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AbSTRACT
In many transit systems, operators use skip–stop strategies to reduce travel time of particular train ser-
vices by not stopping (skipping) at less densely populated stations. This decision of omitting some stops 
reduces the travel time for the users within the vehicle and increases the speed of operation, favouring 
the provision of new transit services where are more necessary. In this work, the best A/b stop–skip 
patterns for a set of transit services along a railway corridor are determined by means a three-phase 
methodology that includes the formulation of a nonlinear integer programming inspired in the multi-
ple knapsack problem and the application of a heuristic algorithm based on mathematical properties 
(matheuristic).
Keywords: matheuristics, optimization, railways, stop–skip strategy.

1 INTRODUCTION
The skip–stop (or limited-stop) mechanism is a strategy that some transport companies 
follow to reduce travel times without the need to increase the fleet of vehicles. It consists 
of privileging a majority of passengers by offering shorter travel times, as a result of having 
previously selected a group of low-activity stations, where the trains will not stop to leave/
pick up passengers.

Distinguishing between express and local stations appears first in the Northwestern Ele-
vated of Chicago by July 1900. The skip–stop service was also first developed for the Chi-
cago Metro system in 1947, and later implemented in Philadelphia and New York (see [1]). 
In 1947, system of express and local schedules provided by the Chicago Transit Authority 
(CTA) had become a nuisance for users, because the really available services for riders were 
hard to comprehend. In order to stop the fall in demand that was being happening, the CTA 
planned a clever way of running express service on its two-track lines. This proposal was 
known as the A/b skip–stop plan (see [2]). As illustrative examples, the skip–stop operation 
mode has been used (and/or is being used) in practice in Santiago de Chile since 2001 [3], in 
bogota’s Transmilenio system [4], in Los Angeles’s Metro Rapid system [5], in Singapur’s 
Transit Link [6] and in the bus line that connects the East zone of Seville area with its historic 
centre [7]. Figure 1 shows four train services that run along a railway corridor with seven 
stations. The services appear classified in types A and b and the stations in types A, b and 
A/b. The horizontal sections in the polygonal lines represent the stopping time of the trains 
at the stations.
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The travel time between stations along a railway line consists of five components, usually 
identified as phases of acceleration, constant speed, inertia, braking and downtime. Several 
studies have shown that skip–stop operations can:

•	 improve passenger waiting and in-vehicle times

•	 save operating costs (note that skipping stops allows vehicles to return to their depots in a 
shorter period of time; as a result, vehicles can be reused sooner) and

•	 reduce fuel (or power), as a result of not accelerating or decelerating at skipped stations.

Nevertheless, the prevalent purpose of introducing stop–skip patterns is not actually to save 
time, as discussed in [8, 9]. The main aim is to better distribute passenger loads during peak 
periods, when trains are at their highest capacity level. The skip–stop services are especially 
suitable for those transit routes with unbalanced demand, so the stops with higher demand 
would be served by more vehicles, in order to improve the overall serviceability of the route. 
The idea consists of trains stopping at stations so that there’s more of an opportunity for folks 
to get on the trains at those stops. In order to avoid confusions and misunderstandings to 
passengers when skip–stop services are implemented, different means are usually used, like 
providing information boards and verbal indications at the stations. 

As the Directive (EU) 2016/797 of the European Parliament and of the Council of 11 
May 2016 on the interoperability of the rail system within the European Union [10] points 
out, passengers must be provided with easily understandable travel information about rules 
applicable to them both in railway stations and in trains. For example, the two types of buses 
that operate in the east of Seville and share the same route (express line and normal line) 
are differentiated by signals on the front panel display of the vehicle. In the same way, the 
trains of their two respective lines that operate with skip–stop patterns in Santiago de Chile 
are also visually identified with green and red signals; hence, passengers know in advance 
what colour they should choose. Additionally, this information is also provided on screens at 

Figure 1: An A/b skip–stop plan for a set of four trains and seven stations.
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the station platforms, as well as through the public address system when trains are going to 
arrive at the stations.

Regarding the stop–skipping patterns for a one-way single track, the fundamental approaches 
are divided into deterministic (see, for instance, [11], [3]) and stochastic approaches ([12]). 
The deterministic form is derived from the description and analysis given by [13] in which 
stations along a line are classified into three groups, A, b and Ab. The consideration of only 
two types of stations simplifies the degree of diversity, and travellers can more easily memo-
rize the options to be able to configure their own routes between nodes of the transit network. 
The trains in line A stop at the A and Ab stations, while the trains belonging to line b stop at 
the b and Ab stations. When they intend to alight at a b station, passengers boarding at an A 
station will need to transfer at an Ab station onto line b. Thus, this disadvantage might affect 
the attractiveness of stop–skipping schedules. 

The skip–stop operation scheme has been widely applied in bus transit services. Reference 
[14] proposed a real-time deadheading strategy to determine the dispatching time, deadhead 
vehicles and skip stations to minimize the total passenger cost. A heuristic algorithm was 
used to solve the model for operating the MbTA Green line. Reference [12] focused on 
the real-time stop–skipping control problem and presented an enumeration method with fast 
solving speed. Reference [15] studied the service reliability of a route in the city of Dalian 
and an optimized deadheading strategy for a part of the route by means of a heuristic algo-
rithm. The advantages and disadvantages of four kinds of operating strategies were analysed 
in [16], and a nonlinear integer programming model was developed to solve the real-time 
dynamic transit operation problem, in a setting where the benefits of the operators and pas-
sengers were balanced. The skip–stop operation mode on rail transit lines has been described 
in the literature; for instance, see [17,18]. 

Different mathematical tools have been used to solve the skip–stop service problems:

•	 Dynamic programming was adapted for this purpose in [19] and [20].

•	 Greedy algorithms have been investigated for solving multiple train problems in [21].

•	 Fuzzy mathematical programming was the method used in [22] for the Taiwan’s high-
speed rail. 

•	 Formulations in terms of nonlinear integer programming were proposed in [23], [24], [4] 
and [25] for solving dynamic versions of the skip–stop service problem.

•	 Metaheuristic genetic algorithms (GAs) have extensively been used for solving skip–stop 
scheduling problems. See, for instance, [26], [27], [28], [29] and [30].

•	 Other metaheuristics such as Tabu search method ([31]) or bee colony algorithm ([6]) have 
also been used for this context.

Matheuristics are heuristic algorithms made by the interoperation of metaheuristics and 
mathematic programming (MP) techniques [32]. Matheuristics are optimization algorithms 
inspired in (or derived from) a mathematical model. An essential feature of the matheuristics 
is the implementation in some part of the solution procedure of characteristics or proper-
ties derived from a mathematical model. Metaheuristics topic has attracted the interest of 
researchers, as shown in the publication of monographs in journal special issues ([33,34]).

We propose, in this work, to determine a skip–stop scheme through a three-phase method-
ology. In the first, we find the optimal strategy of skipping stops for a given train fleet and, in 
the second phase, we determine, by means of a matheuristic procedure, the optimal allocation 
for train itineraries. For this last purpose, we will develop the concept of proximity between 
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configurations of train itineraries and, in accordance with Hall’s method ([35]), design a 
matheuristic that optimizes the skip–stop strategy.

In Section 2, a methodology of three phases for determining an optimal skip–stop scheme 
for train schedules is introduced. The first phase consists of formulating a nonlinear inte-
ger programming inspired in the multiple knapsack problem (MKP). The second phase is a 
matheuristic procedure adapted from the Hall’s method. The third phase is a greedy algorithm 
of comparing and replacing. A computational experience, which illustrates the proposed pro-
cedure, is carried out in Section 3. Finally, conclusions are summarized in Section 4.

2 METHODOLOGY
Let I  be the set of stations of a railway corridor and let S  be a train service set. We define the 
binary variable y i I s Si

s ; , .∈ ∈  If yi
s =1,  then station i I∈  is visited by transit service s S∈ .   

This variable yi
s  will allow us to construct the solution vector: Y = ( / , / , , / ).0 1 0 1 0 1  In 

order to deal with the demand the binary variables x i j I s Sij
s ( , , ),∈ ∈  which take value 1 

when the train s stops at both stations i and j, are defined.
Assume that travel demand from station i to station j depends on the time window consid-

ered and, subsequently, on the train s that transits during the time period considered. Hence, 
we can assume a preliminary study in which the potential demand from station i to j when 
train s passes through i has been estimated. This demand will be an initial data that we will 
denote by p i j I s Sij

s ; , , .∈ ∈  This value will be associated to the population available to board 
train s at station i with destination j if the number of intermediate stops was 0.

Define a new variable n i j I s Sij
s ; , ,∈ ∈  that will be the number of effective interme-

diate stops between stations i and j for train service s. If stations i and j were consecu-
tive stops along the railway corridor, then n s Sij

s = ∀ ∈0, . Otherwise, nij
s  will be an integer 

value, superiorly bounded by the real number of intermediate stations between i and j.  
Now we can estimate the real number of travellers that will depend on the potential demand 
p i j I s Sij
s ; , ,∈ ∈  and the number of intermediate stops n i j I s Sij

s ; , , .∈ ∈  The greater number 
of intermediate stops introduced, the fewer number of travellers will be interested in the train 
service. We propose to use the following mathematical expression:

w
p

n
i j I j iij

s ij
s

ij
s

=
⋅ +

∀ ∈ > >
λ

λ
1

0; , , where positive parameter  muust be calibrated  .

Therefore, if nij
s = 0  then the real demand ( )wij

s  coincides with the initial value pij
s . Any 

other positive value of nij
s  will suppose a decrease in the effective number of travellers with 

respect to the initial value.
by means of the following linear integer programming model, we formulate the problem 

of maximizing the number of passengers for a transit line in which an indeterminate number 
of intermediate stops along the line can be omitted.

Objective and constraints: Maximize the number of passengers boarding trains at  stations.
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The objective function (1) maximizes the number of passengers for a transit line using a 
generalized multiple knapsack model; note that each train can be assumed like a backpack 
that may or may not pick up the demand for OD pair trips in their corresponding temporary 
windows. Constraints (2) identify the actual demand according to the number of intermediate 
stations. Constraints (3) prevent the capacity cs  of train s from being exceeded when it stops 
at each station i I∈ .  Constraints (4) imply that if it is decided to pick up travellers from an 
origin–destination pair, the respective service s will have to stop at both stations. Constraints 
(5) indicate the nature of the variables used in the model.

The KP is a classic problem of combinatorial optimization that has been widely studied for 
more than a century (see, for example, [36]). It consists in selecting objects with the objective 
of filling a knapsack so that they provide the greatest profit without exceeding the storage 
capacity of the own knapsack. The MKP is a generalization of the standard KP where, instead 
of considering only a knapsack, it is about filling several knapsacks of different capacities. 
The problem of MKP is strongly NP-complete and, due to its computational complexity, 
the need for using heuristic algorithms for generating good solutions is justified (see, for 
instance, [37]). Previous model can be considered a variant of the MKP model, where each 
service may be assimilated with a different knapsack that stores passengers boarding the train 
from stations, as long as the capacity of the vehicle allows it. 

FIRST PHASE: Taking these precedents into account, we propose the heuristic shown in 
Table 1 for solving the optimization problem in order to determine the most effective deploy-
ment of skip–stop services along the rail corridor.

Once the model is solved, we will obtain a set of optimal solutions (train services) that will 
indicate the stops that each train must make in its corresponding service, in order to globally 
maximize the number of passengers in the transit system. The solutions obtained can be very 
different from each other. but remember that we do not want each service to be different from 
one another in general but to divide the services into type A and type b; so in most cases, 
the optimal solutions obtained from the previous optimization model would not be the final 
solution to our problem, because our skip–stop scheme must only contain two different types 
of services. That is why we must develop a second phase. For that purpose, we propose a 
heuristic which transforms the optimal solutions of the KP into the best possible configura-
tion for our skip–stop problem. 
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SECOND PHASE: The solutions obtained in the first phase are binary sequences where 1 
in the ith position means train stops at stop i and 0, otherwise. From Hamming/rectangular/
Euclidean metrics, we can calculate the matrix W of inter-distances between pair of binary 
sequences. In this way, we can classify the sequences according to a concept of proximity. 
This proximity is one-dimensional in nature. Therefore, we can construct a W matrix of 
inter-distances (from any metric, like Hamming or rectangular or euclidean) between pairs of 
service sequences and, based on the method published by Hall in 1970 (where a spatial inter-
pretation of maximum eigenvectors of the matrix B = D–W is made) [35], we will obtain the 
relative position on the OX axis of the representative points. This relative position will allow 
us to establish a classification of trains and stations in types A and b. Matheuristic shown in 
Table 2 is inspired in the above-mentioned work.

Table 1: Heuristic 1.

1. For each s S∈  do 

 a. Set Y ys
i
s= =( , , , ) ( )1 1 1  

 b. Read matrix ( )pij
s

 c. Compute matrix ( )wij
s  

 d. Set Q s w xij
s

ij
s

j I

j i

i I

( )= ⋅
∈
>

∈
∑∑

 e. For each l I∈  do 

  i While ∑ ∈ ≥s yS l
s 1      [*] and ∑ ∈ ≥i I yi

s 2      [**]

   1. Set yl
s = 0  [parameters nij

s  will change]

   2. Re-compute matrix ( )wij
s  

   3. Set R s w xij
s

ij
s

j I

j i

i I

( )= ⋅
∈
>

∈
∑∑  

   4. If R s Q s( ) ( )>  then Q s R s( ) ( )=  else yl
s =1.

– Prerequisite [*] means that there must be at least one train that stops at station l.
– Condition [**] means that there must be at least two stations where each service s is 

forced to stop.
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THIRD PHASE: Note that coordinates of eigenvector vmax  are values included in interval 
[–1,1]. The ith point corresponding to ith coordinate of vmax  indicates the relative position of 
the ith train service within interval [–1,1]. The observed proximity between points will allow 
us to classify both trains and stations in types A and b. For this third phase, we propose the 
application of the greedy algorithm of comparing and replacing shown in Table 3.

Table 2: Heuristic 2.

STEP 1: Set W = ( )wij  with w yij i
j=

STEP 2: Compute D = ( dij ) as a diagonal matrix such that:
    

d if i jij = ≠0,

    
d wij k

n

ki=∑ =
,

1

 
if i=j

STEP 3: Compute b = D – W

STEP 4: Compute the set of eigenvalues of b and Take only the maximum αmax . 

STEP 5: Compute vmax  eigenvector associated to αmax .

Table 3: Heuristic 3.

STEP 1: Denote by i and j the trains corresponding to the two points farthest from each 
other in the previous distribution. Let train i be included in type A and train j in type b.
STEP 2: For each station k do

– If train i (type A) stops (i.e. is equal to 1 in kth coordinate) and train j doesn’t stop  
(=0 in k) then INCLUDE station k in type A set.

– If train i = 0 and train j=1 in kth coordinate then INCLUDE station k in type b set.
– If train i = 1 and train j=1 in kth coordinate then INCLUDE station k in type Ab set.

STEP 3: For each intermediate train m do

– Compute the number of coincident coordinates with respect to trains i and j.
– Choose, between i and j, the train where a higher number of coincidences was reached 

with m (assume, for example, i) 
– Force coincidences in the binary sequences (changing values 0 to values 1) until 

trains i and m belong to the same type.
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3 COMPUTATIONAL EXPERIENCE 
In order to illustrate the developed methodology, let us suppose a railway corridor with five 
stations where four trains circulate. 

PHASE I. Assume that, as a result of the optimization procedure, the optimal sequence of 
skip–stop operations for the four trains is represented by means the sequences:

s=1: (1,1,0,0,1)
s=2: (0,1,0,1,0)
s=3: (0,1,1,1,0)
s=4: (0,0,1,1,1)

From these data, the distance matrix W between each pair of sequences can be built. For 
Hamming’s distance, the rows of matrix W are the following:

  

( )

( )

( )

( )

1,1,0,0,1

0,1,0,1,0

0,1,1,1,0

0,0,1,1,1

⇒ =W

0 3 4 4

3 0 1 3

4 1 0 22

4 3 2 0













PHASE II. According to the above-mentioned methodology, let us build from W, matrices 
D and B.

  D B D W=













= − =

−11 0 0 0

0 7 0 0

0 0 7 0

0 0 0 9

11 3

;

−− −
− − −
− − −
− − −













4 4

3 7 1 3

4 1 7 2

4 3 2 9

The eigenvalues of matrix b, ordered from highest to lowest, are 14.8482, 11.3273, 7.82446 
and 0. Note that the eigenvalue 0 is always sold by the construction of the matrix b. The 
meaning of each eigenvalue is the value of the objective function, as is referred in [35]. Since 
our interest is the maximization of inter-distances, for better appreciating the existing differ-
ences between binary sequences, we select the maximum eigenvalue (14.8482) and calculate 
its associated eigenvector. The coordinates of this eigenvector provide us the position on the 
OX axis of the four points representative of the binary sequences. 

The eigenvector corresponding to the highest eigenvalue 14.8482 is:
(–0.848468, 0.128783, 0.312184, 0.407501)
which indicates the relative positions of train sequences 1, 2, 3 and 4 on the OX axis. In 

Fig. 2, these four points are graphically represented in interval [–1,1].

Figure 2: Relative positions in segment [–1,1] of four binary sequences associated to trains.
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PHASE III. Note that the transit services, corresponding to the two points farthest from each 
other in Fig. 2, are sequences 1 and 4. Let train 1 be included in type A and train 4 in type b.

According to this initial assignment of trains type A and type b, the stations are classified 
as follows:

 

Train 1 (1,1,0,0,1)

Train 2 (0,1,0,1,0)

Train 3 (0,1,1,1,0)

T

=
=
=

rrain 4 (0,0,1,1,1)

Type A

Type ¿?

Type ¿?

Type B

Station 1: 

=

≡ ⇒

TType A

Station 2: Type A

Station 3: Type B

Station 4: Type B

SStation 5: Type A/B

When the intermediate trains are compared with their prototypes, some modifications are 
required. Since the point corresponding to service 2 is closer to the point corresponding to 
service 4 than the point corresponding to service 1 (see Fig. 2), we must assign type b to 
service 2. To achieve a total match between services 2 and 4, it is necessary to modify both 
the configurations of the sequences of 2 and 4.

 

Train 1 (1,1,0,0,1)

Train 2 (0,1,1,1,1)

Train 3 (0,1,1,1,0)

=
′=
=

TTrain 4 (0,1,1,1,1)

Type A

Type B

Type ¿?

Type B

Station 1:

′=

≡ ⇒

  Type A

Station 2: Type A/B

Station 3: Type B

Station 4: Typee B

Station 5: Type A/B

Similar reasoning can be applied to the point corresponding to service 3. There are initially 
four coordinates that coincide when we compare the binary sequences associated with ser-
vices 3 and 4. To achieve total match, we modify one more coordinate of service 3. 

 

Train 1 (1,1,0,0,1)

Train 2 (0,1,1,1,1)

Train 3 (0,1,1,1,1

=
′ =
′ = ))

Train 4 (0,1,1,1,1)

Type A

Type B

Type B

Type B

Station 1:

′ =

≡ ⇒

  Type A

Station 2: Type A/B

Station 3: Type B

Station 4: Typee B

Station 5: Type A/B

Finally, it is possible to determine an optimal classification of trains and stations for the 
implementation of a skip–stop strategy. 

4 CONCLUSIONS
The skip–stop operation represents a low-cost approach to improve the operation speed into 
transit networks without additional investments in infrastructure are required. A three-phase 
methodology for determining an optimal skip–stop scheme for train schedules has been 
introduced. Matheuristic procedure includes the formulation of a nonlinear integer program-
ming inspired in the MKP, the application of an algorithm adapted from Hall’s method and, 
finally, the implementation of a greedy algorithm of comparing and replacing. To illustrate 
the performance of the proposed procedure, the methodology has been applied to a labora-
tory case. 

As a future research, we propose to generalize the mathematical model by considering the 
possibility of trains not stopping at stations and, additionally, by taking transshipments into 
account, as feature which affects the passenger’s behaviour.
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