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ABSTRACT
An investigation is presented that studies the response of a two-degree-of-freedom dynamic sliding 
system; that is a single-degree-of-freedom oscillator being fi xed on top of a rigid block that can slide 
on its supporting shaking table along a horizontal axis when subjected to unidirectional dynamic or 
earthquake excitations along this horizontal axis. This problem appears to be of interest in  predicting 
the dynamic and earthquake response of superstructures supported on a large foundation block capable 
of horizontal sliding by means of seismic sliding isolators. Special mock-ups are tested at the  shaking 
table of Aristotle University for this purpose utilizing horizontal simulated earthquake excitations 
based on prototype earthquake ground motion recordings. The numerical results, which were obtained 
by a computer software developed for this purpose, are compared with the corresponding experimental 
measurements. The measured acceleration and displacement responses of the mock-ups appear to be, 
in all the examined cases, in reasonably good agreement with the numerical predictions. However, 
in certain cases, the numerically predicted sliding displacement of the rigid block appears to have an 
offset that differs from the sliding response that was observed during the experiments. This is more pro-
nounced when there is no spring linking the rigid block with the shaking table and must be attributed to 
manufacturing tolerances of the mock-ups. It is demonstrated that the developed software, although it 
tries to represent such a rather complex problem in a simplifi ed manner, can be useful at the preliminary 
design stage of structural systems resting on sliding isolators. Results from various experimental and 
numerical tests demonstrate that the oscillator’s response is generally made smaller by the sliding of the 
rigid block. This is true for a wide range of frequencies; however, there is a relatively narrow frequency 
window in which the oscillator’s response is amplifi ed. This frequency window has a peak value that 
is slightly higher than the oscillator’s eigen-frequency when it is considered to be a single-degree-of-
freedom system fi xed at its base.
Keywords: Earthquake excitation, numerical simulation, seismic isolation, measurements, sliding rigid 
block.

1 INTRODUCTION
This paper presents results from an experimental and numerical investigation that studies the 
response of a two-degree-of-freedom (2-D.O.F.) dynamic sliding system; that is a single- 
degree-of-freedom (S.D.O.F.) oscillator being fi xed on top of a rigid block that can slide on 
its supporting shaking table along a horizontal axis as shown in Fig. 1. Aslam et al. [1] dealt 
with the sliding or rocking response of a rigid block (without an S.D.O.F. oscillator)  subjected 
to horizontal and vertical base motions without considering in their analysis the difference 
between the static and dynamic coeffi cients of friction, unlike the present study. They 
 complemented their analysis with a parametric study and a valuable experimental  verifi cation. 
Westermo and Udwadia [2] also studied analytically the sliding dynamic response of a rigid 
block. Shenton et al. [3] dealt with the complex problem of sliding, rocking, and free-fl ight 
dynamic response of a rigid block (without an S.D.O.F. oscillator). They considered in their 
analysis both the static and kinetic coeffi cients of friction as well as two-component  excitation 
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(horizontal and vertical). However, apart from the analytical formulation they did not include 
either a numerical solution or an experimental verifi cation. Virgin et al. [4] studied the 
 rocking and sliding response of a block under horizontal excitation without considering in 
their analysis the difference between the static and dynamic coeffi cients of friction, unlike the 
present study. Demosthenous [5] studied the sliding response of a rigid block considering, as 
does the present study, the static and dynamic coeffi cients of friction. Moreover, he has 
 developed a numerical solution for this problem together with an experimental verifi cation, 
using sinusoidal or simulated earthquake excitations. However, he considered only the rigid 
block without the S.D.O.F. oscillator shown in Fig. 1. He also considered in his formulation 
both the horizontal and vertical components of the excitation. The present study was also 
extended to deal both with the horizontal and vertical components of the excitation. Due to 
laboratory diffi culties, what is presented here is limited at the moment only to the horizontal 
component of the excitation. Moreover, the present study assumes that no rocking occurs 
during sliding [6]. The problem shown in Fig. 1 is studied here numerically as well as exper-
imentally utilizing a special mock-up (Section 6) manufactured and tested at the shaking 
table of Aristotle University. The used horizontal shaking table motions were based on either 
sinusoidal motions, as done by Mostaghel et al. [7], having a variety of frequencies and 
amplitudes or based on horizontal earthquake excitations as done by Mostaghel and 
 Tanbakuchi in their study of the same problem [8]. However, these works did not consider in 
their formulation the difference between the static and dynamic coeffi cients of friction, unlike 
the present study. Moreover, they dealt only analytically with the problem of Fig. 1, by 
employing actual recordings of prototype earthquake ground motions, as done in this paper, 
without, however, any experimental validation. In the present study, the laboratory simula-
tions of these recordings were measured exactly during testing, and they were used exactly as 
measured in the subsequent verifi cation of the numerical simulation where the numerical 
predictions are compared with the measured response. The problem of Fig. 1 is of interest in 
predicting the dynamic and earthquake response of superstructures on a large foundation 
block supported on seismic sliding isolators. Krishnamoorthy and Parikh [9] studied the 
effect of sliding on multi-story frames, considering the constant coeffi cient of friction. 
 Usually, the superstructure, the foundation, and the sliding isolators are numerically  simulated 
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Figure 1: Layout of the problem.
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with complex three-dimensional (3D) models that may result in cumbersome numerical 
 analyses when seeking optimum solutions. The present simplifi ed numerical treatment aimed 
at facilitating this preliminary design stage. Moreover, concern has been voiced on modeling 
real sliding conditions. Higashino et al. [10] performed a laboratory and in situ study 
 concerned mainly with the durability of sliding isolators and the variability of friction-sliding 
characteristics with time. The infl uence of the actual sliding conditions are taken into account 
and discussed here by comparing the numerical predictions with laboratory measurements.

2 PROBLEM LAYOUT
Figure 1 shows a rectangular rigid block (Block) initially resting on the fl at horizontal steel 
platform of a shaking table (Fig. 1, called Table). A linear single-degree-of-freedom  oscillator 
is fi xed on the upper surface of the Block (Fig. 1, called S.D.O.F.). The shaking table moves 
only in one horizontal direction, thus subjecting the system to uni-directional horizontal 
excitations. Block movement affects the movement of the S.D.O.F. and vice versa. The 
 contact area between the Block and the shaking table is a horizontal plane where Coulomb 
friction develops; [µst ⋅ (M1 + M2) ⋅ g is the static friction force and µd ⋅ (M1 + M2) ⋅ g is the 
dynamic friction force]. The Block of mass M1 is linked to the shaking table with a horizon-
tal spring of stiffness K1 and a horizontal damper of damping coeffi cient C1. The S.D.O.F. has 
stiffness K2 and a coeffi cient of damping C2. Pure horizontal motion for the S.D.O.F. is 
assumed. With respect to a fi xed coordinate system x and y, the motion of the shaking table 
is defi ned by the displacement U(t), whereas the corresponding displacement of the Block is 
X1(t) and that of the S.D.O.F. is X2(t). The velocity and acceleration of the shaking table, the 
Block, and the S.D.O.F. are

 ( )U t&  and ( )U t&& , ( )1X t&  and ( )1X t&& , and ( )2X t&  and ( )2X t&& , respec-
tively. The sliding Block displacement (relative to the shaking table) is equal to

 
U(t) – X1(t). 

The forces that arise in the system are the following; Fine1 is the inertial force of the Block, 
Fine2 is the inertial force of the S.D.O.F., Fspr1 is the force at the Spring 1, Fspr2 is the force at 
the Spring 2 (S.D.O.F. restoring force), Fdam1 is the force at the Damper 1, Fdam2 is the force 
at the Damper 2 (S.D.O.F. damping force), and Ffr is the  Coulomb friction force that, when 
the Block moves with the shaking table, can take a value from zero to µst ⋅ (M1 + M2) ⋅ g, 
whereas when the Block slides on the shaking table, it takes the value of µd ⋅ (M1 + M2) ⋅ g. 
Generally, positive direction to the right and negative to the left is  supposed. Rocking 
 phenomena at the Block-Table interface are not investigated here.

3 SLIDING DYNAMIC RESPONSE OF THE RIGID BLOCK ALONE
A simplifi ed version of this problem is shown in Fig. 2. where no S.D.O.F. is placed on 
top of the Block. All the parameters with the relevant symbols given in Section 2 are also 
valid here. The forces that arise in this rigid block – shaking table dynamic system [11] are 
shown in Fig. 2.

A special mock-up has been constructed that represents physically the previously stated 
problem (Fig. 2). It consisted of a rectangular steel block with dimensions 430 mm × 430 mm 
in plan and a height either 205 mm or 410 mm (upper part of Fig. 2). This Block was simply 
resting on the steel platform of the shaking table (lower part of Fig. 2) and was restrained in 
all other directions so that it could move only in the longitudinal horizontal direction. The 
mass of this sliding Block was either 124 kg or 248 kg. The various important physical 
parameters for this Block sliding response are measured [12], e.g. the coeffi cients of friction 
at the contact surface between the Block and the shaking table and the stiffness of the elastic 
spring. A special series of tests were performed in order to determine the coeffi cient of 
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 friction of the contact surface between the sliding Block and the shaking table. This surface 
was machined in a special way so that full contact conditions could be ensured between the 
sliding Block and the steel platform of the shaking table. Moreover, this contact surface was 
lubricated throughout all experimental sequences [12]. The frequency of the cyclic 
 displacements during these tests varied from 0.1 Hz to 1.0 Hz. The average values for the 
coeffi cient of friction found from these tests are listed below; they were found not to depend 
on the  frequency of the excitation. A total of 10 tests were performed. When the Block’s mass 
was equal to 124 kg, the values of the friction coeffi cient were: µst = 0.165, µd = 0.153. When 
the Block’s mass was equal to 284 kg, the values of the friction coeffi cient were: µst = 0.158, 
µd = 0.136.

Another series of tests were conducted in order to accurately measure the stiffness K1 of 
the spring that was employed to link the Block to the shaking table. As was done for measur-
ing the coeffi cient of friction, during the tests for measuring the spring stiffness, the frequency 
of the cyclic displacement was varied from 0.1 Hz to 1.0 Hz. The stiffness of the certifi ed 
spring with no pre-stress had an average value K1 = 128.6 kN/m. The stiffness of the certifi ed 
spring with pre-stress had an average value K1 = 143.0 kN/m. The stiffness of the non- 
certifi ed spring with pre-stress had an average value K1 = 19.4 kN/m. There was no viscous 
damper used in this mock-up.

3.1 Governing relationships and numerical solution

The following relationships, (1) to (4), govern the sliding of the Block that is linked with 
a spring (K1) and a damper (C1) to the shaking table when it is subjected to horizontal 
 acceleration. Starting from an initial condition of no motion, in order for the Block to start 
sliding, the shaking table acceleration must exceed the value given by the following 
 inequality (1)

ine 1 1F M X= − ⋅
r

&& , the inertia force

( )spr 1 1F K U X= ⋅ −
r

, the spring force

( )dam 1 1F C U X= ⋅ −
r

& & , the damping force

fr d 1F M g= ±μ ⋅ ⋅
r

, the friction force during sliding

fr st 1F M g= ±μ ⋅ ⋅
r

, the friction force when no sliding occurs

Figure 2: Layout of the mock-up of the sliding Block alone without the S.D.O.F. on top.
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 stU(t) g> μ ⋅&&  (1)

In this case, the Block acceleration will be given by eqn (2):

 
( ) ( ) ( )1 1

1 d 1 1 1
1 1

K C
X (t) g sgn U(t) X (t) U(t) X (t) U(t) X (t)

M M
⎡ ⎤= μ ⋅ ⋅ − + ⋅ − + ⋅ −⎣ ⎦

&& & & & &  (2)

When the Block is sliding, it is continuously checked for reattachment to the shaking table by 
examining the absolute value of its velocity relative to the shaking table. If the value of the 
velocity of the Block relative to the shaking table becomes equal to zero and inequality (3) 
holds, the Block will keep sliding.

 
( )1

1 1 st
1

K
If U(t) X (t) and U(t) U(t) X (t) g

M
− = 0 − ⋅ − > μ ⋅& & &&  (3)

If the value of the velocity of the Block relative to the shaking table becomes equal to zero 
and inequality (4) holds, the Block is reattached to the shaking table.

 
( )1

1 1 st
1

K
If U(t) X (t) and U(t) U(t) X (t) g

M
− = 0 − ⋅ − ≤ μ ⋅& & &&  (4)

The above conditions are included in computer software that utilizes a time step-by-step 
integration process incorporating an iteration scheme to reach acceptable limits of 
 convergence. In this step-by-step integration process, eqns (5) and (6) are used for defi ning 
the velocity and displacement of the Block at time step ti.

 
( )i i 1 i 1 i

tX(t ) X(t ) X(t ) X(t )
2− −
Δ

= + + ⋅& & && &&  (5)

 
( )i i 1 i 1 i

tX(t ) X(t ) X(t ) X(t )
2− −
Δ

= + + ⋅& &  (6)

This computer software was next validated (Section 3.2) by numerically simulating the 
dynamic sliding response of the tested Block and by comparing the response measured in 
the laboratory with the corresponding numerical predictions. In this numerical simulation, all 
the important physical parameters of the problem at hand, such as the friction coeffi cients, 
spring stiffness, Block mass, and the shaking table motion, are the input to this computer 
software with values found from the laboratory measurements. Thus, the measured sliding 
response of the mock-up could be directly compared to numerical predictions made by this 
developed computer software.

3.2 Comparison between experimental measurements and numerical predictions

3.2.1 Test employing sinusoidal excitation 3.5 Hz with certifi ed spring
The comparison between predicted and measured Block acceleration and sliding  displacement 
response is presented in Fig. 3a and b, respectively. As can be seen in these fi gures, good 
agreement is obtained between predicted and measured response.
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3.2.2 Test employing a simulated earthquake excitation with certifi ed spring
The comparison between predicted and measured Block acceleration and sliding  displacement 
response is presented in Fig. 4a and b. The Block is linked to the shaking table with the 
 certifi ed spring (with pre-stress). This time the excitation is a simulated earthquake motion, 
based on the Kern Country 1953 prototype earthquake horizontal acceleration recording. As 
can be seen, good agreement is obtained between predicted and measured Block acceleration 
response (Fig. 4a). One of the important design parameters in base  isolation schemes  utilizing 
sliders is the sliding displacement. Choia and Tung [13]  performed a parametric study on the 
sliding displacement using many earthquake records. The sliding displacement response will 
be particularly studied and discussed in this paper. The predicted Block sliding displacement 
response correlates reasonably well with the one measured in the laboratory in the time 
domain. Moreover, the predicted sliding displacement response, in terms of amplitude, is in 
reasonable agreement with the one measured in the laboratory (Fig. 4b).

3.2.3 Test employing sinusoidal excitation 1.5 Hz without spring
The comparison between predicted and measured Block acceleration and sliding  displacement 
response is again presented in Fig. 5a and b. The Block this time is resting on the shaking 
table without any spring link attachment. The excitation of the shaking table is sinusoidal at 
1.5 Hz. As can be seen, good agreement is obtained between predicted and measured Block 
acceleration response. The predicted Block sliding displacement response correlates 
 reasonably well with the one measured in the laboratory in the time domain. However, the 

Figure 3:  (a) Table (Ground) and Block (observed and predicted) acceleration response. 
(b) Sliding displacement of the Block relative to the shaking table.

Figure 4:  (a) Table (Ground) and Block (observed and predicted) acceleration response. 
(b) Sliding displacement of the Block relative to the shaking table.
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predicted sliding displacement response, in terms of amplitude, is signifi cantly larger than the 
one measured in the laboratory. It is interesting to note that the cumulative sliding  displacement, 
which appears as an offset from the initial zero displacement condition in the measurements, 
is not predicted by the software. This measured cumulative (offset) sliding displacement 
response may be attributed to manufacturing tolerances, whereby the contact surface between 
the Block and the shaking table deviates from the ideal horizontal plane.

3.2.4 Test employing simulated earthquake excitation without spring
The comparison between predicted and measured Block acceleration response is presented in 
Fig. 6a, whereas the predicted Block sliding response is presented in Fig. 6b. The Block is 
resting on the shaking table without employing any spring attachment; however, this time a 
simulated earthquake excitation is used. As can be seen, good agreement is obtained between 
the predicted and measured Block acceleration response. The predicted Block sliding 
 displacement response correlates reasonably well with the one measured in the laboratory in 
the time domain as well as in terms of maximum amplitude. It is again interesting to note that 
there is a cumulative sliding displacement that appears as an offset from the initial zero 
 displacement condition in the predicted response that is much larger than the one observed 
during the experiment. This deviation between predictions and measured sliding  displacement 
response may be again attributed, as was done before, to manufacturing tolerances, whereby 
the contact surface between the Block and the shaking table deviates from the ideal  horizontal 
plane. This may result in somewhat larger maximum friction force in one direction than the 
maximum friction force in the opposite direction.

Figure 5:  (a) Table (Ground) and Block (observed and predicted) acceleration response. 
(b) Sliding displacement of the Block relative to the shaking table.

Figure 6:  (a) Table (Ground) and Block (observed and predicted) acceleration response. 
(b) Sliding displacement of the Block relative to the shaking table.
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The numerical predictions presented in this section confi rm all behavioral observations of 
the studied Block sliding response, as recorded during this extensive experimental sequence. 
Deviations between predicted and measured maximum and cumulative sliding displacement 
response are considerably reduced when a spring connects the rigid block with the shaking 
table. Inverted pendulum sliding isolators, apart from sliding, possess such a spring  balancing 
force property [14–16]. Based on these observations, the investigation is next extended to 
deal with the more complex dynamic system described in Section 2; that is the 2-D.O.F. 
 system (Fig. 1), where an S.D.O.F. is fi xed on top of the sliding block.

4 GOVERNING RELATIONSHIPS OF THE 2-D.O.F. SYSTEM
The governing relationships of the 2-D.O.F. sliding system described in Section 1 are 
stated here. These are an extension of the relationships given in Section 3.1 for the sliding 
Block alone.

a.  When the Block is initially attached to the Table, it is 1 1 1X U,  X U,  X U= = =& & && && . Sliding 
will start when the inequality (7) becomes valid:

 spr1 dam1 ine1 ine2 frF F F F F+ + + > ⇒
r r r r r

 (7)

The dynamic equilibrium of the S.D.O.F alone (Section A-A, Fig. 1) results in the following:

 ( ) ( )1 1 2 1 2 2 1 2 st 1 2M X K X X C X X (M M ) g⋅ + ⋅ − + ⋅ − > μ ⋅ + ⋅&& & &  (8)

b. When the Block is sliding from this initial condition, eqns (9) and (10) are valid:

x spr2 dam2 ine2F 0 F F F 0Σ = ⇒ + + = ⇒
r r r r

 (Section A-A, Fig. 1)

 
( ) ( )2 2

2 1 2 1 2
2 2

C
X X X X

M
Κ

Χ = ⋅ − + ⋅ −
Μ

&& & &  (9)

x spr1 dam1 ine1 ine2 frF 0 F F F F F 0Σ = ⇒ + + + + = ⇒
r r r r r r

 (Section B-B, Fig. 1):

 
( ) ( ) ( )1 1 2 1 2

1 1 1 2 d 1
1 1 1 1

K C M M M
X U X U X X g sgn U X

M M M M
+

= ⋅ − + ⋅ − − ⋅ + μ ⋅ ⋅ ⋅ −&& & & && & &  (10)

From eqns (9) and (10), acceleration of the Block is given by eqn (11):

( ) ( ) ( ) ( )1 1 2 2 2
1 1 1 1 2 1 2

1 1 1 2 2

K C M K C
X U X U X X X X X ,

M M M M M
⎡ ⎤

= ⋅ − + ⋅ − − ⋅ ⋅ − + ⋅ −⎢ ⎥
⎣ ⎦

&& & & & &

 
( )1 2

d 1
1

M M
g sgn U X

M
+

+μ ⋅ ⋅ ⋅ −& &  (11)

c.  When the Block is reattached to the Table it is 1 1X U,  X U= =& & && && . In this case, the acceler-
ation of the S.D.O.F. is given by eqn (12). It must be noted that the Block has been 
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moved on the Table to a position that will be, in general, different from the initial posi-
tion of step (a). Thus, the force at spring 1 will have a non-zero value.

x spr2 dam2 ine2F 0 F F F 0Σ = ⇒ + + = ⇒
r r r r

 (Section A-A, Fig. 1)

 
( ) ( )2 2

2 1 2 1 2
2 2

C
X X X X

M
Κ

Χ = ⋅ − + ⋅ −
Μ

&& & &  (12)

d  While the Block is reattached to the Table, it is 1 1X U,  X U= =& & && && . Sliding will start again 
when the inequality (13) becomes valid:

 spr1 dam1 ine1 ine2 frF F F F F+ + + > ⇒
r r r r r

 (13)

The dynamic equilibrium of the S.D.O.F alone (Section A-A, Fig. 1) results in the following:

 ( ) ( ) ( )1 1 1 1 2 1 2 2 1 2 st 1 2K U X M X K X X C X X (M M ) g⋅ − − ⋅ − ⋅ − − ⋅ − > μ ⋅ + ⋅&& & &  (14)

The above governing equations are utilized in the numerical investigation that is presented in 
Section 5. These equations will take a somewhat simpler form when there is no spring 1 and 
damper 1 than the more general case, which was considered here and corresponds to the 
general layout of the problem depicted in Fig. 1. This relatively simple layout without spring 1 
and damper 1, representing a simplifi cation of the general layout shown in Fig. 1, was  utilized 
in the experimental investigation to be discussed next in Section 6.

5 NUMERICAL INVESTIGATION OF THE 2-D.O.F. SYSTEM
The relationships given in Section 4 are the governing differential equations as well as the 
inequalities that defi ne the sliding slip-stick behavior of the 2-D.O.F. dynamic system under 
consideration, when it is subjected to unidirectional horizontal U(t)&&  acceleration at its base. 
These governing relationships represent the most general case for the sliding behavior of 
such a 2-D.O.F. system [2,3,7–9,12]. These governing relationships are included in a 
 computer software with the logical diagram shown in Fig. 7. The solution is reached utilizing 
a step-by-step time integration process, which is also part of this software.

Figure 7: Flow chart of the numerical solution.
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Starting from an initial condition of no motion, the solution proceeds with this step-by-step 
time integration process checking through the governing relationships at each time step (i-1). 
This is done by considering all known parameters of the problem at this step, in order to 
predict the condition, either slip or stick, of the next step (i) as well as all response parameters 
at this step. 

The following simple numerical integration eqns (15) and (16) are utilized for calculating 
the velocity and displacement at a time step t1:

 
( )i i 1 i 1 i

tX(t ) X(t ) X(t ) X(t )
2− −
Δ

= + + ⋅& & && &&  (15)

 
( )i i 1 i 1 i

tX(t ) X(t ) X(t ) X(t )
2− −
Δ

= + + ⋅& &  (16)

At each step (i-1) a number of (j) iterations are performed in order to predict the acceleration 
of the next time step (i) for either block ( )1X i&&  or the S.D.O.F. ( )2X i&& . These target accelera-
tions are found by introducing a parameter δ, which is set to a relatively very small value (e.g. 
δ = 0.00001 m/s2). The following inequalities (17) and (18) are then utilized as a convergence 
criterion included in the software for a given set of consecutive iterative solutions j-1 and j:

 
j j 1

1 1X (i) X (i)−− ≤ δ&& &&  (17)

 
j j 1

2 2X (i) X (i)−− ≤ δ&& &&  (18)

Ideally, both these inequalities (17) and (18) must be valid in order to satisfy the  convergence 
of this process and stop at iteration (j) adopting the acceleration values block j

1X (i)&&  or 
S.D.O.F. j

2X (i)&&  as the fi nal values for time step (i). Normally, about six iterations are  suffi cient 
to predict the acceleration at a time step (i) with such accuracy (δ). This  convergence criterion 
is usually satisfi ed when the value for δ = 0.00001 m/s2 is larger than the round-off accuracy 
of the numbers inherent in the numerical solution. An instability in this convergence process 
is observed only when the Block slides during time step (i-1) and the sign of the relative 
velocity between the Block and the shaking table predicted at iteration step (j) for time step 
(i), ( )( )j j

1sgn U i X (i)−& & , is the opposite of the corresponding sign of this relative velocity 
predicted for time step (i) at iteration step (j-1), ( )( )j 1 j 1

1sgn U i X (i)− −−& & . This  instability in the 
convergence of the numerical solution is dealt with by performing for time step (i) at every 
iteration step (j) a check of the governing equations that will prove that there is either a stick 
condition or a sliding condition.

6 EXPERIMENTAL INVESTIGATION OF THE 2-D.O.F. SYSTEM
A special mock-up has been constructed (Fig. 8a), which represents the dynamic system 
depicted in Fig. 1. This mock-up consists of a steel block, with dimensions 0.33 m × 0.53 m 
× 0.53 m and mass equal to 325 kg. At the upper side of this Block, a vertical rod is fi xed that 
supports on its top a steel mass varying during the test sequence having values equal to 45 kg, 
90 kg, or 201 kg. The steel rod diameter was equal to 14 mm or 20 mm. The mass of the steel 
rod is negligible compared to the steel mass being supported at its top. This steel mass– 
vertical steel rod cantilever represents an S.D.O.F. oscillator (Fig. 8a and b). The  vertical 
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distance from the center of the mass of the S.D.O.F. up to the upper side of the block, e.g. the 
plane where the S.D.O.F. is presumed fi xed, was set equal to 0.44 m or 0.76 m. Through the 
variation of the mass of the oscillator, and of the diameter and/or height of the steel rod, 
the eigen-frequency of this S.D.O.F. could take values equal to 1.125 Hz, 1.625 Hz, 1.75 Hz, 
2.15 Hz, or 2.65 Hz. The whole dynamic system, that is the S.D.O.F. and the  supporting 
Block, was simply resting on the horizontal plane of the shaking table steel  platform utilizing 
a roller- bearing device placed at the contact surface between the bottom side of the Block and 
the upper side of the shaking table (Figs 1 and 8b).

As shown in Fig. 8b, the shaking table can move horizontally only in the North-South 
direction. The Block, through the roller-bearing support could also slide in this  longitudinal 
(North-South) horizontal direction, whereas it was constrained against movement in the 
transverse horizontal direction (East-West) by special lateral displacement roller ties 
employed for this purpose. Two distinct types of horizontal motions were introduced to 
excite the studied dynamic system. The fi rst type of shaking table motion was a horizontal 
 sinusoidal excitation with a frequency varying during tests from 1 Hz to 3.4 Hz and with 
amplitudes varying during tests from 0.1 m/s2 to 5 m/s2. The frequency and amplitude of 
this horizontal sinusoidal excitation was kept constant during each test. The second type of 
shaking table motion was a horizontal excitation that was a laboratory simulation based on 
the actual  horizontal recording of one of the horizontal components of the prototype Kern 
County  California 1953 earthquake. All the physical quantities entering into the problem, 
such as the mass of the Block, the mass of S.D.O.F., the coeffi cients of friction of the 
 roller-bearing device, the damping coeffi cient of the S.D.O.F. were measured before the 
experimental sequence commenced. The results reported here were obtained with a 
mock-up having  neither a spring nor a viscous damper connection between the Block and 
the shaking table (Figs 1 and 8b). Care was taken during the test sequence to prohibit any 
rocking and uplift of the Block from the supporting roller bearing. A total of 150 sliding 
tests were performed. In order to defi ne the coeffi cients of friction of the roller-bearing 
device, special sliding tests were performed when mass M1 of the block was equal to 
325 kg. The value for static coeffi cient of friction was found equal to 0.020 and that for the 
dynamic coeffi cient of friction equal to 0.012. The equivalent viscous damping ratio of the 
S.D.O.F. had a relatively small value of the order of 1% of critical damping. A number of 

Figure 8:  (a) Laboratory mock-up. (b) Instrumentation for measuring the excitation as well as 
the response of the mock-up.
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displacement, velocity, and acceleration sensors were provided in order to accurately 
record the characteristics of the exciting shaking table motion as well as the response of 
both the Block at the center of its mass, its upper side, as well as at the center of the mass 
of the S.D.O.F. (Fig. 8a and b). A set of displacement transducers recorded the  displacement 
of the shaking table, the Block, and the S.D.O.F. with respect to a motionless coordinate 
system. In addition, the sliding displacement of the Block (relative to the  shaking table) 
was also measured directly by an additional sensor (Fig. 8b). An automatic data acquisition 
system with a sampling rate suffi cient for accurately  measuring the  excitation and the 
response was utilized during testing.

7 COMPARISON BETWEEN EXPERIMENTAL MEASUREMENTS AND 
NUMERICAL PREDICTIONS FOR THE 2-D.O.F. SYSTEM

The computer software presented in Section 5 was next validated by numerically simulating 
the dynamic sliding response of the 2-D.O.F. system of Section 6 and by comparing the 
response measured in the laboratory with the corresponding numerical predictions. Selective 
numerical results are presented here and compared with the corresponding experimental 
measurements. Subsection (7.1) includes results obtained from tests employing sinusoidal 
excitation, whereas Subsection (7.2) includes results obtained from tests employing  simulated 
earthquake excitations.

7.1 Sinusoidal excitation response

In every test the values of mass of the Block (M1) as well as of mass of the S.D.O.F. (M2) 
are stated; moreover, the values of the eigen-frequency of the S.D.O.F. together with that of 
 frequency of the sinusoidal horizontal excitation are noted. Figures 9a to 9d depict the 

Figure 9:  (a) Table (Ground) and Block (observed and predicted) acceleration response. 
(b) Table (Ground) and S.D.O.F. (observed and predicted) acceleration response. 
(c) Sliding displacement of the Block (predicted and observed). (d) Displacement 
of the S.D.O.F. relative to the Block (predicted and observed).
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 numerical predictions and the experimental measurements for a test with sinusoidal 
 excitation of 1 Hz when the eigen-frequency of the S.D.O.F. was 1.625 Hz (M1 = 325 kg and 
M2 = 45 kg). As can be seen in Fig. 9a and b, due to sliding of the rigid block, the accelera-
tion response of either the Block (Fig. 9a) or the S.D.O.F. (Fig. 9b) are relatively small with 
no noticeable amplifi cation when compared to the acceleration of excitation. As can be seen 
in these  fi gures, the numerical prediction of either the Block acceleration response (Fig. 9a) 
or the S.D.O.F. acceleration response (Fig. 9b) are in reasonably good agreement with the 
corresponding experimental measurements. Similarly, good agreement can also be observed 
between the numerical predictions and experimental measurements of the Block sliding 
displacement response (Fig. 9c) or the displacement response of the S.D.O.F. relative to the 
Block (Fig. 9d). It must be underlined here that the acceleration of the excitation, as recorded 
by the  acceleration sensor placed on the shaking table (Figs 8a and 8b), was directly used as 
input in the software described in Section 5. 

Similar comparison between numerical predictions and measurements can be seen in Figs 
10a to 10d. This time, due to the increase of the mass of the S.D.O.F. from 45 kg to 201 kg, 
the value of the S.D.O.F. eigen-frequency is equal to 1.125 Hz, which is quite close to the 
excitation frequency that remains the same as before (1.0 Hz). Good agreement can also 
be observed between the numerical predictions and experimental measurements of both the 
response of the Block and of the S.D.O.F. (Fig. 10a–d). If sliding was not allowed (fi xed 
Block) for such an S.D.O.F. system with viscous damping ratio value of the order of 1%, the 
S.D.O.F. acceleration response would be expected to have an amplifi cation value of the order 
of 4.22 compared to the acceleration of the excitation. Due to sliding of the rigid Block 
(Fig. 10c), the acceleration response of either the Block (Fig. 10a) or of the S.D.O.F. (Fig. 10b) 
do not exhibit noticeable amplifi cation when compared to the acceleration of the excitation, 

Figure 10:  (a) Table (Ground) and Block (observed and predicted) acceleration response. 
(b) Table (Ground) and S.D.O.F. (observed and predicted) acceleration response. 
(c) Sliding displacement of the Block (predicted and observed). (d) Displacement 
of the S.D.O.F. relative to the Block (predicted and observed).
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despite the fact that the excitation frequency is quite close to the eigen-frequency of the 
S.D.O.F. The displacement of the S.D.O.F. relative to the Block attains maximum value of the 
order of 11 mm (Fig. 10d), which is larger than the corresponding value during the previous 
test (6.5 mm, Fig. 9d).

Figures 11a to 11d depict the numerical predictions and the experimental observations for 
a test with sinusoidal excitation of 2.984 Hz when the eigen-frequency of the S.D.O.F. was 
2.687 Hz (M1 = 325 kg and M2 = 201 kg). Good agreement can be observed between the 
numerical predictions and experimental measurements of the response of the Block as well 
as the S.D.O.F. (Figs 11a–11d). If sliding was not allowed (fi xed Block), for an S.D.O.F. 
system with viscous damping ratio value of the order of 1%, the S.D.O.F. acceleration 
response would be expected to have an amplifi cation value of the order of 4.27 compared to 
the acceleration of the excitation. Due to sliding of the rigid Block (Fig. 11c), the acceleration 
response of either the Block (Fig. 11a) or the S.D.O.F. (Fig. 11b) do not exhibit noticeable 
amplifi cation when compared to the acceleration of the excitation, despite the fact that the 
excitation frequency is quite close to the eigen-frequency of the S.D.O.F. As also discussed 
in Section 2.4, it is interesting to note that the cumulative sliding displacements that appear 
as an offset from the initial zero displacement condition is successfully reproduced by the 
predicted response only in some cases (Fig. 10c) and not in other cases (Figs 9c and 11c). 
Possible explanations that are given for this are manufacturing tolerances, where the contact 
surface between the Block and the shaking table deviates from the ideal horizontal plane, thus 
resulting in somewhat larger maximum friction force in one direction than the maximum 
friction force in the opposite direction, as well as the integration scheme that is included in 
the computer software.

Figure 11:  (a) Table (Ground) and Block (observed and predicted) acceleration response. 
(b) Table (Ground) and S.D.O.F. (observed and predicted) acceleration response. 
(c) Sliding displacement of the Block (predicted and observed). (d) Displacement 
of the S.D.O.F. relative to the Block (predicted and observed).
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7.2 Simulated horizontal earthquake excitations

Figures 12a to 12d depict the numerical predictions and the experimental observations for a 
test with simulated earthquake excitation, based on the prototype Kern County 1953  prototype 
earthquake horizontal acceleration recording.

The comparison between numerical predictions and experimental measurements in the 
case of simulated earthquake excitation is similar to the one commented upon in Section 6.1 
for the sinusoidal excitation. Reasonably good agreement between measured and predicted 
response for both the Block and the S.D.O.F. can be seen in Figs 12a to 12d. 

8 CONCLUSIONS
An investigation has been presented that studies the response of a 2-D.O.F. dynamic sliding 
system; that is an S.D.O.F. oscillator being fi xed on top of a Block resting on a support that 
can slide along a horizontal axis. The response of this system is studied when subjected to 
unidirectional dynamic or earthquake excitations along this horizontal axis. This problem 
appears to be of interest in predicting the dynamic and earthquake response of superstruc-
tures supported on a large foundation block capable of horizontal sliding by means of seismic 
sliding isolators. Special mock-ups are tested in the present study at the shaking table of 
Aristotle University for this purpose utilizing horizontal simulated earthquake excitations 
based on prototype earthquake ground motion recordings. Moreover, numerical results were 
obtained by a computer software developed for this purpose. They are compared with the 

Figure 12:  (a) Table (Ground) and Block (observed and predicted) acceleration response. 
(b) Table (Ground) and S.D.O.F. (observed and predicted) acceleration response. 
(c) Sliding displacement of the Block (predicted and observed). (d) Displacement 
of the S.D.O.F. relative to the Block (predicted and observed).
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corresponding experimental measurements. The following conclusions can be drawn based 
on the presented material and the preceding discussion:

•  The numerical predictions confi rm all the behavioral observations recorded during the 
 experimental sequence. Due to rigid block sliding, the acceleration response of the rigid 
block or the S.D.O.F., which is an oscillator with a relatively very low damping ratio 
value, does not exhibit noticeable amplifi cation when compared to the acceleration of the 
 excitation, despite the fact that the excitation frequency is quite close to the  eigen-frequency 
of the S.D.O.F. 

 • The numerically predicted rigid block and S.D.O.F. acceleration response is in good 
agreement with the measured values for all examined cases for both the sinusoidal and the 
simulated earthquake horizontal excitation of the shaking table.

 • The predicted rigid block sliding displacement response exhibited, in some cases, good 
agreement with the measured values. However, in other cases, signifi cant deviation 
could be observed between the predicted and measured rigid block sliding displacement 
 response values. The cumulative sliding rigid block displacement, that appears as an offset 
from the initial zero displacement condition, is successfully reproduced by the predicted 
response only in some cases. 

 • These deviations may be attributed to the actual sliding conditions due to manufacturing 
tolerances of the used mock-ups, whereby the contact surface between the rigid block and 
the shaking table deviates from the ideal horizontal plane. These actual sliding conditions 
result in somewhat larger maximum friction force in one direction than the maximum 
 friction force in the opposite direction. 

 • The observed discrepancies between the measured and numerically predicted maximum 
sliding and cumulative sliding displacement response values may also be due to the 
 integration scheme included in the computer software. 

 • These deviations between predicted and measured maximum and cumulative sliding 
 displacement response are considerably reduced with the presence of a spring  connecting 
the rigid block with the shaking table. Inverted pendulum sliding isolators, apart from 
 sliding, possess such a spring balancing force property.

 • It is demonstrated that the developed software can yield reasonably accurate predictions 
of the dynamic and earthquake response of the examined 2-D.O.F. sliding system. It can 
thus be utilized, in this simplifi ed manner, for the preliminary design of the earthquake 
response of complex structural systems resting on sliding seismic isolators.
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