.37 (expected value = ‑2.0, p = 0.002, r2 = 0.991) while the rate of convergence of 
L∞ was ‑0.947 (expected value = ‑1.0, p = 0.0167, r2 = 0.849), as shown in Fig. 3. The nom-
inal mesh was chosen as the optimal mesh for two reasons: (1) the nominal mesh is included 
in the regression and is within the linear convergence regime and (2) it is also sufficiently 
‘coarse’ to allow tractable computation times.

3.2 Uncertainty quantification for solution verification 

The approach taken in this work is that the total numerical uncertainty in the simulation is 
approximated by the independent summation of the errors arising from a mesh resolution 
study and a numerical parameter study. Performing an integrated UQ study with both factors 
simultaneously would stress existing high-performance computing platforms; therefore, this 
definition is taken out of practicality. As the geometry and results are sufficiently similar to the 
numerical parameter study previously performed on the RIP [9], the key results are simply 
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Figure 2:  Temperature for TC2 for the 16× fine mesh, nominal mesh, and 16× coarse mesh: 
entire time history (left), zoom in at the end of the simulation (right).

Figure 3:  L2 and L∞ norms with best fit lines (L2 best fit slope = ‑2.37, L∞ best fit slope = 
‑0.947)

quoted here and the interested reader is referred to that work. The three most significant 
numerical parameters, in terms of contributing to solution error and model evaluation time, are 
in Table 2. The relevant results from [9] are that the maximum time step and integration order 
are the parameters driving the uncertainty, resulting in a 0.75 K variation in temperature.

The data from the mesh resolution and the numerical parameters studies can be used to 
quantify the total uncertainty in the temperature field due to mesh discretization. The maxi-
mum difference in temperature between the 16× fine and the 16× coarse meshes is a 
conservative estimate of the uncertainty with regard to the mesh as shown in Table 3. For each 
thermocouple, the maximum temperature difference ranged from 1.10 to 1.24 K. To deter-
mine the uncertainty from the mesh for all points on the RIP, not just the tracked locations, 
the L2 and L∞ norms are employed. Since the mesh resolution study showed that the nominal 
mesh was optimal for our problem, a conservative estimate for the error introduced by the 
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Table 3: Uncertainty associated with each mesh.

Mesh name L2 error L∞ error

Coarse 16× ±0.21% ±2.05%
Coarse 8× ±0.18% ±2.02%
Coarse 4× ±0.15% ±0.86%
Coarse 2× ±0.13% ±0.38%
Nominal ±0.09% ±0.42%
Fine 2× ±0.05% ±0.24%
Fine 4× ±0.03% ±0.23%
Fine 8× ±0.01% ±0.15%

Table 2: Significant parameters influencing temperature response and computational time.

Parameter name Description

Maximum time step The maximum amount of time allowed between each time 
step. The allowed range is 10–200, nominal is 100.

Residual norm scaling The method for measuring the error. The choices are none or 
RHS, which normalizes it against the right-hand side. The 
nominal is none. 

Time integration method The order of accuracy is for time integration. The choices are 
first order and second order. The nominal is second order. 

mesh at any point in our problem is ±0.42%. In addition, the L∞ correlates well with the tem-
perature difference-based approach (335 K * 0.42% = 1.4 K). Thus, the total temperature 
error is approximately 2.15 K or ±0.62%.

4 VALIDATION
With the model verified such that errors originating from the numerical discretization of the 
model are quantified and controlled, the model’s predictive capabilities can be assessed 
through a validation process. In this work, simulation responses will be compared with exper-
imental temperature measurements of the RIP designed to approximate its real-world 
operating conditions. Thermocouples were placed at locations important to the functionality 
of the device. Therefore, the primary validation metrics are (1) the model’s assessment of the 
physical parameters which control the RIP’s thermal performance and (2) the model’s ability 
to reproduce these data. The first part of this section will correlate the change in the model’s 
predicted temperatures with changing physical input parameters. The second subsection pre-
sents the comparisons of the time–temperature histories from the model and experiment, 
using statistical tests to provide a quantitative metric.

4.1 Identification of the most significant computational model parameters

For this study, the LHS capability in DAKOTA optimization and uncertainty analysis pack-
age [15] (http://dakota.sandia.gov) was used to sample the uncertain material model 
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parameters and to generate and record thermocouple responses. The study used a total of 
570 samples, corresponding to a sample rate of 10 samples per parameter for each of the 
57 physical parameters in the model. A complete list of these parameters and their uncer-
tainty bounds is presented in Appendix B. To broadly sample the parameter space, a 
uniform distribution is used for the parameter uncertainties as well as relatively large 
uncertainty bounds. Additionally, some parameters, such as convection coefficients, effec-
tive thermal properties for circuit boards, and battery heat output, are highly uncertain. 
Each simulation is post-processed to compute the temperature histories at the locations 
corresponding to thermocouples in the experiment. The time-averaged mean-square error 
between each temperature series and the experimental value is computed, as well as L2 and 
L∞ norms between the run and the nominal model (the ‘nominal model’ uses the nominal 
value for the parameters). 

The data generated by the LHS study were analysed using the R open-source statistical 
software [18]. We first considered the trends of the thermocouple responses relative to the 
parameters varied. We quantified those trends using Pearson correlations [19]. The Pearson 
correlation coefficient is given by

 r
x x y y

x x y y

i i

i i

=
‑( ) ‑( )

‑( ) ‑( )
∑

∑ ∑2 2
 (6)

where xi and yi are given samples from their respective populations, and x‑ and y‑ are the cor-
responding sample means. Pearson correlations with magnitudes close to 1 indicate a strong 
linear relationship between the two populations. To aid in understanding the physics that 
drive the RIP’s thermal performance, scatter plots are also used to visually inspect the data. 
Of the statistically significant parameters, the batteries’ thermal output is the most important 
driver of the temperature profile over time and space, which in turn is the most important 
parameter for all the thermocouples other than TC9 (where the convective coefficient on the 
inside of the RIP was the most important). The next most important parameters were the 
internal convection coefficient and the heat generation from EP1. The thermocouples on the 
circuit boards (TCs 7, 8, 9, and 10) were in general less affected by the heat sources (the 
batteries, electronics packages, and the electronics on the boards) than the rest of the moni-
tored locations. The only exception was the resistor that was directly adjacent to TC8. The 
material properties of the batteries, the silicone compression pads that are adjacent to many 
of the heat generating electronics, the paraffin wax that encapsulates the batteries, the poly-
carbonate housing for the batteries, and aluminium that comprises most the structure of the 
RIP are also significant parameters to most of the monitored locations. This indicates that the 
material properties of the parts surrounding the heat sources have a strong effect on the tem-
perature of the monitored locations. TC7 and TC8 are also partially governed by the circuit 
boards’ in plane conductivity while almost all of the thermocouples are sensitive to the heat 
capacity of the circuit boards. 

R (http://www.r-project.org) was also used to complete an ANOVA study [20–22]. ANOVA 
consists of constructing the best average linear regression through the sampled data and then 
determining the ratio of the sum of squares difference between the samples and regression 
line to the sum of squares difference between the samples and the sample mean. The latter is 
used to assess the extent to which the variability in any given model parameter contributes to 
the overall variability in the model output. Furthermore, significance tests then allow for the 
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identification of the parameters that have the most influence on the uncertainty in model 
responses. Of particular interest is the p-value, which establishes the probability that the var-
iability attributed to a given parameter is instead due to chance. Thus, low p-values correspond 
to influential parameters. Appendix A contains the ANOVA results. The p-value serves as an 
indicator to filter out unimportant parameters in that no parameter with a high p-value was 
assessed to be significant either by the Pearson correlation coefficients or by visual inspec-
tion. However, some parameters which have low p-values appear to have limited influence on 
the results because the p-value only measure the probability a relationship exists and not the 
strength of that relationship. As a result of the statistical analysis and visual inspection of the 
data, of the 57 parameters, only 18 appear to have any bearing on the predicted temperature 
field, while just one, the heat generation from the batteries, is the most controlling parameter 
for the temperature at 14 of the 15 thermocouple locations. Other parameters that proved 
important to most of the thermocouple locations were the interior convection coefficient, the 
specific heat of the batteries, and the heat generation of EP1. The global sensitivities to these 
parameters are illustrated in Figs. 4 and 5.

Figure 4:  Global L2 differences for battery heat generation (left) and EP1 heat generation 
(right).

Figure 5:  Global L2 differences for internal convection coefficient (left) and battery specific 
heat (right).
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4.2 Comparison with experiment

To provide validation data for the RIP model, an experiment was performed to evaluate 
self-heating effects that occur when the instrumentation assembly is operated under repre-
sentative electrical and thermal conditions simulating a 75-min period of use in the field. 
Fifteen thermocouples were attached to the RIP in addition to air temperature gauges inside 
and outside. The location of the thermocouples is shown in Fig. 1. The test was conducted 
with the following three specific goals: (1) demonstrate electrical performance of all compo-
nents in the RIP, i.e. the battery (TCs 1, 2, 5, and 6), two EPs (TCs 3 and 4), and circuit boards 
(TCs 7, 8, 9, and 10), (2) determine the peak temperatures reached at the external aluminium 
housings, the battery housings, EP housings, and circuit boards under conditions representa-
tive of thermal loading due to self-heating and boundary conditions, and (3) collect 
temperature data at various points throughout the RIP to support the development and valida-
tion of the transient thermal FEA model. The latter included the internal housing (TC11), 
bracket cap (TC12), and external housings (TCs 13, 14, and 15). From a development per-
spective, the most important TCs are 13–15, followed by TCs 1–6, with TCs 7–12 being the 
least important.

The test was performed in a convective thermal chamber. The chamber was initially set to 
307 K (34°C) with the test unit mounted at three points on a thermally isolating cork block. 
The test unit was allowed to soak to ensure that all internal components reached the chamber 
temperature. Once electrical testing commenced, the chamber was turned off for the remain-
der of the 75-min test, to prevent the blower from turning on and artificially increasing the 
convective heat transfer from the external housings. Since the thermal chamber was well 
insulated, the air temperature only dropped approximately 3°C over the 75-min test. The RIP 
was connected to various external devices for verifying electrical functionality throughout 
test, such as laptop computers, data loggers, digital multi-meters, and oscilloscopes.

Despite the well-controlled experiment, there are still many unknowns in the as-tested RIP. 
These include performance measures such as heat generation (especially from the batteries), 
thermo-physical properties of the constituent materials, and air-mediated thermal transport 
models with convection coefficients. While impossible to capture with a single experiment, 
some of the uncertainty is also due to differences in operating conditions (e.g. power out-
puts), deviation in materials used to build the RIP (e.g. conductivities), and poorly 
characterized physical processes (e.g. convection coefficients). In contrast, these uncertain-
ties can be accounted for in the model by creating an ensemble of runs over instantiations of 
the model parameters.

To compare the model with the experiment, the R statistical package was used to compute 
the mean temperature response, standard deviation, and extreme values associated with the 
sample. Figures 6 and 7 provide representative results for TCs 1 (worst statistical agreement) 
and 7 (best statistical agreement).

The first observation of the results is one of general overprediction of the experimental data 
by the model, which was observed in all thermocouples (Fig. 8). One hypothesis is that this 
is most likely the result of the nominal model value for the battery heat generation being too 
high. Evidence supporting this hypothesis is found in the L∞ norm plot in [18]. This plot 
measures the maximum difference in temperature from the nominal model for each time step. 
It can be seen that the norm indicates jumps happen at the initial time, when EP1 turns on, 
and again at 3660 s when EP2 turns on, which act as additional heat sources. These data 
suggest that these events are triggering significant changes in the model response. Aspects of 
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Figure 6:  Left: Uncertainty in TC1 model predictions – maximum (green), one positive 
standard deviation (orange), mean (red), one negative standard deviation (turquoise), 
and minimum (purple). Right: Comparison of model (red) and experimental (blue) 
results with error bars denoting the associated standard deviations.

Figure 7:  Left: Uncertainty in TC7 model predictions – maximum (green), one positive 
standard deviation (orange), mean (red), one negative standard deviation (turquoise), 
and minimum (purple). Right: Comparison of model (red) and experimental (blue) 
results with error bars denoting the associated standard deviations.

Figure 8:  L2 (left) and L∞ (right) norms of the sample compared with the nominal model – 
maximum (green), one positive standard deviation (orange), mean (red), one 
negative standard deviation (turquoise), and minimum (purple).
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this hypothesis will be tested in the next subsection when the most significant parameters are 
identified. In this subsection, it can also be partially assessed by statistically comparing vari-
ous offsets from the mean as a fraction of the standard deviation. To quantitatively assess the 
offset, the KS test is used. This statistical test is designed to compare distributions from two 
sets of data with the null hypotheses being that the data are drawn from the same distribution. 
The test statistic is given by

 D F Y
i

N

i

N
F Y

i N
i i= ( ) ‑

‑
‑ ( )



≤ ≤

max ,
1

1
 (7)

where F is the theoretical cumulative distribution, i is the given sample, and N is the total 
number of samples. More information on this test can be found in [23–25]. A theory govern-
ing how to apply this test to the simulation is currently lacking; rather, we see the use of this 
test as a first step in bringing established statistical methods to computational validation by 
using it to compare the experimental and computational temperature–time histories at each 
thermocouple location. It is advantageous in this work in that it provides a quantitative metric 
that can be used as an aggregate measure of agreement between model and test data. 

The last column shows the amount of sample variance explained by this regression. For 
conciseness, short-hand notation is used for the variable names: battery thermal output (BAT), 
electronics package 1 thermal output (EP1), polycarbonate heat capacity (POL), internal con-
vection coefficient (CON), resister 2 heat capacity (RES), circuit board heat capacity (CIR), 

Table 4:  Linear regression coefficients for the three most important variables contributing to 
each thermocouple response.

Thermocouple

Variable #1 
 coefficient

Variable #2 
 coefficient

Variable #3 
 coefficient

%  
VarianceName Value Name Value Name Value

TC1 BAT 0.301 EP1 0.104 POL 5.6E-5  78
TC2 BAT 0.314 EP1 0.0971 CON ‑0.0534  77

TC3 BAT 0.290 EP1 0.184 RES ‑5.8E-5 79

TC4 BAT 0.300 EP1 0.133 RES ‑6.5E-5 79

TC5 BAT 0.313 CON ‑0.0499 POL ‑5.7E-5 78

TC6 BAT 0.312 EP1 0.130 POL ‑5.7E-5 78

TC7 BAT ‑0.097 CON 0.467 CIR 4.2E-5 13

TC8 BAT 0.173 CON ‑0.0953 N/A 57

TC9 BAT 0.0289 CON ‑0.0168 N/A  4

TC10 BAT 0.0654 CON ‑0.0220 CIR ‑2.3E-5 13

TC11 BAT 0.292 EP1 0.141 CON ‑0.0670 76

TC12 BAT 0.271 CON ‑0.100 AL 0.0926 73

TC13 BAT 0.283 EP1 0.105 CON ‑0.550 73

TC14 BAT 0.293 EP1 0.108 CON ‑0.0555 73

TC15 BAT 0.271 CON ‑0.0765 EXT ‑0.0761 65
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6061 T6 aluminium conductivity (AL), external convection coefficient (EXT). Only parame-
ters with a regression coefficient >1.E-5 are shown.

To determine the degree of deviation between the experiment and the model, the sum of the 
p-values for the KS test of each thermocouple was computed. The p-value is the KS test statis-
tic, which indicates that the null hypothesis can be rejected with probability 1 – p. Hence, a 
p-value of 1 indicates excellent agreement between the model and data, whereas a p-value of 
0 indicates poor agreement (note the p-values from KS and ANOVA tests are interpreted dif-
ferently). At present, there is no theory to determine what the p-value means in terms of the 
predictive capability of the model, so rather they are used only to compare two hypotheses. In 
this case, the hypotheses are different heat outputs from the battery, which was known ahead 
of time to be poorly characterized. p-values can be used to quantitatively assess whether dif-
ferent values of this parameter result in improved or degraded agreement with the test data. To 
efficiently test this hypothesis, the observation that the batteries’ heat generation has a general 
uniform and linear trend in the model’s predicted thermocouple responses is leveraged. The 
linear fit coefficient for each thermocouple’s response to each input parameter was computed, 
with the three most significant parameters for each thermocouple shown in Table 4. For alter-
nate battery thermal sources, each thermocouple time history was then perturbed by a function 
proportional to this coefficient to obtain an estimate of the time history under the alternate 
hypothesis. To appropriately scale the response in time, the normalized time-dependent vari-
ance was used in lieu of computing the linear fit at each time a measurement was taken. The 
summation of all the p-values was used as a metric for the degree of accuracy of each possible 
battery heat generation value, which was then maximized to estimate the heat output, which 
best-fits the data. Table 5 provides the nominal and best-fit offset p-values for each thermocou-
ple, as well as the summation used as the objective function. The best agreement corresponds 
to 52% of the original battery heat generation rate, which was not fully characterized prior to 
the experiment. Given the uniform improvement, it is therefore likely that uncertainty in this 
quantity explains most of the discrepancy.

Two other observations can be drawn from the results. First, the uncertainty in the model 
is greater than that in the experimental measurements. This is to be expected as the error 
quantified in the solution verification process is similar in value to the error in the thermocou-
ple measurements. Discretization uncertainty was intentionally driven to this range as there 
is little to be gained from going further. As a result, the largest contribution to model uncer-
tainty, as captured in the validation study, is derived from uncertain physics. To account for 
the lack of understanding in some of these properties, their ranges are taken to be larger than 
the expected actual variation of their properties. Correctly assessing these variations through 
testing would likely have been prohibitively expensive. Therefore, the model uncertainty 
arises from the ensemble nature of the study, which mimics the physical variability of the 
model parameters as well as the degree to which we know them. An ensemble of experiments 
would be expected to have a smaller uncertainty if the model accounted for the dominant 
physics processes. This uncertainty enters in the KS statistic in that thermocouples for which 
the distributions had significant overlap at the level of 1 standard deviation had p-values 
orders of magnitude greater than those with larger separations, even if the experimental tra-
jectory was within the bounds of the model ensemble (Tables 6–14).

Using the KS metrics and the geometry of the RIP suggests that there are three ‘families’ 
of thermocouple locations that behave similarly. The thermocouples on the batteries and EP 
(TCs 1–6) show a rapid divergence in the model and experimental data with the model over-
predicting the results. On both, the top (TCs 7 and 8) and bottom circuit boards (TCs 9 and 
10), responses are more difficult to interpret because the temperatures vary between slight 
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over- and under-predictions. Finally, thermocouples on the housing (TCs 11–15) show a sim-
ilar trend to TCs 1–6 of over-predicting the experimental data. These groupings are in-line 
with respect to which parameters are most significant from the sensitivity study and suggest 
that the discrepancies between model and experiment for many of the thermocouples have a 
common cause (Fig. 9).

To identify other types of model errors or missing physics, first consider the best-fit 
model/experiment comparisons shown in [20], which also include the numerical uncer-
tainty in the model error bars. The largest visual discrepancies (based on engineering 
judgment) occur for TCs 7, 9, and 10, with moderate discrepancies in TCs 3 and 12. 
Reviewing the p-values in Table 4, there is good correspondence between the p-values and 
visual inspection, although the best-fit p-value for TC12 is significantly lower with this 
test, supplying some limited empirical evidence of the utility of this measure. Of the impor-
tant regions identified during the model building process and test procedure, only TC3 on 
EP1 was not in statistical good agreement after attempting to correct for the unknown heat 
generation. This is most likely because EP1 is the main source of heat, other than the bat-
teries, in the system and was not adjusted in the fitting procedure. TCs 7–10 monitor circuit 
board temperatures and have a stronger sensitivity to the internal convection coefficient as 
well as the thermal transport properties of the circuit boards. Thermal properties of these 
boards were homogenized during the model building process as their exact geometries are 
very complex with layers of plastic and metal. Most importantly, the ratio of metal to plas-
tic was estimated rather than known, suggesting this uncertainty is also important to the 
model response. TC12 is also particularly sensitive to the internal convection coefficient, 
so improving this aspect of the model with either experimental measurements or convec-
tive heat transfer simulations would add fidelity. Finally, TC3 was the only TC sensitive to 

Table 5:  Comparison of KS p-values for original data and best-fit data offset, 
including the p-value summation used as the objective function.

Thermocouple Nominal p-value Optimal p-value

TC1 4.4E-08 0.50
TC2 3.4E-07 1.00
TC3 2.3E-06 0.89
TC4 3.2E-06 1.00
TC5 4.4E-08 1.00
TC6 2.3E-06 1.00
TC7 0.49 0.27
TC8 0.0023 1.00
TC9 0.27 0.27
TC10 0.13 0.37
TC11 3.0E-05 0.89
TC12 0.0012 0.0075
TC13 1.3E-07 0.63
TC14 1.3E-07 1.00
TC15 5.6E-06 0.77
Summation 0.8987 10.57
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the material properties of the Al 7075-T6 aluminium, suggesting that greater accuracy of 
this material model would also be of benefit.

5 SUMMARY
A verification and validation analysis was conducted on a finite element heat transfer model 
of the RIP. Verification consisted of two studies: a mesh resolution study and a numerical 
parameter sensitivity study. The former is a standard part of solution verification; however, 
for many models of realistic geometries, it is difficult to obtain the number of meshes neces-
sary to demonstrate convergence rates. In particular, it is often quite challenging to coarsen 
the mesh. This work presented algorithms for highly automated test mesh generation and 
refinement. These algorithms enabled nine meshes to be constructed such that convergence 
rates for L2 and L∞ norms could be identified and the error in important metrics quantified as 
a function of mesh resolution.

Figure 9:  Comparison of regression model with the optimal offset (red) and experimental 
(blue) thermocouple temperatures.
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The second verification effort, described in [9], involved performing a LHS study over all 
the numerical parameters in the model. Custom scripts were written to allow general text 
replacement needed to modify text-based input files and drive the ensemble of simulations. 
The study quantified the differences in solutions based on parameter settings and identified 
the significant numerical parameters, which control both uncertainty and execution time. As 
a result, the numerical parameters could be chosen to simultaneously control error while 
minimizing execution time. A conservative estimate of the error introduced into the solution 
by the numerical parameters and mesh is ±2 K. This study, once the infrastructure was pre-
pared, took less than two working weeks to conduct. This time scale was acceptable to the 
development engineers who requested the thermal model. This paper shows that rigorous 
model verification can be obtained within the constraints of an aggressive design, develop-
ment, and production schedule. 

Completing an iteration of the V&V process, validation activities were performed on the 
model to understand its sensitivity to physics and material properties included in the model, 
following which the model was compared with an experiment of the hardware during physi-
cally simulated nominal performance. Test comparisons serve to estimate the uncertainty in 
the model relative to the experiment, suggest improved parameter values for uncertain phys-
ical parameters in the model, and assess the impact of unmodelled physics (both known 
unknowns and unknown unknowns) on the quantities of interest. While there are 57 physical 
parameters in the model, the sensitivity study indicated that the power generated by EP1 and 
the batteries are the most important uncertainties to minimize to improve the predictive fidel-
ity of the model for engineering needs.

5.1 Future work for the RIP

It should be emphasized that V&V is an iterative process for which it is difficult to determine 
what constitutes ‘completion’. In practice, the decision of whether or not to continue the 
process is based on a cost/benefit analysis comparing the work needed to improve the model 
versus the improved predictive power it will have for quantities of interest. Examples can 
include enhancing the model’s geometric fidelity, choosing mesh spacing or numerical 
parameters to reduce error, performing characterization tests to improve constitutive models, 
or adding additional physics to the model. This paper has presented a single iteration through 
this process. Based on this iteration, the model could be most improved by developing a more 
accurate model of heat output in the electronics packages based on their temperature and 
electrical load. The next most beneficial activity would be to better characterize the circuit 
boards to improve their parameterized material model. Assessment by the system design 
team will determine if the current model, with an empirically tuned power output, will be 
sufficient to use to support their design activities. If so, further model improvements will not 
be made unless dictated by development needs. Otherwise, the cost associated with the test-
ing program needed to bring the model up to the required fidelity will be used to drive 
decisions regarding future model building efforts.

5.2 Conclusions

This paper has presented a case study demonstrating a proposed approach to validation of 
computational heat transfer models that seeks to establish confidence in the ability of the 
model to predict quantities of interest using UQ and statistical analysis. The motivating goal 
was to communicate a more rigorous methodology than those previously employed in a 
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 manner that will aid practitioners. By quantifying uncertainty at each step in the process, the 
proposed approach can provide reasonable approximations for uncertainties arising from 
equation discretization and variation in included physical parameters. Both are useful to the 
analyst to help assess the quality of the model as well as the types of behaviour one might 
expect from the real device. Importantly, physical and numerical parameters leading to uncer-
tainty in the outputs can be at least partially identified, enabling feedback to improve the 
model through either enhancements to the computational discretization or further testing to 
better quantify material properties, etc.

The other benefit of this proposed framework is that a body of evidence for assessing the 
model quality is produced as an outcome of validation activities. Therefore, quantitative evi-
dence can be provided to support or reject the ability of models to predict quantities of 
interest in relevant operating conditions. Precise metrics enable improved characterization of 
small numbers of important physical parameters in the common situation that not all model 
inputs are completely characterized. However, it is the opinion of the authors that much work 
remains to be done in this area. For example, the statistical metrics here do not have their 
usual interpretation in terms of rejecting a null hypothesis with respect to the physical model 
because it has too many parameters and governing equations that are required to produce its 
output probability distributions. Future efforts will be directed to obtaining more fine-grained 
statistical measures such that the statistical confidence in each model component can be 
assessed, followed by agglomeration to compute metrics for the entire model. Another impor-
tant statistical method that is needed is the ability to separate distinct versus coincident 
sources of uncertainty. For example, the variation of material properties between the model 
and experiment would be expected to be similar for a high quality model, whereas thermo-
couple errors are unique to experiments and not present in the model. The ability to account 
for these parts of the error in statistical tests would both lead to better validation metrics and 
have the potential to provide evidence regarding whether or not unmodelled physics are influ-
encing the system’s response in a statistically significant manner.

ACKNOWLEDGEMENTS
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United 
States Department of Energy under Contract DE-AC04-94AL85000. Funding for this work 
was partially provided by the Sandia Advanced Simulation and Computing (ASC) Program 
and its support is gratefully acknowledged. This document is SAND2014-0011J.

APPENDICES
The Appendices can be found online at the following link http://www.witpress.com/journals/
cmem
Appendix A: SENSITIVITY STUDY RESULTS
Appendix B: MATERIAL PROPERTIES AND UNCERTAINTIES

REFERENCES
 [1] Sargent, R.G., Verification and validation of simulation models, Proceedings of the 

2005 Winter Simulation Conference, pp. 130–143, 2005. doi: http://dx.doi.org/10.1109/
wsc.2005.1574246

 [2] Babuska, I. & Oden, J.T., Verification and validation in computational engineering and 
science: basic concepts, Computer Methods in Applied Mechanics and Engineering, 
193, pp. 4057–4066, 2004. doi: http://dx.doi.org/10.1016/j.cma.2004.03.002

http://dx.doi.org/10.1109/wsc.2005.1574246
http://dx.doi.org/10.1109/wsc.2005.1574246
http://dx.doi.org/10.1016/j.cma.2004.03.002


 S.N. Scott et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 3, No. 2 (2015) 119

 [3] Roache, P.J., Verification and Validation in Computational Science and Engineering, 
Hermosa Publishers: Socorro, NM, 1998.

 [4] Oberkampf, W.L. & Roy, C.J., Verification and Validation in Scientific Computing, 
Cambridge University Press: Cambridge, England, 2010. doi: http://dx.doi.org/10.1017/
cbo9780511760396

 [5] Trucano, T.G., Pilch, M. & Oberkampf, W.L., General concepts for experimental vali-
dation of ASCI code applications, Technical Report SAND2002-0341, Sandia National 
Laboratories: Albuquerque, NM, 2002. doi: http://dx.doi.org/10.2172/800777

 [6] Oberkampf, W.L. & Trucano, T.G., Verification and validation in computational fluid 
dynamics, Progress in Aerospace Sciences, 38, pp. 209–272, 2002. doi: http://dx.doi.
org/10.1016/s0376-0421(02)00005-2

 [7] American Nuclear Society, Guidelines for the Verification and Validation of Scientific 
and Engineering Computer Programs for the Nuclear Industry, ANSI/ANS-10.4-1987, 
American Nuclear Society: La Grange Park, IL, 1987.

 [8] Roy, C.J., Review of code and solution verification procedures in computational simu-
lation, Journal of Computational Physics, 205, pp. 131–156, 2005. doi: http://dx.doi.
org/10.1016/j.jcp.2004.10.036

 [9] Scott, S.N., Templeton, J.A., Ruthruff, J.R., Hough, P.D. & Peterson, J.P., Computa-
tional solution verification applied to a thermal model of a Ruggedized Instrumenta-
tion Package, WIT Transactions on Modeling and Simulation, 55. doi: http://dx.doi.
org/10.2495/cmem130021

[10] Logan, R.W. & Nitta, C.K., Comparing 10 methods for solution verification, and link-
ing to model validation, Journal of Aerospace Computing, Information, and Communi-
cation, 3, pp. 354–373, 2006. doi: http://dx.doi.org/10.2514/1.20800

[11] Oberkampf, W.L. & Barone, M.F., Measures of agreement between computation and 
experiment: validation metrics, Journal of Computational Physics, 217, pp. 5–36, 2006. 
doi: http://dx.doi.org/10.1016/j.jcp.2006.03.037

[12] Sierra Core Team, Sierra Thermal/Fluids Code, Sandia National Laboratories: Albu-
querque, NM, 2012.

[13] Pro Engineer Core Team, Pro Engineer WildFire 5, PCT: Needham, MA, 2009.
[14] Cubit Core Team, Cubit: Geometry and Mesh Generation Toolkit, Sandia National Lab-

oratories: Albuquerque, NM, 2011.
[15] Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Eldred, M.S., Gay, D.M., 

Haskell, K., Hough, P.D. & Swiler, L.P., DAKOTA: a multilevel parallel object- oriented 
framework for design optimization, parameter estimation, uncertainty quantification, 
and sensitivity analysis: version 5.0 user’s manual, Sandia Technical Report SAND2010-
2183, Sandia National Laboratories: Albuquerque, NM, 2011. 

[16] Incropera, F.P. & Dewitt, D.P., Introduction to Heat Transfer, 4th edn., John Wiley and 
Sons: New York, NY, 2002.

[17] Hughes, T.J.R., The Finite Element Method, Dover Publications: Mineola, NY, 
pp. 52–56, 2000.

[18] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation 
for Statistical Computing: Vienna, Austria, 2012.

[19] Pearson, K., On the criterion that a given system of deviations from the probable in the 
case of a correlated system of variables is such that it can be reasonably supposed to 
have arisen from random sampling, Philosophical Magazine Series 5, 50, No. 302, pp. 
157–175, 1900. doi: http://dx.doi.org/10.1080/14786440009463897 

http://dx.doi.org/10.1017/cbo9780511760396
http://dx.doi.org/10.1017/cbo9780511760396
http://dx.doi.org/10.2172/800777
http://dx.doi.org/10.1016/s0376-0421(02)00005-2
http://dx.doi.org/10.1016/s0376-0421(02)00005-2
http://dx.doi.org/10.1016/j.jcp.2004.10.036
http://dx.doi.org/10.1016/j.jcp.2004.10.036
http://dx.doi.org/10.2495/cmem130021
http://dx.doi.org/10.2495/cmem130021
http://dx.doi.org/10.2514/1.20800
http://dx.doi.org/10.1016/j.jcp.2006.03.037
http://dx.doi.org/10.1080/14786440009463897 


120 S.N. Scott et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 3, No. 2 (2015)

[20] Saltelli, A., Chan, K., Scott, E.M. eds., Sensitivity Analysis, Wiley Series in Probability 
and Statistics, Wiley: Chichester, West Sussex, England, 2000.

[21] Saltelli, A., Tarantola, S., Campolongo, F. & Ratto, M., Sensitivity Analysis in Practice: 
A Guide to Assessing Scientific Models, John Wiley & Sons: Chichester, West Sussex, 
England, 2004.

[22] Speed, T.P., What is an analysis of variance? (with discussion), Annals of Statistics, 15, 
pp. 885–941, 1987. doi: http://dx.doi.org/10.1214/aos/1176350472

[23] Lehmann, E.L. & Romano, J.P., Testing Statistical Hypotheses, Springer Science and 
Business Media, New York, NY, 2005. doi: http://dx.doi.org/10.1007/0-387-27605-x

[24] Kolmogorov, A.N., On the empirical determination of a distribution function, Giornale 
dell’Istituto Italiano degli Attuari, 4, pp. 83–91, 1933.

[25] Smirnov, N.V., On the estimation of the discrepancy between empirical curves of distri-
bution for two independent samples, Bulletin of Moscow, Vol. 2, pp. 3–16, 1939.

[26] Helton, J.C. & Davis, F.J., Sampling-based methods for uncertainty and sensitivity 
analysis, Technical Report SAND99-2240, Sandia National Laboratories: Albuquerque, 
NM, 2000. doi: http://dx.doi.org/10.2172/760743

[27] Iman, R.L. & Shortencarier, M.J., A Fortran 77 program and user’s guide for the gen-
eration of Latin hypercube samples for use with computer models, Technical Report 
NUREG/CR-3624, SAND83-2365, Sandia National Laboratories: Albuquerque, NM, 
1984. doi: http://dx.doi.org/10.2172/7091452

http://dx.doi.org/10.1214/aos/1176350472
http://dx.doi.org/10.1007/0-387-27605-x
http://dx.doi.org/10.2172/760743
http://dx.doi.org/10.2172/7091452

