
 Vladimir Chebotarev et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 4 (2020), 295–307 

© 2020 WIT Press, www.witpress.com
ISSN: 2058-8305 (paper format), ISSN: 2058-8313 (online), http://www.witpress.com/journals
DOI: 10.2495/TDI-V4-N4-295-307

StochaStic modeling of train delayS 
formation

Vladimir chebotareV1, boriS daVydoV2 & KSeniya KabluKoVa1

1cc feb raS, russia
2feStu, russia

abStract
two stochastic models of train interaction are considered in the paper. these models are designed 
to study the process of calculation the arrival deviation probability density function. the stochastic 
models allow you to receive an adequate forecast the development of traffic situation taking random 
fluctuations of the train run trajectory into account. the paper proves the equivalence of two train traf-
fic models that reflect the mechanism of formation the arrival time distribution. both models take the 
scattering of train departure deviations into account. the first type model describes the result of the run 
time random nature, while the second model reflects the impact of short-term unplanned train stops. 
the study also makes an attempt to outline the regularity of formation the standard and the abnormal 
arrival deviation distributions. the proposed models are verified by using the results of the historical 
data analysis obtained at the main railway line.
Keywords: arrival deviation distribution, bimodal distribution, departure time distribution, random 
speed variations, running time distribution, stochastic model, train traffic.

1 introduction
Stochastic models of train traffic are used for probabilistic forecasting of the traffic situation 
development in the presence of random disturbances (see, for example, [1] and [2]). they 
make it possible to identify inter-transport conflicts and predict their further propagation over 
the railway network. train delay propagation is one of the significant negative consequences 
of these conflicts. the models proposed by the researchers are aimed at eliminating delays or 
reducing of their duration.

for each conflict situation, a stochastic model of train interaction can be created (before, 
at the time and after the conflict point). distributions of the following random variables can 
be considered as input data of such model: departure deviation from the schedule, time head-
way, speed, travel time, primary delay, etc. the simulation results are the dependences of 
the arrival delay probability distribution on the input distributions. in turn, knowledge of the 
delay distribution is the basis for predicting the delay duration, as well as a set of measures 
to eliminate it.

in many papers (see, for example, [2]–[5]), when constructing the delay distribution func-
tion it is assumed that the types of input distributions are fixed (as a rule, this is an exponen-
tial distribution or its modifications). Such models describe only particular cases and do not 
cover other possible variants of input distributions observed in reality. our study shows that 
a more general approach is to represent the input random variables (run time, in particular) 
using the gamma distribution.

two models of a conflict situation development are proposed in the paper. both models 
have two-train type and can be used when considering the pair interaction of trains on the 
railway network. the first model is used to describe a situation when both trains have differ-
ent speeds, and the second one is for the situation when a primary delay of a random duration 
occurs. at the same time there are no restrictions on the form and type of input distributions.
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under the relevant conditions, the distribution of the random arrival deviation of the second 
train and the distribution of the total arrival deviation of both trains were found for each 
model. it was shown that under definite natural conditions the proposed models are equiva-
lent in a certain sense.

in the considered models, input random variables can have arbitrary suitable distribu-
tions. this fact expands the possibilities of applying the models to various situations (when 
input random variables behave differently, and the essence of the conflict situation remains 
unchanged).

the equivalence of both models makes it possible to check only one of them for compli-
ance with real statistics obtained from russian railways. the travel time is an input random 
variable of the model. When reviewing the statistical data and their subsequent processing, 
it was noticed that the histograms for the travel time often visually resemble the densities of 
bimodal distributions (see table 3, column 1). mixtures of distributions are applied for mod-
eling the abovementioned bimodality. the paper considers both unimodal and bimodal travel 
time distribution. it is shown that the formula found for the arrival deviation distribution of 
the second train is consistent with statistical data.

2 literature reVieW
modeling the process of random delays occurrence and their propagation along the train 
chain makes it possible to assign rational traffic adjustments and predict their likely con-
sequences. the analytical method which uses convolutions of distributions of the initial (at 
the site entry) and newly arising deviations to obtain the distribution of delay is proposed in 
[6]. but applications of this work perhaps are limited since only the uniform distribution the 
secondary delays is used. in reality, this assumption is rarely confirmed.

one effective approach which allows us to predict statistical characteristics of the train 
traffic is Situational-heuristic method (Semn) [7]. expected values of operating times are 
obtained from statistics of previous periods taking the current on-site situation into account. 
a similar approach is used in the paper  [8] which models the local traffic using average 
values of train processing time. it should be noted that there are attempts to derive some aver-
age train schedule based on the emerging situation. Such attempts are fraught with conserva-
tion of technological problems that exist on the site.

one of the fundamental papers is devoted to the problem of traffic stochastic modeling 
under consideration [1]. the authors describe a model of delay formation in a train set traffic 
using a probabilistic approach. total run time of the train is considered as a sum of random 
intervals of movement along the section elements when analyzing the process of delay propa-
gation. the paper [3] shows that calculation of the arrival time distribution at the terminal 
station is based on repeated use of convoluting the distributions of random variables charac-
terizing each of the operations.

below mentioned papers use this approach to analyze the process of delay propagation 
along the train chain. the authors of the study [4] solve the problem of interacting the two 
trains in a flow that have different speeds and are influenced by random impacts. the result 
of analysis is used to model the train traffic in a dense heterogeneous train flow. this idea is 
developed in the papers [2], [3], [5]. the paper [2] represents trains traffic in a form occu-
pying an intermediate position between the macro-models and models with very detailed 
description of the process, i.e. micro-models. approximation method is proposed for exact 
representation of delay distributions. cumulative distribution is calculated from the sequence 
of activities which is determined by a stochastic event-graph.
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most fully the problem of predicting the random delay appearance and propagation across 
the large railway network is considered in [5]. Scattering of arrival moments is treated as a 
random variable generated with joint accounting the departure times and the running inter-
vals. the main subject of research is the process of adjusting the schedule at transfer stations 
in the presence of multiple delays. the model operates with discrete distributions of travel, 
dwell times and deviations from the schedule. the authors use a simplified description of 
input random variables so that they receive a small computing time.

the proposed approach was further developed in the study [3] which attempts to take the 
realistic distribution of operation time into account and choose the appropriate approxima-
tion. the approach proposed uses a probabilistic operational graph which considers trans-
fer operation and conflict situations. the authors argue that mesoscopic modelling of traffic 
is the purposeful approach to compute the delay propagation. the purpose of the study is 
to reduce computing time. the authors consider only station and crossing as the operating 
points where conflicts can occur.

the general characteristic of the schedule which is realized under conditions of random 
disturbances is robustness. timetable robustness is understood as its ability to absorb small 
current deviations [9], [10]. the compensatory mechanism begins to fail with increasing the 
intensity of traffic which leads to the multiplication of delays. a characteristic that shows the 
ability to eliminate the disturbances that occur is defined as timetable stability [11] and it is 
connected with the time interval that is needed to restore the normative traffic. the results 
obtained in these papers do not allow analytically combining the results of calculating the 
probability distributions after each operation. this is due to the fact that each operation cor-
responds to a separate stochastic model. the general model for all kinds of operations is not 
considered in this research.

Paper [12] is devoted to analysis of train delays and their evolution in real time. bayesian 
networks are the framework for design the stochastic model in [12]. bayesian networks are 
an appropriate method to represent the complex interdependencies between train events. Pro-
posed stochastic model adequately reflects train delays due to interactions with other trains. 
however, this approach does not allow to identify the cause of the delay and to develop a 
mechanism to eliminate this cause.

3 tWo StochaStic modelS of the arriVal  
diStribution formation

in this section, the reader is presented with two models of the arrival deviation formation at 
the destination station. each of them reflects a conflict situation arising between a pair of 
trains on a track.

 the conflict, which is described by the model 1, stems from the difference in train speeds. 
the follower, which has a higher speed, catches up with the feeder train at some point of the 
track. the indicated situation is schematically shown in fig. 1(a). the lines show the possible 
trajectories of trains here. the lines emanating from one point on the time axis show probable 
trains’ paths. the conflict arises at the time when the time headway between trains is reduced 
to the minimum allowable unit (s

0
).

 model 2 serves to describe the inter-train conflict caused by the initial delay of the leader 
train. figure 1(b) provides a diagram of such conflict situation occurrence. the “bundles” of 
parallel lines originating on the horizontal axis mean that the departure times are random vari-
ables. the horizontal lines represent the primary (upper line) and secondary (lower line) delays, 
which are also random. the conflict occurs at a time when further train rapprochement is impos-
sible. the follower stops and continues moving immediately when the leader train departs.
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two models of the arrival deviation formation are described in Subsections 3.1 and 3.2. each 
of models corresponds to conflict situation from fig. 1.

3.1. model 1 (the conflict between vehicles due to the difference in their speeds)

consider the following two-train stochastic model. trains with numbers 1 and 2 depart one 
by one from a certain starting point of the route and move in the same direction. their sched-
uled time-spatial trajectories are the same. it is assumed that the condition of compliance a 
minimum safe time distance t

0
 between trains is fulfilled. trains are influenced by random 

factors that lead to scattering of departure and travel times.
the most common situation of arrival deviation occurrence is considered below. a conflict 

situation between two trains occurs on open tracks. the difference in train speeds and the 
departure deviations are the reasons of delay (i.e. of arrival deviation).

let us introduce the following notations to describe the movement of a train with the 
number i (i = 1,2):

δi  is the departure deviation from the schedule,  F t ti( ) = ≤( ): Ρ δ   is the cumulative dis-
tribution function of the random variable δi (it is assumed that the variables  δ1 and  δ2  are 

equally distributed);  f t
dF t

dt
( ) = ( )  is the probability density function of  δ1 ,

figure 1:  conflict situations arising from different train speeds (a) and random primary delay (b).

(a)

(b)
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ρi  is the train travel time between starting and ending points of the route,

L t t( )= ≤( )P ρ1 , l (t) is the probability density function of 
 
ρ1,

di  is the departure time of the ith train according to schedule,

ai  is the arrival time of the ith train according to schedule,

ξi is the random deviation of the ith train from the arrival schedule (note that the arrival 

deviation ξi may take different signs); then  ai + ξi  is actual arrival time of the ith train,

U t ti i( )= ≤( )P ξ  ui(t) is the probability density function of ξi,

U t t u t( ) ), ( )= + <P( 1 2ξ ξ  is the probability density function of the total delay ξ1+ ξ2,

t
0 
is the minimum permissible time headway between trains,

s s v v t0 0 0= = ⋅( )  is the minimum safe distance between trains, corresponding to an arbi-
trary speed v.

the following assumptions are the basis for building the model 1.
Assumption 1. for the actual departure times the inequality d d1 1 2 2+ < +δ δ  holds. 
Assumption 2. random variables ρ1 and δ1 are independent.

the inequality from assumption 1 means that the departure order of trains is fixed.
consider the movement of a pair of trains along the track. train speeds are different. the 

situation when the second train is faster than the first one is described. in this case, when the 
time interval between trains becomes equal to t

0
, a conflict situation arises, as shown in fig. 2. 

the distance s
0 
corresponds to the time interval t

0
. note that in fig. 2 s

0 
is depicted as a constant 

just for the sake of simplicity.
let us derive equality

  U t I t F t d a t y l y dy2
0

1 2 00( )= >( ) − + − −( ) ( )
∞

∫ ,               (1)

figure 2: the layout of arrival deviation ξ2 formation (model 1).
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based on the arrival time formation layout, shown in fig. 2 (see also [13]).
it can be seen from fig. 2 that a d1 1 1 1 1+ − +( )=ξ δ ρ ,  hence 

    a d1 1 1 1 1+ = + +ξ ρ δ .                 (2)

moreover, a a t2 2 1 1 0+ = + +ξ ξ .  thus,

            ξ ρ δ2 1 1 1 2 0= + + − +d a t ,                                    (3)

          U t I t t d a t2 1 1 1 2 00( )= >( ) + < − + −( )Ρ ρ δ .                 (4)

under the assumption of ρ1 and δ1  independence equality (1) holds (using the well-known 
fact that the distribution of the sum of independent random variables is the convolution of 
the initial distributions). in turn, equality (1) implies the formula for the probability density 
function of ξ2 ,

          u t I t f t d a t y l y dy2
0

1 2 00( )= >( ) − + − −( ) ( )
∞

∫                (5)

next, the distribution of the random sum ξ1+ ξ2 will be received.
it follows from (2) and (3) that

      ξ ξ ρ δ1 2 1 1 1 0 1 22+ = + +( )+ − +( )d t a a .                (6)

in turn, equation (6) entails next formula

  
U t t t t a a d( ) . .= + <( )= + < − + +( )−( )P Pξ ξ ρ δ1 2 1 1 0 1 2 10 5

hence, by analogy with (1), the following equality is obtained:

  U t F t t a a d y l y dy( ) . ( ) .= − + +( )− −( )
∞

∫ 0 5 0 1 2 1
0

                             (7)

consequently,

  u t f t t a a d y l y dy( ) . . ( ) .= − + +( )− −( )
∞

∫0 5 0 5 0 1 2 1
0

                     (8)

thus, a model that allows us to find both the distribution of the second train delay and the dis-
tribution of the total arrival delay was obtained. arbitrary suitable distributions can be taken 
as distributions of input random variables (departure deviation and travel time).

3.2. model 2 (the train traffic disturbed by a random primary delay)

two trains follow one track one after another in one direction from station A to station 
B with the same average speed v

0
. the distance from the train 2 to the train 1 is denoted 

by X2 + s0, where s s v v t0 0 0 0 0= = ⋅( )  is the minimal safe distance between trains, X2 
is random variable (without any assumptions about its distributions). both trains have 
the same destination station. let us also introduce the notation μ2 = X2   ̸  v0 

. time points 
T (  j ), j  =  1, 2, denote actual departure times from station A. time headway is equal to 

T T t2 1
2 0

( ) ( )− = +µ .
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Suppose that train 1 made an unplanned stop at some point in time. the random duration 
of this stop is called the primary delay and is denoted by τ. depending on the value of τ, the 
subsequent train may receive a delay, which is called by the secondary delay. it is assumed 
that the following train stops when the distance to the front train is reduced to s0. moreover, 
it is assumed that as soon as the front train restore running then the next one immediately 
follows it.

in what follows, τ1 = τ, and τ2  is the secondary delay duration. it should be noted that within 
the framework of model 2 the deviation of the real arrival time from the planned one for every 
train coincides with τk, k = 1, 2. figure 3 illustrates the process of output delay formation 
which is described by the model 2.

the dotted lines (lines 1 and 2) represent the scheduled trajectories of trains 1 and 2, solid 
lines (1 and 2) depict the real trajectories taking into account the delays. it can be seen that 
the arrival time of the train 1 differ from the schedule on τ and the train 2 on τ2.

assume that departure times from the original station are disturbed by small random influ-
ences. let μ2 have a density function ψ (t) ( µ2 0

2 1+ = −( ) ( )t T T ). in addition assume, the 
duration τ of the unscheduled primary stop has a density function g (t). the condition of our 
model is that random variables μ2 and τ are independent.

the problem is to find the distribution function G t t2 2( )= <( )Ρ τ .  by the previous 
study [14], the resulting cumulative distribution function of delay τ2 has the following form:

      G t I t g z dz y dy
t y

t
2

0
0( )= >( ) ( )









 ( )

+

−

∞

∫∫ ψ .                 (9)

the probability density function corresponding to eqn (9) is following:

             g t I t g t y y dy2
0

0( )= >( ) +( ) ( )
∞

∫ ψ .                                 (10)

figure 3: the layout of arrival deviation τ2 formation (model 2).
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4 equiValence of the tWo conSidered modelS
the results of Section 3 are collected in table 1. table 1 contains the key formulas of models 
1 and 2. this section will show the equivalence of the formulas from the first row of table 1.

let us show the equivalence of models 1 and 2. in other words, show that u t g t2 2( )= ( ),
where the function u2(t) is defined by the equality (5), and g2(t) by the equality (10) (see table 
1 row 3).

the relationship of random variables included in both models can be described as follows. 
model 1 is declared in terms of random variables δ1  (with density f (t)) and ρ1 (with density 
l (t). model 2 is formulated in terms of random variables τ (with density g(t)) and μ2 (with 
density ψ (t)).
 comparing the values that determine the time headways in both models, derive 
T T t d d2 1

2 0 2 2 1 1
( ) ( )− = + = + − −µ δ δ .  therefore,

               µ δ δ2 2 1 2 1 0= − + − −d d t               (11)

by (2), a d1 1 1 1 1+ − + =ξ δ ρ( ) .  hence, since ξ τ1 = , then

    τ ρ δ= − − −( )1 1 1 1a d .               (12)

figure 3 depicts that τ µ τ2 2 0 0+ + = +t t .  here of, τ τ µ2 2= − .  using now the equali-
ties (11) and (12), obtain

τ τ µ ρ δ δ δ2 2 1 1 1 1 2 1 2 1 0= − = − − −( )− − + − −( )a d d d t .

next, using the equality a d a d1 1 1 2 2 2− − = − −δ δ  (the planned travel times of both trains 
are identical according to the model) leads to

τ ρ δ δ δ ρ δ ξ2 1 2 2 2 2 1 2 1 0 1 1 1 2 0 2= − − −( )− − + − −( )= + + − + ≡a d d d t d a t .

the last equality follows from (3). this implies the equivalence of densities u2(t) = g2(t). 
figure 4 illustrates the equality ξ2 = τ2 .

 the equivalence of models 1 and 2 was proved. these models describe the occurrence of 
the arrival delay under different input assumptions. in model 1, arrival delay ξ2  occurs as a 

table 1: Key formulas of models 1 and 2.

model 1 model 2

investigated 
random 
variable

µ δ δ2 2 1 2 1 0= − + − −d d t τ τ µ2 2= −

cumulative 
distribution 
function

U t F t d a t y l y

dy t

2
0

1 2 0

0

( )= − + − −( ) ( )

>

∞

∫ G t g z dz y dy

t

t y

t
2

0

0

( )= ( )








 ( )

>

+

−

∞

∫∫ ψ

Probability  
density  
function

u t f t d a t y l y

dy t

2
0

1 2 0

0

( )= − + − −( ) ( )

>

∞

∫ g t g t y y dy

t

2
0

0

( )= +( ) ( )

>

∞

∫ ψ
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result of randomness of the departure deviations δ1, δ2 and travel time ρ1. in turn, in model 
2, arrival delay τ2  occurs as a result of randomness of the time headway μ2 and the primary 
delay τ . random values in both models are interrelated: deviations δ1, δ2 (from model 1) with 
the time headway μ2 (from model 2), travel time ρ1 (from model 1) with the primary delay 
τ  (from model 2). thus, the models of the arrival delay formation are equivalent if the input 
random variables of these models are related to each other.

5 StatiStical Verification of the model 1
in this section comparing the formula (5) (model 1) with real statistics is conducted. Statisti-
cal analysis aims to find out which of input distributions of the density function (5) is consist-
ent with real data.

 note that in the formula (5) there are two input distributions. these are the distribution of 
the departure deviation f (t) and the distribution of the travel time l (t). both of them must be 
set in accordance with the statistics of real train traffic.

 the statistics collected for the trains of the suburban radial railway line moscow-tver 
are explored. moscow-tver line is characterized by double track style, length 167 km. the 
line is a part of the october railway, linking the two largest cities in russia: moscow and 
St. Petersburg. the line is designed for both passenger and freight traffic. Passenger traffic is 
about 250 thousand people per month. the time headway during rush hours is from 2 to 15 
min, depending on the type of train (high-speed, standard).

 let us set the actual form and parameters of the input distributions f (t) and l (t) in (5). 
Suppose that the departure deviation δ1 obeys the exponential distribution law with a density 
function:

              f t I t e t( )= >( ) −0 λ λ ,               (13)

where λ > 0.
 consider two examples in which the function f (t) will have the form (13), and the function 

l (t) will have a unimodal (example 1) or bimodal (example 2) form. the unimodal density 

figure 4: graphical mapping of equivalence the models 1 and 2.
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function of the travel time is characteristic of hours when train traffic is not intense (e.g., 
daytime hours). bimodality, on the contrary, is manifested in hours with massive train traf-
fic (e.g., morning and evening rush hours) and is associated with increasing the number of 
random factors affecting the train traffic. 

Example 1. Studies show that in the case of relatively free traffic (e.g., daytime hours), the 
graph of the probability density function of the travel time has a longer right branch. it is 
shown in [14] that such distribution is well approximated by the gamma distribution, i.e.

       l t I t b
e t bt b

( )= >( )
−( )

( )

− −( ) −

1
1

11 β α

αα βΓ
,                    (14)

where α > 0, β > 0, b
1
 > 0.

the histogram of the travel time given in table 2 (column 1) is fairly well approximated 
by shifted gamma distribution (14). note that for the convenience of displaying in travel time 
histogram, the vertical axis intersects the horizontal one not at the origin, but at the point 
(15, 0). table 2 contains also histogram of arrival deviations (column 2) with approximat-
ing density curve u2(t) from (5). the following calculated parameters of the resulting arrival 
deviation probability density function u2(t) are taken:

            α = 50, β = 0.2 min, b
1
 = 10 min, λ = 2 min−1.               (15)

it should be noted that the parameter α from (14) is dimensionless. the normative parameters 
for a given track are the following:

                   d
1 
= 0 min, a

2 
= 23 min, t

0 
= 3 min.                             (16)

in table 2, travel times and arrival deviations are measured in minutes (horizontal axis).
as can be seen from table 2, when the traffic is not intense, the travel time density is uni-

modal in nature. this is due to the fact that with such traffic the influence of random factors 

travel time arrival deviations

daytime hours

table 2:  histograms of the travel times and arrival deviations with approximating density 
functions (the case of unimodal l (t)).
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is minimal. these factors do not depend on the train flow itself, but depend on external condi-
tions (weather, visibility, etc.).

Example  2. it turned out that bimodal travel time densities are not uncommon, but 
appear quite often. according to the collected statistics, at rush hours the train travel 
time frequently obeys some bimodal distribution law. take the travel time density func-
tion l (t) as a mixture of two gamma densities l1 (t) and l2 (t):

             l t l t p pl t p l t( )= ( )= ( )+ −( ) ( ), ,1 21 0 ≤ P ≤ 1,              (17)

where l1 (t) is determined the same as l (t) in (14), l2 (t) = l1 (t–b2) with b2 ˃ 0.
 bimodality of the density l (t) is determined by the influence of two random factors (e.g., 

weather conditions and speed mode). to simulate the degree of influence of each of them, the 
parameter P is used. the more P, the stronger the first factor influences and the weaker the 
influence of the second factor, and conversely.

 let us set the actual form and parameters of the input distribution l (t) defined by (17). 
table 3 contains the examples of histograms plotted from samples of travel time and arrival 
deviations distributions in the morning and evening rush hours. in table 3, travel times and 
arrival deviations are measured in minutes (horizontal axis).

 note that for the convenience of displaying in travel time histograms, the vertical axis 
intersects the horizontal one not at the origin, but at the point (18, 0).

 the given examples show that the appearance of a bimodal travel time distribution leads to 
a rise in the left branch of the arrival deviation density u2(t). if the influence of random factors 
on the train traffic is observed, then it leads to the occurrence of inflection points of the func-
tion u2(t). thus, the nature of the histograms constructed on the basis of experimental data 
agrees well with the theoretical results, which are given in Section 3 (model 1) of this article.

table 3:  histograms of the travel times and arrival deviations with approximating density 
functions (the case of bimodal l (t)).
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 the histograms of the travel time given in table 3 (column 1) are fairly well approximated 
by a mixture of gamma distributions (17) with P = 0.3. table 3 contains also histograms of 
arrival deviations (column 2) for morning and evening rush hours with approximating den-
sity curves u2(t) from (5). for example, the following calculated parameters of the resulting 
arrival deviation density u2(t) characterize morning rush hours:

        P = 0.3, α = 16, β = 0.25 min, b
1
 = 17.5 min, b

2
 = 2.5 min, λ = 1 min−1.               (18)

moreover, the normative parameters for a given track are the following:

          d
1 
= 0 min, a

2 
= 27 min, t

0 
= 3 min.               (19)

Parameters correspond to the considered statistical data. from table 3, it can be seen that the 
theoretical density u2(t) from (5) is consistent with the experimental data.

results similar to passenger train traffic were obtained when considering statistical data 
on the freight train traffic through trans-Siberian main line. the analysis shows that during 
periods of increase the train flow intensity, the number of sections in which a bimodal distri-
bution of travel time is observed reaches 20%. accordingly, the shape of the arrival deviation 
density curve becomes symmetrical or has left-sided skewness.

6 concluSionS
the article considers two models of train interaction on a track. the first model describes 
a conflict situation arising due to the difference in train speeds (the second train catches up 
with the first one at the time of movement). the second model describes the situation with a 
primary delay of random duration.

for both conflict situations, the distribution function of arrival deviation (delay) at the 
destination station was found. the distribution function allows you to predict arrival delays 
based on the distribution of input random variables.

the paper shows that models 1 and 2 are completely equivalent.
the input random variables of model 1 (departure deviations and the travel time) are asso-

ciated with the input random variables of model 2 (time headway and primary delay) by exact 
equalities. the fact of equivalence allows checking the consistency the one of models with 
statistical data (another one is considered consistent, because the first is agreed). therefore, a 
verification of model 1, for which there were suitable statistics, was carried out.

to simulate the input densities of travel times, bimodal distributions are used. the paper 
discusses a method for specifying a bimodal density function of the travel time using a mix-
ture of gamma distributions. both the input (departure deviation and travel time) and the 
resulting (arrival deviation) densities are in good agreement with the real-world data.

the flexibility of both models is that the resulting analytical formulas allow us using arbi-
trary theoretical distributions that adequately reflect the influence of input factors in various 
real situations.
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