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ABSTRACT
Internal pressure as a loading mode concerns numerous engineering applications and technological 
processes. The present account deals with the material, the continuum, and the structural level. In 
addition to the stressing aspect, internal pressure is considered as the driving force in certain metal 
forming operations. The presentation of the subject bases on established solutions, less known results 
and technological applications.
Keywords: containers, forming operations, porous solids, shells.

1 INTRODUCTION
Internal pressure, caused by contained gaseous or liquid substances, is of interest on the mate-
rial level as well as for engineering structures and components. Porous materials are considered 
with regard to the effect of pressure in the pores on the constitutive description. The fi nite 
element formalism is conveniently adapted to the action of pressure in the porous material. 
Investigations within the material structure suggest reference to the stress distribution around 
pressurized pores. In this context, analytical solutions available in the literature have been 
interpreted for cavities of various shapes in the elastic plane. Stress intensity factors for cracks 
emanating from elliptical holes enter the numerical simulation of microfracturing processes in 
porous brittle materials. A pronounced dependence on the structural pattern necessitates 
 statistical considerations with respect to the strength.

Regarding engineering structures and structural elements, analytical approaches are known 
for the hollow cylinder and the sphere in elasticity and plasticity. Shell structures serve fre-
quently as liquid tanks, pressure vessels, infl ated membranes and the like. The subject is 
surveyed from the point of view of membrane theory and the possibilities of failure are 
briefl y discussed. Numerical analysis by computer algorithms is not restricted to the mem-
brane assumption. Depending on the case, adequate representation of the problem may 
require employment of shell- or bulk solid fi nite elements.

Apart from containment, internal pressure performs the task of formgiving and formkeep-
ing of shell-like structures and components. Both issues are of technological importance. 
Formkeeping is of concern to infl ated membranes. Pneumatic shaping has been applied, as 
a concept, to the construction of roofs by plastic deformation of thin metallic sheets at ambi-
ent temperature. The manufacturing process of superplastic forming, on the other hand, is 
effected by gas pressure on metallic blanks at elevated temperature. Of interest, the optimi-
zation of the process by controlling the forming pressure, and net-shape forming. The 
development of dedicated fi nite element methodology has been considerably promoted by 
industrial aerospace engineering.

2 POROUS MATERIAL
2.1 Continuum approach

In an elastic solid with homogeneously distributed microscopic porosity the stress s is 
 controlled by both the strain e and the internal pressure p in the pores:
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 s = ke – ap pe. (1)

The matrix k comprises the elasticity coeffi cients. The pressure carries part of the normal 
stresses, the vector e = {1 1 1 0 0 0} effects the proper allocation. The factor ap is considered 
a material parameter [1].

From a micromechanics perspective the macroscopic, virtually homogeneous stress s and 
strain e are obtained as the averages of the fi elds in the elementary volume V, Fig. 1:
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The stress s m varies within the part Vm occupied by the solid material as does the strain em. 
The porosity c = (V – Vm)/V defi nes the volume fraction subjected to the pressure p. In the 
macroscopic strain the constituent ep accounts for the displacements along the pore bounda-
ries. With sm = kmem for the elastic solid phase, eqn (2) gives

 0( ) ( ).m P m Ppc+ = − = − −s k e e ke k e ee  (3)

For an interpretation of the macroscopic relation in eqn (1), it has been observed that in the 
absence of pressure the fi rst equality becomes s = km(e – e0)= ke, used in obtaining the sec-
ond equality. The contribution of empty pores (p = 0) to the strain is denoted e0, the elastic 
material stiffness matrix k appertains to the overall behavior of the porous material, no pres-
sure. The corrective term km (ep – e0) has been incorporated in eqn (1) by the empirical factor 
ap which modifi es the pressure term to ap p ≠ cp.

2.2 Ceramic rod with multiple channels

The rod of circular cross-section with interior channels in Fig. 2 (1 m in length, 0.020 m in 
diameter) is of macroporous ceramic. It serves in fi ltration equipments whereby the channels 
are subjected to fl uid pressure.

The load carrying capacity of the part is determined by the stress distribution in conjunc-
tion with the strength of the brittle material. The highest principal stress s1, considered 
decisive for rupture, is plotted in Fig. 2 as a result of elastic fi nite element analysis for plane 
strain conditions. The overpressure by the medium in the channels is imposed on the inner 
surfaces. It is degraded through the porous ceramic to the ambient value at the outer surface. 

Figure 1: Solid with pressurized pores and equivalent homogeneous material.
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With reference to eqn (1) for the local stress, the pressure in the material gives rise to loads 
at the interior mesh nodal points as for initial stresses.

The material strength varies randomly within the part. Laboratory tests support the descrip-
tion by Weibull statistics [2]. Sampling at random the strength distribution in the fi nite 
element model and comparing with the computed stress fi eld determines the frequency of 
locations prone to rupture at each level of channel pressure. Results from 1.000 realizations 

Figure 2:  Ceramic fi lter support. Distribution of principal stress s1 in plane strain for Δp = 5.0 
MPa between channels and outer surface. Frequency of critical locations. Below: 
Stress distribution around triangular pore at unit pressure (radial-, circumferential- 
and shear component). The analytical solution is deduced from Savin [8], the 
presentation refers to adjusted curvilinear r, q-coordinates [4].
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of the strength distribution reveal that most critical to incipient failure are the vicinity of the 
pressurized channels and the ligaments, the locations of stress concentration. It becomes 
evident that the stress distribution overwhelms the scatter in material strength. Reliability 
assessment requires further investigations [3].

2.3 Fracturing of porous microstructure

Tasks related to the strength of materials may require investigation of the stress fi eld around 
pressurized cavities below and above the continuum level. Stress concentrations because of 
holes in the elastic plane (Fig. 2) have been studied analytically in [4] for various simple 
shapes by the method of complex stress functions due to Kolosov [5] and Muskhelishvili [6]; 
see also Stevenson [7] and Savin [8].

Figure 3 displays the fracture pattern obtain numerically for an artifi cial material structure 
exposed to internal pressure in the pores. The pore pressure gives rise to the nucleation of 
cracks assumed propagating along grain boundaries. A grain interface of length L is consid-
ered to form a crack if 

 
g= ≥∫ ∫

2
d d 2 sL L
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 (4)

The energy release rate G of the elastic solid is related to the stress intensity factor K, which 
accompanies the singularity at the crack tip, by the elastic modulus E appertaining to either 
plane stress or plane strain. The specifi c surface energy of the material is denoted as gs. Of 
particular interest in the present context is the straight crack in the elongation of the semi-axis 
of an elliptical hole, Fig. 3. For internal pore pressure p the solution of Berezhnitskii [9] gives 
the stress intensity factor by the expression
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The algorithm simulating fracturing in artifi cial material structures exposed to internal pore 
pressure has been based on suitable modifi cations of the above result [4]. Fluctuations in the 
microstructure suggest statistical considerations regarding the strength [2].
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Figure 3: Study on fracture for plane microstructure due to pressure in pores of elliptical shape.
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3 SHELLS UNDER INTERNAL PRESSURE

3.1 Elementary considerations

The subject is of importance for liquid tanks, pressure vessels, infl ated membranes and 
 similar. Shells are represented by the middle surface and a possibly varying thickness s. The 
analysis simplifi es for thin-walled shells when bending is neglected. Then, variations of the 
stress across the thickness are discarded; the stress state results to membrane forces defi ned 
as normal- and shear fl ow transmitted per unit length. Rotational symmetry of shell geometry 
and loading excludes shear and reduces the membrane forces to the meridional component 
Nf and the circumferential Nq along parallel circles (Fig. 4). In the present context the loading 
is considered distributed over the surface with two components: pf and pn. The statement of 
equilibrium for the shell element normal to the middle surface gives

 1 2
.n

N N
p

R R
q+ =f

 (6)

The radius of curvature R1 is in the meridian plane, R2 equals the distance of the middle 
surface to the axis of revolution along the normal. It is noted that eqn (6) is not restricted 
to rotational symmetry, but applies to every shell geometry provided that the f, q-system 
 follows the lines of principal curvature of the surface. Equation (6) relates the circumferen-
tial force Nq and the meridional force Nf. The meridional force is obtained by considering 
the equilibrium of a portion of the shell above a parallel circle. Loading by internal pressure 
(pf = 0, pn = p) results to
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For a shell shaped as an ellipsoid of revolution with semi-axes a and b (Fig. 4) the forces 
at the pole (R1 = R2 = a2/b), and at the equator (R1 = b2/a, R2 = a) are

Figure 4: Shell of revolution. Shell element under axisymmetric conditions.
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The meridional force Nf is positive, but the circumferential force Nq becomes negative at the 
equator if the ellipsoid is fl at such that 2.a b >

Other pressurized containers with simple geometry are treated analogously. More general 
analytical solutions are sought in terms of a stress function. Several examples are given in the 
classical book by Flügge [10]. Membrane strains are determined from the stresses by the 
applicable constitutive law of the material. If the displacements turn out to be fi nite the equi-
librium condition must be stated for the updated confi guration of the shell.

Shells are prone to buckling instability where compressive stresses appear. An example is 
the conical tank shown in Fig. 5. The tank (conus angle b), supported at the lower edge 
(radius b), is fi lled up to the height h with liquid of specifi c weight g, the weight of the tank 
wall is assumed negligible. The fl uid induces compressive forces Nf along meridians and 
tensile forces Nq along the periphery:
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The compressive meridional force in eqn (9) is seen to become quickly higher towards the 
bottom of the tank (z = 0). An increasing level h of the liquid may cause buckling of the bot-
tom part and catastrophic collapse of the tank. The tensile nature of the circumferential 
membrane force, eqn (9), has a stabilizing effect with respect to the buckling, but may favour 
other variants of failure like by plastic yielding and fracture.

3.2 Heating-up of liquid zinc tank

The heating phase of liquid zinc containers may become critical to cracking by stress corro-
sion. The tank shown in Fig. 6 with a capacity of 140 tons stands on a grid of concrete beams. 
Melting of the zinc is by four burners at the upper third of the side walls. Bulging of the side 
walls during melting is prevented by the three horizontal supports S1, S2, S3.

Figure 5: Conical liquid tank.
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The elastoplastic analysis by fi nite elements [11] takes advantage of the double symmetry 
of the problem. The loading is by the temperature variation, the pressure from the melting zinc 
and the registered displacement of the horizontal supports. The pressure from the melting zinc 
conforms to the development of the temperature. Initially, the tank is fi lled with 100 tons of 
zinc, assumed melted after 190 hours. In the sequence 40 tons are added gradually.

The temperature interval in question alters the properties of the steel material in elasticity 
and plasticity. Results of the computer simulation of the heating process of the tank (255 h) 
are displayed in Fig. 7 for an instant of interest. During the fi rst 50 hours the deformation of 
the tank alters the support conditions such that only the front end regions remain in contact 
with the ground. The principal stress s1 refers to the inner surface of the tank which is prone 
to stress corrosion cracking. Maximum stresses appear after 150 hours near the rim stiffener 
on the top of the tank and at the transition between side walls and bottom. The shear stress in 
the walls is negligible.

4 FORMGIVING AND FORMKEEPING

4.1 Pneumatic shaping

Space structures consisting of soft elements, like cable networks and textile membranes, 
must be prestressed while assembled in order to become stiff. On the contrary, space 

Figure 7: Deformation of tank (40 × magnifi ed). Principal stress s1 on inside [N/mm2].

Figure 6:  Tank for liquid zinc. Geometry and measurement points (left). Schematic variation 
of heating-up temperature J, pressure p, displacement of horizontal supports ws 
(right).
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structures formed by plastic deformation of sheet metal become stiff in the formgiving 
phase; maintenance of prestress is not required.

A particular technique is bulging of thin sheet material at room temperature via pneu-
matic pressure [12]. The construction specifi ed in Fig. 8 consists of two circular sheets 
(0.3 mm steel) preformed to slightly curved caps and joined hermetically at a peripheral ring 
frame. Bulging induces plastic deformation in the metallic sheets; removal of the pressure 
leaves a stiff confi guration. Formgiving is actually by quasistatic infl ation up to pressure 
p = 29.43 kPa. The interest of a computer simulation by fi nite elements [13] lies in a rapid 
application and re moval of the forming pressure to twice the static value as a cosine pulse of 
20 ms duration. The induced dynamic effect is predicted to reduce the sheet thickness at the 
apex from 0.3 mm to 0.1995 mm. Figure 9 traces the history of dynamic deformation of the 
spherical sheet cap to a paraboloidal dome. The isometric plot of the deforming geometry 
shows an initial phase of permanent deformation followed by elastic oscillations about the 
new confi guration.

Figure 10 refers to the small scale laboratory model of a membrane deformed permanently 
to a cushion by pneumatic pressure. The aluminum sheets (upper and lower, thickness: 0.03 
mm) are stiffened along the axes of plane symmetry and along the diagonals by strips 

Figure 9: History of dynamic dome forming.

Figure 8: Metallic roof model formed by infl ation pressure.

0.2 m

Ro

p (t)

Membrane thickness 0.3 mm

r = 2.5 m



246 I. Doltsinis, Int. J. Comp. Meth. and Exp. Meas., Vol. 1, No. 3 (2013)

(cross-section: 3.38 mm2). Figure 10 gives an impression of the initial and the fi nal shape of 
the model considered from above. The Moiré image in the left frame refers to the state when 
pressure is not yet applied ( p = 0), upper and lower sheet are in touch; referring to a roof 
structure, the experimental model is fi xed such that curvatures arise. The right frame visual-
izes the fi nal shape of the upper sheet at maximum infl ation pressure p = 2639 Pa.

4.2 Superplastic forming

The term superplasticity denotes a deformation process that produces large permanent elon-
gations in metallic materials subjected to tension. This advantage of certain materials is 
utilized for manufacturing in a single cycle structural parts that require high permanent defor-
mation. Essential to superplasticity are specifi c thermal and mechanical conditions which 
accentuate the dependence of the fl ow stress s on the deformation rate d such that local 
 necking is prohibited. Modeling is as for an isochoric viscous material with zero yield limit. 
The fl ow stress depends also on the grain size d which changes following the grain growth 
kinetics of the material: 

 s = f (d,d). (10)

Superplastic deformation is a slow process which requires the maintenance of high tempera-
ture for a longer period. In industrial practice sheets or plates of the metal are bulged under 
the action of gas pressure to form shell-like structural parts. Figure 11 refers to a conical 
structural component (335 mm in height) manufactured by bulging a pre-contoured thick 
circular plate (32–18.5 mm, 400 mm diameter). The superplastic forming process requires 
13 hours whereby Ti-6Al-4V titanium alloy at the temperature of 1200 K is deformed under 
pressure imposed as prescribed by the industrial manufacturer: the intensity, increasing from 
zero, attains the fi nal value of 1.4 N/mm2 within 4 hours. The study has been one of the fi rst 
pertaining to industrial practice in aerospace engineering [14].

The inner surface of the component is subjected to the gas pressure. The outer surface 
progressively comes into contact with the die and slides along the wall. In practice sliding 
friction is avoided; its effect is of interest when conceiving the process. Friction was found to 
slow down the forming operation to 20 hours and alters the thickness distribution in the 
 product, introducing extensive thinning at the apex.

Figure 10: Membrane model. Prior to infl ation (left), after forming (right).
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The control of the forming pressure is of great importance for both, maintaining superplas-
tic conditions and effi ciency of manufacturing. The gas pressure is controlled such that the 
maximum equivalent rate of deformation in the part meets with an optimum value favourable 
for superplasticity. It is demonstrated in Fig. 12 (symmetric half formed of 1.8 mm circular 
titanium sheet, 250 mm diameter) that a pressure history prescribed by engineering experi-
ence and intuition may prove insuffi cient at least with regard to effi ciency. Improved process 
design is obtained when optimizing the forming pressure in conjunction with numerical com-
puter  simulation.

In net-shape forming a requested geometry of the product is achieved as an immediate 
result of the single process, with no additional operations. The task to be performed in the 
design phase of the process is to specify the initial geometry of the work-piece material such 
that the deformation produces the desired confi guration. This inverse problem of pre- 
contouring the blank has been treated successfully for the industrial production of a 
hemispherical satellite tank. Computer simulation of superplastic forming is detailed in [15].
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