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ABSTRACT
In this paper, we study the problem of scattering of surface water waves by a thin circular arc shaped 
porous plate submerged in the deep ocean. The problem is formulated in terms of a hypersingular 
integral equation of the second kind in terms of an unknown function representing the difference of 
potential function across the curved barrier. The hypersingular integral equation is then solved by a 
collocation method after expanding the unknown function in terms of Chebyshev polynomials of the 
second kind. Using the solution of the hyper-singular integral equation, the reflection coefficient, trans-
mission coefficient and energy dissipation coefficient are computed and depicted graphically against 
the wave number. Known results for the rigid curved barrier are recovered. It is observed that the poros-
ity of the barrier reduces the reflection and transmission of the waves and enhances the dissipation of 
wave energy. The reflection coefficient and dissipation of wave energy decreases as the length of the 
porous curved barrier increases. Also the reflection coefficient is almost independent of the inertial 
force coefficient of the material of the porous barrier. However, the inertial force coefficient of the 
material of the porous barrier enhances transmission and reduces dissipation of wave energy.
Keywords: curved porous plate, dissipation of wave energy, reflection coefficient, transmission 
 coefficient, water wave scattering.

1 INTRODUCTION
Interaction of water waves with thin plate assuming the linear theory has been a subject of 
considerable interest as this phenomenon serves as a model for a wide range of physical sit-
uations which include wave interaction with breakwaters, very large floating structures. 
Breakwaters are coastal structures which are widely constructed to attenuate the wave action 
in inshore water and thereby reduce the coastal erosion and provide safe harbourage. Usually 
these structures are rigid structures, which extend up to the full depth of ocean. However, 
these fixed structures are expensive and difficult to construct, particularly when the ocean is 
very deep. An useful alternative is to construct floating breakwaters.
Breakwaters are mathematically modeled as rigid impermeable thin vertical plate either par-
tially immersed or submerged in the ocean. A study of interaction of waves with a thin, rigid 
vertical plate dates back mid twentieth century. A number of mathematical concepts have 
evolved to handle the boundary value problem associated with the study of water wave scat-
tering by a thin rigid vertical plate present in ocean with free surface. In this context the 
works of Dean [1], Ursell [2] and Evans [3] may be mentioned. It may be noted here that 
exact solution of the aforesaid boundary value problem exists when the barrier is in the form 
of a rigid vertical plate present in the deep ocean and for normal incidence of the incoming 
wave train. In all other cases only approximate analytical or numerical methods are used to 
obtain approximate solution.
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Porous coastal structures like rubble mound breakwaters are important in coastal engineer-
ing as the structural voids in the porous breakwaters can dissipate wave energy efficiently. 
Mathematical modeling of porous structure as thin, porous vertical wave maker was pioneered 
by Chwang [4] in 1983, although Solitt and Cross [5] studied the problem of wave propaga-
tion through porous media in 1972. Scattering problems involving porous breakwater were 
studied by many researchers using various sophisticated mathematical techniques. Among 
them the works of Yu [6], Mclver [7], Evans and Peter [8], Tsai and Young [9] may be men-
tioned. Recently Gayen and Mandal [10] used second kind hypersingular integral equation 
formulation to study the problem of wave scattering by a submerged porous plate in ocean 
with free surface. From these works, it is observed that the porosity of the barrier induces 
energy dissipation due to which the amplitude of waves reflected or transmitted are reduced.

The problem of water waves scattering by a curved rigid thin plate form of an arc of a 
circle submerged in the deep ocean was studied by Parsons and Martin in [11] by using a first 
kind hypersingular integral equation formulation based on judicious application of Green’s 
Integral theorem. They have shown that as the length of the curved barrier increases, the 
reflection coefficient decreases and for almost circular barrier, reflection coefficient becomes 
very small.

In the present paper, we have considered the problem of scattering of water waves by a thin 
curved porous barrier in the form of an arc of a circle submerged in the deep ocean. Following 
Parsons and Martin [11] we use the Green’s Integral theorem to reduce the corresponding 
boundary value problem to the second kind hypersingular integral equation. This hypersingu-
lar integral equation is solved using a collocation method by approximating the unknown 
function by Chebyshev polynomials. The reflection and transmission coefficients and amount 
of energy dissipation are evaluated and depicted graphically. Results for rigid curved barrier 
are recovered by making porosity parameter equal to zero. It is observed from the numerical 
results that porous curved barrier enhances the dissipation of wave energy and consequently 
the reflection and transmission of wave energy are much less than that of a rigid curved bar-
rier. This shows a porous curved barrier serves as a better model for a breakwater than for a 
rigid curved barrier. Also, it is observed that transmission coefficient increases while reflec-
tion coefficient and energy dissipation decreases as the arc length of porous circular curved 
barrier increases. Also the inertial force coefficient of porous material of the barrier does not 
have a significant effect on reflection coefficient, but for a porous curved barrier with non 
zero inertial force coefficient the transmission coefficient of waves is enhanced and the dissi-
pation of wave energy is reduced.

2 FORMULATION OF THE PROBLEM
We consider two dimensional, time harmonic and irrotational motion in water, which is 
assumed to be incompressible inviscid homogeneous fluid, due to scattering of a time har-
monic incident wave on a porous curved barrier Γ submerged in the deep ocean. We choose 
a rectangular Cartesian coordinate system in which y axis is vertically downwards in to fluid 
region y ≥ 0 and the plane y = 0 denotes the position of the undisturbed free surface. The 
geometry of the curve plate Γ is given in Fig. 1, where d is the depth of the mid-point of Γ 
from the free surface and the length of the plate is 2a = 2bθ. From Fig. 1, we see that any 
point q ≡ ( )ξ η,  on Γis given by 

 ξ θ η θt b t t d b b t t( ) = ( ) = + − − ≤ ≤sin , cos , 1 1 and − < ≤π θ π  (1)
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Assuming linear theory, the time harmonic train of waves represented by the potential 
function Re{ ( , ) exp( )}f sinc x y i t−  is incident on the barrier from the direction of x = −∞, 
where s is the circular frequency and φ inc x y,( ) is given by

 φ
inc x y y i x, exp ,( ) = − +( )K K  (2)

where K
g

g=
σ

2

,  is the acceleration due to gravity. The resulting motion in the water is described 

by the velocity potential function Re f sx y i t, exp( ) −( ){ }, where φ x y,( ) satisfies

 ∇ =
2 0φ in ,thewater region  (3)

the free surface condition

 
K yyf f+ = =0 0on

 (4a)

bottom condition

 ∇ → = ∞f 0 as y  (4b)

The boundary condition of the porous curved plate surface Γ is given by

 
∂
∂

=
∂
∂

= − [ ]f f
b f1 2

n n
iK on Γ  (5)

Here φ φ φ 
= ( ) − ( ) /( )( )2 1x y x y x y, , , ∈ Γ  is the difference of potential functions across 

the curved barrier Γ where the potential functions φ2 x y,( ) is in the region 

x y b d b x y2 2 2
+ − −( ) > ( )and 1φ ,  is in the region x y b d b2 2 2+ − −( ) < ,  ((x, y)εΓ) and ∂

∂n
denotes the normal derivative at a point on Γ.

Also β β β= +( )r ii  is the porous-effect parameter (cf [10, 12]) given by

 β

γ

τ

=

+( )

+( )

f iS

K f S2 2
 (6)

Figure 1: Geometry of the porous curved plate.
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Here γ  is the porosity, f is the resistance force coefficient, S is the inertial force coefficient 
and τ  is the thickness of the porous medium. If the resistance is predominant in the porous 
medium, ie, S << f, then β  is purely real. In this case, the barrier is considered to be densely 
packed. However, both resistance and inertial force coefficient of the porous material are 
equally important [cf [12]). The condition at infinity described by

 
φ

φ φ

φ

x y
x y R x y x

T x y x

inc inc

inc
,

, ,

, ,
( ) →

( ) + −( ) → −∞

( ) → ∞









as

as

 (7)

where R and T be the complex reflection and transmission coefficients respectively. In the 
next section we proceed to determine R and T.

3 METHOD OF SOLUTION
Let Re G x y e t, ; ,ξ η

ισ
( ){ }

−  denotes the potential function due to the presence of a line source 

at ξ η η,( ) >( )0 . Then G x y, ; ,ξ η( ) satisfies the following boundary value problem

∇ = ( )
+ = =

= −( ) + −( )( )

2

2 2
1

2

0

0 0

G n

KG G y

G x y

y

except
on

as

at  x

x h

, ,

,

log∼ →→

∇ → → ∞

0

0

,

,G yas
G behaves as outgoing waves as. x − → ∞ξ . The expression for G is given by (cf [10])

 G x y
r

r

k y

k K
k x dk, , , log

exp
cosx h

h
x( ) =

′






−
− +( )( )

−( ) −( )( )∞

∫0
 (8)

where r r y, ( )′ +( )= (x )2 -x ∓ η 2
1

2 and denotes the integral along the positive real axis in the 

complex k-plane indented below the pole at k = K. Applying Green’s theorem to the functions 

f fP Pinc( ) − ( ) and G x y G P Q, ; , ,ξ η( ) ≡ ( )( ) suitably, we have the integral representation of 

φ Q( ) as

 φ η ξ

π

φQ K iK p
n

G p Q ds
p

p( ) = − +( ) −   ( )
∂

∂
( )∫exp ,

1

2 Γ

 (9)

where P x y Q, , ,( ) ( )ξ η  be points in fluid and p, q denote points on Γ and 
∂

∂np

 denote the 

normal derivative at p on Γ. Using the boundary condition (5), we have the following 
hypersingular integral equation for the unknown discontinuity in potential across Γ, φ 

 as

 
1

2

2

p
f b f h f x h[ ] ∂

∂ ∂
( ) − [ ]( ) =

∂
∂

( ) ∈∫ n n
G p q ds iK

n
q

q p
p

inc

qΓ
Γ, , , , (10)
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Now for curved plate Γ, the length of the plate is 2 2a b= θ  and any point q p x yξ η, , ,( ) ( ) 

on Γ are given by ξ θt b t( ) = sin , h q q qt d b b t x s b s y s d b b s( ) = + − ( ) = ( ) = + −cos , sin , cos , 

where − ≤ ≤1 1t s,  and− < <π θ π . The unit normal at p q, ∈Γ are given by,

n p n n s s n q n n t tp p q q( ) ≡ ( ) ≡ −( ) ( ) ≡ ( ) ≡ −(1 2 1 2, sin ,cos , , sin ,cosq q q q)).

In eqn (10) we substitute X = x – ξ = b(sin sθ – sin tθ), Y = y + η = 2d +2b – b(cos sθ +  
cos tθ), y – η = –b(cos sθ + cos tθ)and

 φ  ( ) = ( )p f s  (11)

to obtain

 
f s

s t
ds f s L t s ds b iK f t b Ke K i K( )

−( )
+ ( ) ( ) + ( ) =

− −

− +∫ ∫21

1

1

1
2 2, p q b p q h xx q+( )t  (12)

where

L t s
s t s t

b s t

,

sin

cos

( ) =
−( ) −

−( )



















+ −(

q
q q

q

2

2
2 2

2 2

4

1

2

4

)) −

+( ) +
+

+ ( )












+ −(

q

q

Y X

X Y

KY

X Y
K X Y

b s t

2 2

2 2 2 2
2

0

2 2

2
2

2

Φ ,

sin )) ∂
∂

−
+( )

















( ) = +
+

− +
−

q

p

K
X

XY

X Y

X Y i e
e

k K

KY iK X
k X

Φ

Φ

0

2 2 2

0 2

,

,
220

k kY K kY dkcos sin ,−[ ]
∞

∫

 (13)

with f ±( ) = 0. The hypersingular integral in eqn (12) is in the sense of Hadamard finite part 
integral. Now to solve the second kind hypersinguler integral eqn (12) we approximate f (s) 
as (cf [11])

 f s s a U sn n
n

N

( ) ≈ − ( )

=

∑1 2

0

 (14)

where Un(s) are the Chebyshev polynomial of the second kind and an (n = 0, 1, 2, ...N) are the 
unknown constant to be determined.

Now using the relation (14) in eqn (12) we obtain the following system of linear equations 
in an

 a C t tn n
n

N

( ) = ( )

=

∑ υ .
0

 (15)
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where u p q

bq p

h x qt Kb e

C t n i Kb t U t

K i k t

n n

( ) =

( ) = − +( ) + −( ) (

− + +( )2

1 2 1 2 )) + − ( ) ( )
=−∫ 1 2

1

1
s U s L t s dsn

s
,

 (16)

Now substituting t = tj (j = 0,1, 2, ..., N) in (15), we obtain (N + 1) system of linear equation 
with (N + 1) unknown a0, ai, a2, ..., aN as

 
a C t t j Nn n j j

n

N

( ) = ( ) =

=

∑ υ for 0 1 2
0

, , ,...,
 (18)

where tj’s are the collocation points chosen as

 t
j

N
j Nj =

+
+

=cos , , , , ...,
2 1

2 2
0 1 2p  (19)

The linear system (18) is solved by standard method to obtain the constants a0,ai,a2, ...,aN 
and hence have the approximate solution of the hypersin-gular integral eqn (12)

3.1 Reflection and transmission coefficients:

The reflection and transmission coefficients R and T can be obtained approximately in terms of 
a series involving the constants an (n = 0,1, 2,…,N) defined in (18). This is achieved by making 
ξ φ ξ η→ ±∞ ( )in ,  given in (9) and using the condition (7), (11) and (14) we can write R, T as

 R iKb a t U t e dtn
n

N

n
K t i K t t

t
= − − ( )

=

− ( )+ ( )( )
=−∑ ∫q h x q

0

2

1

1
1  (20)

 T iKb a t U t e dtn
n

N

n
K t i K t t

t
= − − ( )

=

− ( )− ( )( )
=−∑ ∫1 1

0

2

1

1
q h x q

 (21)

Thus R and T can be obtained once an are known after solving the system of linear eqn 
(18). For impermeable β =( )0  plate |R| and |T| must satisfy the identity |R|2 + |T|2 = 1.

3.2 The energy identity:

Porosity of the plate Γcauses the dissipation of wave energy, so in this case |R|2 + |T|2 < 1. 
To prove it mathematically, we use the Green’s integral theorem to the functions φ  and φ  in 
the region bounded by the lines y X x X x X y Y y Y X x X= − ≤ ≤ = ≤ ≤ = − ≤ ≤0 0, ; , ; , ;  
x X y Y= − ≤ ≤,0 and a contour enclosing the plate Γ. Finally making X Y, ,→ ∞ we obtained 
the energy identity as

 R T K b dtr
2 2 2

1 2+ = −  ∫β θ φ

Γ

 (22)

where βr = Re part of β. After using (11), (14) and (22) we have

 R T J
2 2

1+ = − . (23)

Here J is the amount of dissipation of wave energy which is given by

 
J K b t a U t dtr t n n

n

N

= −
=−

=
∫ ∑2 1 2

1

1

0

2b q | ( ) |  (24)
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and J is positive so that R T
2 2

1+ < . If β = 0 (i.e. for impermeable plate) then J = 0 and the 

energy identity in this case is R T
2 2

1+ = .

4 NUMERICAL RESULTS
The reflection coefficient |R|, the transmission coefficient |T| and the amount of wave energy 
dissipated J can be computed numerically from eqns (20), (21) and (24) respectively, once an  
is known by solving the system of linear eqn (18). For numerical computation the value of N 
in (18) is chosen N = 15.

In Figs 2–4, R T,  are plotted against Ka for q p p p
∈






10

5

10

8

10
, ,  and for various values of 

porosity parameter b ∈ +







0 1 1
2

, ,
i

 and for fixed 
d

a
= 0 1. . Here β β β= +r ii where βr is asso-

ciated with resistance force coefficient while βi is associated with the inertial force coefficient 
of the porous material of the curved barrier as given by eqn (6). In Fig. 5, the amount of wave 

energy dissipated J is plotted against Ka for various values of β  and fixed 
d

a
= 0 1. . The 

energy identity (23) has been verified for various values of Ka, θ , β .
From Figs 2–4 the graph of |R| and |T| for rigid barrier β =( )0  exactly coincides the result 

given by Parsons and Martin [11], for q p p p
∈






10

5

10

8

10
, , . This shows that the numerical 

results are fairly accurate. It is observed that for rigid curved barrier when θ
π

=

10
, R  and |T| 

shows oscillatory behaviour. However as θ  increases, the frequency of oscillation in | R| and 
|T| decreases. Also, |R| decreases and |T| increases as θ  increases. It is also observed from eqn 
(24) that there is no dissipation of energy for rigid curved plate ie, J = 0 for β = 0.

From Fig. 2, it is observed that when q
p b= ∈ +






10

1 1
2

, , ,
i

R  shows a slow oscillatory 

behaviour for Ka < 2. 5 and then gradually decreases almost to zero as K a increases. Also R  

Figure 2: |R|, |T| against Ka, 
d

a
= 0 1. , for θ

π
=

10
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coincides almost for β = 1 and b = +1
2

i
• This shows that the inertial force coefficient of the 

porous material of the barrier has very little effect on the reflection coefficient |R|. Also, |R| 
for a porous barrier is much less than that of a rigid barrier. Similar behaviour in |R| is 

observed from Figs 3 and 4 for q
p p

∈







5

10

8

10
, .

It is observed from Fig. 2 that |T| for b ∈ +







1 1
2

, ,
i

 decreases sharply for small value of 

Ka and then increases very slowly as Ka increases. For a particular value of wave number K 

a, T  for b = +1
2

i
 is more than |T| for β = 1. This shows that the inertial force coefficient of 

the porous material of the barrier increases the transmission coefficient. Also, |T| for a porous 
barrier is much less than that of a rigid barrier. Similar behaviour in |T| is observed from  

Figs 3 and 4 for q p p
∈








5

10

8

10
, .

Figure 3: |R|, |T| against Ka,  
d

a
= 0 1. , for θ

π
=

2

Figure 4: | R|, | T| against Ka, 
d

a
= 0 1. , for θ

π
=

8

10
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From Fig. 5 it is observed that for θ
π

=

10
, J is less for b = +1

2

i
 than for β = 1 for a par-

ticular value of Ka. This shows that the inertial force coefficient of the porous material of the 
curved barrier reduces the dissipation of wave energy. Similar behaviour is observed in J for 

q p p
∈








5

10

8

10
,  and different value of β . Thus, it is observed that the inertial force coefficient 

of the porous material of the curved barrier has no significant effect on the reflection of wave 
energy, but it reduces the dissipation of wave energy and enhances the transmission of wave 
energy.

It is also observed for Figs 2–5 that |R| and J decreases while T  increases as θ  increases 

from 
π

10
 to 

8

10

π
. This shows that as the length of the curved barrier increases, the transmis-

sion of wave energy increases while the reflection of wave energy and the dissipation of 
wave energy decreases. Thus, it is observed that there occurs dissipation of wave energy 
for porous barrier, which is in contrast with a rigid barrier where there is no dissipation of 
energy. Due to this reason the reflection and transmission coefficients of surface waves by 
a porous barrier is much less than that of a rigid barrier. Moreover the reflection coefficient 
decreases and transmission coefficient increases as θ  increases, i.e. the length of the 
curved barrier increases. Also, it is observed that the dissipation of energy decreases as θ  
increases.

The reflection coefficient is almost independent of the inertial force coefficient of the mate-
rial of the porous barrier while the inertial force coefficient of the material of the porous 
barrier reduces the dissipation of wave energy and increases the transmission coefficient.

5 CONCLUSION
In the present paper, the problem of scattering of water waves by a porous curved barrier is 
studied by using a second kind hypersingular integral equation based on judicious application 
of Green’s integral theorem. The reflection coefficient, transmission coefficient and energy 
dissipation coefficient are evaluated and studied graphically. It is observed that (i) The 

Figure 5: J against Ka, where 
d

a
= 0 1. , for various θ  and β
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 porosity of the curved barrier enhances the dissipation of wave energy and thereby reduces 
the reflection and transmission of wave energy. So the porous curved barrier serves as the best 
model for a breakwater than a rigid barrier. (ii) An increase in the arc length of the porous 
barrier, increases the transmission of wave energy and decreases the reflection and dissipa-
tion of wave energy. (iii) The inertial force coefficient of the porous material of the barrier has 
no significant effect on reflection coefficient. But it enhances the transmission coefficient and 
reduces the dissipation of wave energy.
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