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abstract
the use of low-cost devices for air quality monitoring is rapidly growing, and the reason behind the 
growth might (at least partially) be the real-time monitoring at a lower fixed and operating cost, ease of 
use and portability. nevertheless, the poor data reliability of low-cost sensors (lcs) remains a consid-
erable challenge, especially when deployed in real-world conditions. this study aimed to evaluate and 
improve the performance of two commercially available indoor air quality monitoring lcs devices: 
airvisual pro and urad monitor a3 (urad), which were used to monitor cO

2
 via non-dispersive 

infrared technology. the analysis took place from june to july 2019 in several classrooms of an urban 
school in porto city. machine learning techniques such as multivariate linear, support vector, gradient 
boosting and XGboost regression models were used to perform an on-field calibration for improving 
the data accuracy of the devices. the results showed that although both the devices showed a strong 
linear correlation (r > 0.9) with the reference device, they might indicate deviated cO

2
 concentrations if 

used in their advertised plug and play format. specifically, urad showed a steady offset compared to 
the reference values, while airvisual pro showed lower deviations than urad. the on-field calibration 
models improved the reliability and showed low root mean square error values (around 30 mg/m3) and 
a high coefficient of determination (0.99).
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1 intrOductiOn
the air quality sensor market is growing rapidly, with many companies today working on 
developing low-cost sensors (lcs), devices and networks [1]. in this rapidly growing market, 
lcs technology can be observed to be in a unique position of being a relatively new technol-
ogy and fuelling a paradigm shift in air quality monitoring due to the inherent advantages 
that it delivers [2]. 

 their low-cost, portability, ease of use and real-time monitoring capability allow for novel 
opportunities in air pollution monitoring, which are not possible with traditional monitoring 
methods [3]. citywide sensor networks for ambient environments and real-time monitoring 
in indoor environments such as homes, schools, hotels are possible with cheap and ubiquitous 
lcs. However, the design compromises leading to the cheap cost of lcs remain a largely 
unresolved issue. these sensors suffer from cross-sensitivity, have a short lifetime [4], exhibit 
drift in calibration over time and are sensitive to changes in ambient conditions [5, 6], and 
present inter-sensor variability [7]. these issues lead to weak data reliability of lcs, which 
is one of the biggest challenges facing lcs technology. 

 while there have been many sensor performance and calibration studies related to lcs 
used for outdoor air quality monitoring [5, 8–11], the studies evaluating the performance 
of commercially available lcs devices for indoor air quality monitoring are not so ubiqui-
tous. thus, the present study aimed to assess the performance of two commercially avail-
able lcs devices in a real-world indoor environment setting, measuring cO

2
 concentrations. 
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moreover, calibration models using supervised machine learning (ml) using lcs devices 
and reference grade instruments were performed.

2 metHOdOlOGy

2.1 deployed devices

the monitoring campaign was carried out in a nursery and a primary school in porto city, 
portugal. the monitoring devices were deployed in six different school classrooms from 3 
june 2019 to 8 july 2019. table 1 shows the commercially available lcs devices airvisual 
pro [12] and urad monitor model a3 (urad) [13] that were deployed with the research-
grade device used as the reference instrument.

apart from cO
2
 measurements, all of the devices also measure temperature and  humidity, 

data that was also used. both the lcs devices used non-dispersive infrared based cO
2
 

 sensors: urad contains a winsen mH-Z19b sensor while the sensor for airvisual was not 
mentioned in their technical specifications. demanega et al. [14] used air visual pro among 
several other lcs devices to perform a comparative assessment of lcs devices stated that 
it contains a senseair s8 or lp8 sensor. the researchers of this study did no prior lab cali-
bration, and the sensor’s performance was analysed with the factory settings (used in their 
advertised plug and play format). 

2.2 device performance

the acquired data showed several null data points and blank/missing values for urad. 
blank/missing values were removed commonly for all datasets, and 10-minute means were 
used. scatter plots were created to visualise the device performance compared to the refer-
ence values. pearson correlation was evaluated to observe the existence of a linear relation-
ship between the lcs devices and the reference instrument.

2.3 calibration strategy

to improve data accuracy of the devices, the on-field calibration was performed using ml 
techniques. cO

2
 concentrations from the lcs and reference grade instruments, as well as t 

and rH were used. the first step was mapping a correlation matrix to evaluate acceptable 
pearson correlations, r, between the independent variables; if |r| > 0.5, then one of them was 
dropped to avoid multi-collinearity. the threshold value was set to be at 0.5 or higher as it 

table 1: the devices deployed in the field (inside the classrooms).

device type concentration range monitoring interval

airvisual pro low-cost 400–10,000 ppm 10 s

uradmonitor model a3 low-cost 400–5000 ppm 1 min

reference gases: Hazscanner research-grade 0–10,000 ppm 1 min
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represents moderate to good correlations beyond that point [15]. as a rule, the lcs cO
2
 vari-

able was never dropped from the analysis as the improvement in data reliability was intended 
to be built upon it using other variables. the data were resampled randomly into training 
(80%) and validation (20%) datasets with a fixed seed before regression modelling. the resa-
mpling seed was fixed to validate the models in a uniform way for the comparative analysis 
between the four models: multivariate linear regression (mlr), support vector regression 
(svr), gradient boosting regression (Gbr) and extreme gradient boosting (XGb).

figure 1 shows the supervised learning process. the model training was done using the 
reference values as the output (or dependent variable) while the lcs cO

2
 values and the tem-

perature and relative humidity (rH) were considered as the input (or independent/explana-
tory variables). the temperature and rH data used were those acquired from the reference 
device to increase reliability of the developed models. the statistical significance check of 
the variables was performed for mlr models. the level of statistical significance was set at 
a p-value of 0.05. 

Hyperparameters were optimised for svr, XGb and Gbr models via an exhaustive grid 
search performed with threefold cross validation. the different hyperparameters that were 
selected to be optimised are shown in table 2. the hyperparameters exhibiting high influence 
on the model were selected to be optimised.

after the models were trained with the optimised hyperparameters, the validation of 
models (on 20% of the unseen dataset) was evaluated. statistical indexes used to evaluate 
the performance of the models were coefficient of determination R2, root mean squared error 
(rmse) and mean bias error (mbe).

the entire data analysis was done using python 3.7 with jupyter notebook interface [16]. 
Scikit-learn library was used to train all the regression models and to optimise the hyper-
parameters [17]. the statistical significance tests were done using statsmodels module in 
python [18]. the visualisation was done using two libraries: matplotlib and seaborn [19, 20].

figure 1: supervised training and validation process.

table 2: Hyperparameters optimised for the models.

model Hyperparameters

svr regularisation parameter c

Gbr number of boosting stages, learning rate, maximum depth

XGb number of boosting stages, learning rate, maximum depth, subsample, gamma
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3 results and discussiOn
results for various classrooms were similar; hence, results from one representative class-
room are presented and discussed. the datasets, after merging and taking 10  min mean, 
yielded 712 data points.

3.1 device performance

figure 2 shows the performance of low-cost devices compared to the research-grade refer-
ence instrument in the form of scatter plots. the pearson correlation shows the linear correla-
tion in the figure. both the devices show a strong correlation to the reference. airvisual pro 
shows a few erratic peaks in measurement. the results obtained for airvisual pro resemble 
the recently published results of demanega et al. [14], who got a strong linear relationship 
with pearson correlation coefficient of 0.975.

 although urad shows an almost perfect linear correlation, it has a consistent offset com-
pared to the reference. the implication arising from this observation is that such devices 
might show an increase in the concentration levels leading to wrong mitigation/prevention 
measures. lcs devices also tend to understate pollutant concentration levels (especially par-
ticulate matter) in some cases, as observed by the authors and stated elsewhere.

3.2 calibration

figure 3 shows the pearson correlation matrix plot of the variables ascertained from all the 
devices deployed during the research campaign in the form of a heat plot. threshold correla-
tion of 0.5 or higher was assessed and rH was removed from further analyses as it showed 

figure 2: scatter plot of the low-cost devices and the reference device.
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high correlation to the other input variables. the models, after data resampling, were trained 
with lcs cO

2
 and temperature as the input variables for both the devices. the high correla-

tion between the lcs and reference cO
2
 values is evident from the correlation matrix. 

figure 4 shows the scatter plots of all four models implemented after hyperparameter opti-
misation for airvisual pro. all models seemingly performed well. for svr, linear kernel 
was used for the model training, and the regularisation parameter c was optimised. for Gbr 
and XGb, number of boosting iterations and learning rate had the biggest impact on the 
models. a very high R2 score can be observed for svr, Gbr and XGb. these three models 
also showed low rmse and mbe values.

figure 3:  pearson correlation matrix plot of all the variables involved. cO2_airv: cO
2
 

 airvisual pro; cO2_urad: cO
2
 urad monitor a3.

figure 4:  model validation scatter plot after hyperparameter optimisation for all four models 
for airvisual pro. mlr: multiple linear regression; svr: support vector  regression; 
Gbr: gradient boosting regression; XGb: extreme gradient boosting.
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after the implementation of models, the erratic peaks exhibited by the device have been 
rectified as well. Hence, the application of models using supervised ml techniques have 
improved the data reliability of airvisual pro. the models also improved the data reliability 
of urad. table 3 shows the results of the training and validation datasets for both devices. 
for urad, the validation results show that XGb improved the data accuracy the most, with 
a very high R2 score of 0.989 and very low error values.

for both the devices, XGb really stood out as the best performing model among the four 
models implemented in this study. it showed excellent training scores, which implies that 
it could encompass enough information from the training phase to make a model complex 
enough to capture accurate relationships between the target variable and the input variables 
while also showing good results on unseen data implying that it was not overfitting. 

 in comparison with other studies that performed on-field calibration of cO
2
 monitoring 

lcs, the validation results obtained by this study show a much higher R2 score. spinelle,  et al. 
[21] performed field calibration of commercially available lcs with linear, mlr and artificial 
neural network (ann) models and their highest validation set R2 score was 0.732 with ann 
versus reference measurements. it should be noted that their study included cO

2
 sensor and 

field calibration (among several others), but was focused towards outdoor monitoring.

4 cOnclusiOns
there are three major takeaways from the present study. the first is regarding the perfor-
mance of lcs devices for cO

2
 monitoring. although not very high in their plug and play 

format, the data accuracy can still be concluded as useful for indicative purposes. secondly, 
the on-field calibration yielded very good results and could improve the data accuracy 
and subsequently the data reliability of the two lcs devices. supervised ml techniques 
 implemented for the proposed calibration strategy developed models that closely resembled 
the reference values. thirdly, the comparative analysis showed that the XGb model was 
very consistent and  outperformed all the other models to improve the data accuracy of cO

2
 

monitoring for both low-cost devices. 
 future work on this topic may involve calibrating other sensors of these devices, incorpo-

rating more models for a bigger comparative analysis, and more extended monitoring periods 

table 3:  performance indexes of all models for the low-cost devices compared to the reference.

dataset model
airvisual urad

R2 rmse mbe R2 rmse mbe

training

mlr 0.857 123.807 −1.758 0.952 71.910 −5.085

svr-linear 0.774 155.374 −10.780 0.951 72.693 −9.349

Gbr 0.999 7.769 −7.752 0.995 20.990 −6.593

XGb 0.988 34.675 −0.552 0.999 10.167 −0.027

validation

mlr 0.932 94.604 14.875 0.954 77.753 −0.838

svr-linear 0.992 31.920 0.552 0.953 79.077 −10.010

Gbr 0.989 38.075 0.692 0.985 44.829 2.337

XGb 0.992 31.277 1.039 0.989 36.733 1.855
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to observe how the models perform on long-term measurements once deployed. it will also 
test if the models can cope up with the calibration drift associated with lcs.
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