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ABSTRACT
Cable arch stayed bridges are one type of tensile structures, and there are increasingly such structures 
constructed. Their performance relies on how they are designed. This type of structures can suffer big 
deflections under load, in this situation the displacements may need to be reduced. Sometimes, it may 
be necessary to control internal force of a specific cable so the cable force remains within the desired 
limit. More study need to be done to develop the techniques that are available for such adjustments. 
This paper deals with theoretical and experimental adjusting of two physical models, and the linear and 
nonlinear geometrical behavior of cable (arch) stayed bridges. It was concluded that the techniques of 
adjustment were practical and efficient to reduce, eliminate shape distortion, and control internal bar 
force of both structures. For structures that behave linearly, it is easier to get the target (displacement or 
force), but for non-linear structures one iteration of adjustments was not enough to get the displacement 
target. Through the techniques of the internal bar force adjustment, the amount of force can be reduced 
even to the zero, e.g. in case of replacing damaged members.
Keywords: force method, internal force adjustment, shape restoration, tensile structures and cable arch 
stayed bridges.

1 INTRODUCTION
Nowadays, the tendency to build megastructures is increasing; some of them need to 
have large spans, for instance cable-stayed bridges. Nonetheless, there are applications 
of structural engineering where tolerances of structural shape and internal forces, under 
changing service conditions, are significant, since it has effects on the structure’s service-
ability limit state Saeed [1]. When structures composed of beam members, such as arch 
cable stayed bridges are used for a long time under different loadings or due to the harsh 
environment, some of the nodes (deck or arch) could undergo a big deflection, or some 
of the members experience large force, leading to change in some specific bars/cables in 
cable structures. Cables may also face slack, which means they effectively become struc-
turally non-existent, so they would have to be shortened. For solving the problem of high 
deflection and achieving desired amount of force, the techniques of adjustment can be  
applied.

Ziegler [2] and Shea et al. [3] defined the technique of adjustment as the process of small 
changes or movements that improve the current performance or achieve a desired outcome 
or reduction, or even elimination of the structural deformation caused by external distur-
bances. The technique of adjustment can be done by altering member length, which is done 
by actuators [4–8]. There are three types of adjustments, namely, external nodal displace-
ments, internal bar force adjustments and a combination of both. The desired type depends 
on the function of the structure being adjusted.

The idea of controlling was introduced by Weeks [9], while Ziegler [2] and Irschik [10] 
reviewed the recent studies in detail, and an analytical procedure was introduced by Haftka 
and Adelman [4]. Many attempts were made to control all types of adjustment as joint dis-
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Figure 2: Cable arch stayed bridge (Structure 2).

placement, bar force and to simultaneously control joint displacement and bar force. Firstly, 
in terms of external nodal displacement controlling, researchers tried different ways and some 
developed the others techniques. Saeed and Kwan [11] say external nodal displacements can 
be controlled via altering the length of some active bars. Passive control strategy was dis-
cussed by Irschik [10]. Saeed and Kwan [12] derived an equation to calculate elongation 
required to attain the desired nodal positions, which has been used in this paper. Secondly, 
there are a few studies conducted concerning bar force control regardless of the nodal dis-
placements, as Kwan and Pellegrino [7] controlled bar force in a prestresable structure and 
Saeed and Kwan [11] also conducted the same type of adjustment, and those techniques 
have been used in this paper as well. Lastly, in terms of simultaneous joint displacement and 
bar force control, You [13] worked on a prestressed cable structure; where he controlled the 
displacements of a specific node, and the internal forces in all members were satisfactorily 
above the desired level, external force was not taken into account. Saeed and Kwan [11] 
developed the technique, which further took into account external load.

The purpose of this paper is theoretical and experimental nodal displacement and internal 
bar force control of an arch cable-stayed bridge. For this purpose two structures were man-
ufactured in the laboratory of the School of Engineering at Cardiff University. Structure 1, 
as shown in Figure 1, is expected to behave linearly due to a stiff overhead beam acting as 
support, whereas Structure 2 is projected to behave as a geometrically non-linear structure, 
as shown in Figure 2.

Figure 1: Cable stayed bridge (Structure 1).
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The outline of this paper is as follows. The techniques of calculation required amount of 
actuation for the purpose all three types of controlling is introduced in Section 2. Section 3 
shows the detail of physical model of the tested structures. Section 4 presents the theoretical 
and experimental results of adjustment and discussion for both structures, while a concluding 
summary is presented in Section 5.

2 CALCULATION OF ACTUATION FOR THE CONTROLLING PURPOSE

2.1 External nodal displacement adjustment

This type of adjustment, which can be done by eqn (1) Saeed and Kwan [12] is vital for 
shape critical structures when their shape is made imperfect by unexpected loads or a harsh 
environment. This could be structures such as antenna, or flexible structures where the ‘out 
of shape’ can consequently cause stresses to be too high in some components. The governing 
equation is

 e0 = Y+{d-dP}  (1)

where eo is the (total) amount of actuation, required to produce the desired displacement, or 
at least the best result, Y = B+-B+FS(STFS)–1ST (as derived by Saeed [1]), B+ is the pseu-
do-inverse of compatibility matrix B, F is the flexibility matrix, S is the states of self-stress 
and equal to nullspace(A), and A is the compatibility matrix. The size of Y depends on 
number of joints that needed to be adjusted, which represents number of rows and number 
of bars that are involved to alter their length; they represent number of columns of Y matrix. 
Y+ is the pseudo inverse of Y (Y may not be square or even not a full rank), thus it gives 
the least square solution to eo, and dP = [B+F – B+FS(STFS)–1STF]tA (as derived by Saeed 
[1]) is the vector of nodal displacements of the structure due only to load, tA = A + p, A+ 
is the pseudo-inverse of equilibrium matrix A, p is the vector of external loads, and d is 
the resultant nodal displacements after some member actuation eo (i.e d is the prescribed 
displacement) has been applied. The application of this technique is presented in Sections 
4.1.1 and 4.1.2.

2.2 Internal bar force adjustment

Shape or nodal position for some structures is not crucial, whereas the amount of internal 
bar forces under external loading is fundamental for example the roof of a stadium when 
it is carrying loads. In addition, a cable of a bridge when it becomes slack. This theory is 
applied to control force inside components of structures via using eqn (2) Saeed and Kwan 
[11]. Changing the length of at least one bar has effect on the force inside itself and the 
other bars.

 e0 = Z+{tP – t}  (2)

where eo is the amount of actuation, which is required to give the desired force in the desire 
members, or at least the best result, Z = S(STFS)–1STFtA (as derived by Saeed [1]), Z is a 
matrix – the columns of which represent the selected members for altering and its rows are 
the members which their force needed to be adjusted, and tP = tA–S(STFS)–1STFtA (as derived 
by Saeed [1], tP is the vector of internal force due to the applied load, and t is the resultant 
internal forces after some elongation actuation eo has been applied (i.e is the prescribed inter-
nal bar force). The application of this technique is presented in Sections 4.2.1 and 4.2.2.
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3 PHYSICAL MODEL OF THE TESTED STRUCTURES
This section will discuss the structures’ geometry, components, material properties and test 
procedures. Two structures were manufactured and tested in the laboratory of the School 
of Engineering at Cardiff University. Structure 1 is a linear structure, while Structure 2 is 
expected to behave a geometrically non-linear fashion, both structures are shown in Figures 1 
and 2. The main difference is in overhead support.

Deck beam: The beam is the same for both structures are made of Aluminum and it has 
a square cross-section 6.5×6.5 mm. The deck beam consists of nine members and ten joints, 
with the first and the last joints supported on rollers. The distance between the joints is 
250 mm except at the two ends, where the distance is 125 mm.

Cables: The main function of the cables is to transfer loads from the deck to the frames. They 
are made out of stainless steel and both structures have eight cables. The lengths of the cables in 
Structure 1 are the same. However, for Structure 2 there are four different lengths with each two 
positional symmetric cables being the same length. The diameter of the cables is 0.25 mm. The 
cables have EA = 9.08 kN, while for the beam EA = 2.96 MN and EI = 10.4 Nm2.

4 RESULTS AND DECISION
In this section two experiments were carried out for each Structures 1 and 2, for controlling 
nodal displacement without regard to the bar force and controlling bar force without regard-
ing to the nodal displacement.

4.1 External nodal displacement without regard to internal force

4.1.1 Structure 1
In this experiment for Structure 1 joints 10 to 17 on the deck beam were loaded with 40.3 N 
downward each. Table 1 shows the results of joint displacement adjustment for Structure 1 
after loading. It can be seen that the first and last joints displaced less than 3 mm; the joints 
that displaced more than that amount were adjusted. Their target displacement was assumed 

Table 1: Displacement adjustment for Structure 1 without regard to the bar force.

1 2 3 4 5 6 7

Joints dp (mm) Req. d. (mm) Theo. d. (mm) Exp. d. (mm) Cables eo (mm)

10 y −2.83 none −2.1 −2.57 1 0

11 y −4.03 −3 −2.63 −2.91 2 −1.27

12 y −4.14 −3 −2.31 −3.05 3 −1.00

13 y −4.28 −3 −2.09 −3.1 4 −1.33

14 y −4.25 −3 −2.09 −3.03 5 −1.28

15 y −4.13 −3 −2.28 −3.07 6 −1.00

16 y −4.05 −3 −2.55 −2.99 7 −1.29

17 y −2.96 none −2.06 −2.57 8 0

Total actuation (mm) 7.17
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to be 3 mm (Column 3) and it can be clearly noticed that the target displacement (Column 3) 
and experimental displacement (Column 5) after adjustment are coincident with the rms error 
only 0.066 mm. Nonetheless, the difference of theoretical and experimental displacement 
results after controlling (Columns 4 and 5) are approximately good. It can be said that the 
linear theory for adjustment works well, in spite of having the small variance between theo-
retical and practical results, which are common in the analysis theory due to flexibility of the 
structure and constructing of geometrical model.

4.1.2 Structure 2
Table 2 shows the results of two attempts to adjust the displacement of the Structure 2 due 
to the loading of joints 12 to 19 on the deck beam with 15.3 N downward each. The reason 
behind loading with small weight was that the internal forces of the first and the last cables 
were large. For adjustment might be required to shorten these two cables, which would put 
them under larger tension.

Table 2 shows that for a geometrically non-linear structure one iteration could be inade-
quate to get the desired displacement, because a linear adjustment method is being used. As 
it is clear that the first set of eo in iteration1 gave the discrepancy of results (Column 6) with 
rms error 2.86 mm with desired displacement (Column 3), but, in iteration 2, the size of rms 
error falls greatly from 2.86 mm to 0.22 mm (Columns 3 and 9). So the important message 
is, a linear adjustment method can still be applied for a geometrically non-linear structure, 
where it is employed iteratively. In Iteration 2, only four middle cables were used, since the 
outer four cables have not significant effect on adjustment for selected joints because their 
value of coefficient Y are very small, see Saeed [1].

Table 2: Displacement adjustment for Structure 2 without regard to the bar force.

1 2 3 4 5 6 7 8 9 10

Joints
dp 
(mm)

Req. d.

(mm)

Iteration 1 Iteration 2

Cables
eo 1 
(mm)

Theo. d. 
(mm)

Exp. d. 
(mm)

eo 2 
(mm)

Theo. d. 
(mm)

Exp. d. 
(mm)

4 y −7.5 – −3.35 −7.16 −5.53 −7.12

7 y −7.64 – −3.44 −6.36 −5.27 −6.09

12 y −1.86 – −2.08 −3.04 −3.15 0 2.29 3.27 1

13 y −3.23 – −0.06 0.85 −2.11 0 −0.16 −1.56 2

14 y −10.35 – −0.60 −3.55 −9.59 −1.32 −4.84 −7.76 3

15 y −14.03 −10 −2.40 −5.8 −13.12 −4.95 −6.72 −9.84 4

16 y −13.27 −10 −0.57 −6.62 −12.58 −3.38 −7.31 −10.27 5

17 y −8.55 – −0.14 −4.35 −7.08 −0.82 −5.18 −6.15 6

18 y −1.23 – 0.20 0.27 0.77 0 −0.18 −1.07 7

19 y −1.86 – −2.88 2.81 3.83 0 2.18 3.96 8

Total actuation (mm) 8.93 10.47
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4.2 Internal bar force control without regard to displacement

4.2.1 Structure 1
In this section, an experiment was carried out for adjusting internal bar force without 
regarding to joint displacement for Structure 1 for the loading case of 30.4 N downward 
on joints 10 to 17 on the deck beam as shown in Table 3. Columns 2 and 6 show the inter-
nal bar force before and after adjustment respectively, where only Cables 2 and 7 were 
chosen for control, since their internal force exceed a prescribed limit of 20 N for these 
two cables.

The results nicely show that the technique of linear adjustment works very well. There is a 
good correlation between theoretical and final experimental results and very close to the pre-
ferred tension bar force with the rms error only 0.44 N. Cables 4 and 5 were not used in this 
experiment, since their value of coefficient Z are very small and have not noticeable effect on 
adjustment for selected cables Saeed [1].

4.2.2 Structure 2
In this Section Structure 2 was tested in order to adjust internal bar force of the two outer 
cables, while the structure was loaded with 15.3 N downward on joints 12 to 19 on the 
deck beam, and results are shown in Table 4. The two outer cables have the highest values 
of force, which are greater than the inner cables due to the geometry of the structure (force 
path). The load of Cables 1 and 8 were decided to be reduced from 38 N and 37 N, respec-
tively, as shown in Table 4 (Column 2), to 25 N. Columns 6 and 3 in Table 4 show that the 
experimental results after adjustment are almost the same as the target, with rms error of 
only 0.41 N.

The theoretical and experimental internal forces in Cables 1 and 8 in Columns 5 and 6 
respectively after adjustment have only a small discrepancy, even though the technique of 
adjustment is linear and structure model is geometrically nonlinear. So it can be concluded 
that the linear technique of the adjustment is almost applicable for adjusting internal bar force 
for those structures are geometrically nonlinear.

Table 3: Bar force adjustment for Structure 1 without regard to the displacement.

1 2 3 4 5 6

Cables tp. (N) Req. t. (N) eo (mm) Theo. t. (N) Exp. t. (N)

1 23.1 – −1.47 35.2 36.9

2 33.8 20 1.98 18.9 19.4

3 27.9 – −1.29 41.1 42.3

4 29.4 – 0 26.9 24.7

5 29 – 0 27.3 27.5

6 28.7 – −1.18 40.2 40.4

7 32.8 20 1.81 20.0 19.8

8 20.6 – −1.36 34.4 35.8

Total actuation (mm) 9.09
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5 CONCLUSION
In this paper, two flexible geometrically linear and nonlinear structures (Structure 1) and 
(Structure 2) respectively were constructed. Both structures were tested theoretically and 
experimentally for the purpose of adjusting joint displacement and internal bar force via the 
linear techniques of adjustment, which were derived by Saeed and Kwan [11]. It was con-
cluded that:

1. The shape of both Structure 1 and Structure 2 can be improved to some desired values, 
an adjustment, and some nodes can even be restored to the original positions.

2. The internal bar forces can be controlled to the desired amount of force limit to keep 
the members safe against compression and tension stress in struts and to avoid slack in 
cables.

3. Through the techniques of the internal bar force adjustment, the amount of force can be 
controlled down to zero, in case of replacing severely damage.

4. The applied techniques of linear adjustment are accurate for geometrically linear struc-
tures in controlling joint displacements and bar forces also for controlling internal bar 
forces for geometrically nonlinear structures. In contrast for controlling joint displace-
ment of the nonlinear geometrical structures iterations are both necessary and sufficient 
for achieving the required displacement and force results.
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