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ABSTRACT
A coupled Conservative Level Set – Moving Mesh – Immersed Boundary method is formulated and 
validated against the three-dimensional gravity-driven falling drop problem. First, by employing Con-
servative Level-Set (CLS) method, the multiphase domain can be successfully handled, while the mass 
conservation is controlled. Then, by using an Arbitrary Lagrangian-Eulerian formulation (i.e. a mov-
ing mesh), the simulation domain can be optimized by reducing the domain size and by allowing an 
improved mesh, resulting in a computational resources saving. Finally, the use of an Immersed Boundary 
(IB) method allows to deal with intricate geometries. All these functionalities result in a versatile and 
robustness method to simulate bubbles/drops problems in complex geometries. The mentioned method 
was successfully used to thoroughly study the falling of a drop against a plane surface, providing detailed 
results including velocity evolution, mesh independence study, evolution of the vertical position of the 
drop, streamlines and vorticity fields, and profiles evolution.
Keywords:  arbitrary Lagrangian-Eulerian, complex geometries, falling drop, finite volume method, 
fluid-structure interaction, immersed boundary, level set, multiphase flow, open boundary condition, 
unstructured mesh.

1 INTRODUCTION
The interaction of bubbles and drops with solids constitutes a broad research topic with 
numerous applications. Its study is important in fields as sprays, mineral flotation or cooling 
of nuclear reactors. For instance, in the study of sprays, the behavior of the atomized drops 
when approaching surfaces could condition the applicability of a specific technique [1]. In 
biomedicine, the aforementioned problem has a crucial influence in echocardiography, where 
bubbles could be used as the contrast medium during the test [2]. These and many other top-
ics make the problem of the approaching of a drop against a wall an essential problem to be 
deeply understood.

Although the problem of a drop/bubble moving in a non-constricted domain has been thor-
oughly studied (see for instance [3]), the movement of a bubble/drop through complex 
geometries is still a relatively unexplored field. Some progresses have been done in this latter 
case, by experimental, theoretical and numerical methodologies. The work of O’Reilly et al. [4] 
is among the outstanding experimental works, in which the authors studied sliding elliptical 
bubbles through inclined planes. There are also valuable theoretical approaches to those prob-
lems, for instance, Podvin et al. [5] developed a lubrication model and appropriately tested it 
against experiments. Numerical methods are also a common approach to study bubbles/drops 
in complex geometries. In this sense, there are also some remarkable works; for instance, Han 
and Tryggvason [6] studied the breakup of drop falling against a solid wall by using a 
Front-Tracking technique.

There are three techniques which play an important role in the method proposed in the 
present paper: multiphase flows, dynamic meshes and immersed boundaries. First, 
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multiphase flows could be treated numerically by using several approaches. In this paper, we 
use a Conservative Level Set (CLS) method developed by Balcázar et al. [7], which mini-
mizes the problems of mass conservation of the standard level-set methods. This method was 
thoroughly verified in Refs [8, 9]. On the other hand, the use of dynamic meshes in the con-
text of multiphase flows has received limited attention. Recently, Gutiérrez et al. [10] 
successfully used a dynamic mesh method to follow the ascent of bubbles in a CLS frame-
work, thereby studying the challenging problem of the three-dimensional Taylor bubble. The 
use of this kind of meshes in bubbles/drops problems allows a significant reduction in the 
computational domain, thus saving computational resources and potentially allowing an 
improvement in the mesh resolution. Finally, although Immersed boundary (IB) methods 
have been broadly used in CFD [11], their applicability to multiphase flows remains almost 
unexplored [12, 13]. Those methods enable the treatment of flows with embedded boundaries 
on grids that do not conform to the shape of these boundaries. To the best of the author’s 
knowledge, the present paper is the first work that integrates an IB method in a CLS 
framework.

2 MATHEMATICAL AND NUMERICAL FORMULATION
By assuming incompressible flow, two Newtonian fluids, an Arbitrary Lagrangian-Eulerian 
framework, no mass transfer at the interface between fluids, constant surface tension coeffi-
cient σ  and an embedded solid, the Navier–Stokes equations controlling the movement of a 
multiphase flow are given by the conservation laws for mass and momentum:

 ∇⋅ =v .0  (1)
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where v is the velocity field, t is the time, ρ  is the fluid density, µ  is its viscosity, vmesh  is the 
mesh velocity, p is the pressure field, g is the gravity acceleration, n is the unit normal vector 
to the interface, κ  is its curvature and δ  is the Dirac delta function located at the interface. 
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 is the domain’s volume and ϕ  is the smoothed Heav-

isade function of the Immersed Boundary method (see Section 2.3). Finally, Ψ IB is another 
extra source term introduced by the Immersed Boundary method (see Section 2.3).

A CLS method is enforced to tackle the fluids interface [7]. In this method, the interface is 
represented by the indicator function φ :
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where ε  is a parameter that defines the interface thickness. The interface between fluids can 
be located by getting the φ = 0 5.  isosurface. Thus, density and viscosity are obtained as:

 ρ ρ φ ρ φ= + −( )1 2 1 . (4)

 µ µ φ µ φ= + −( )1 2 1 . (5)
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where subscripts 1 and 2 refer to the suspending fluid and to the bubble/drop fluid, respectively. 
The level set function is advected by the velocity field:
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After advection, a reinitialization equation is needed in order to maintain a constant interface 
thickness [14]:
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where τ  is the pseudo-time.
The calculus of the curvature κ  and the application of the pressure jump to the flow domain 

is carried out by means of the CSF model [15], which allows the conversion of the singular 
term σ κ δn

Γ
 into a volume force:
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where κ φ( )and n are given by:
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Here, ∇φ  is computed by means of a least-square method [7].

2.1 Numerical solution

Governing equations have been discretized in a collocated unstructured grid arrangement by 
using a finite-volume method. We used the well-known Fractional Step method [7, 16] to 
solve the pressure-velocity coupling. Thus, momentum equation (Eqn. 2) is calculated by 
computing the following two steps:
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where v* is the predictor velocity, and superscript n  denotes that the corresponding variable 
is evaluated at the node n  under consideration. By taking into account the continuity equation 
(eqn. 1), pressure can be solved by means of the following Poisson equation:

 ∇⋅ ∇
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The discretization of this equation leads to a linear system, which is solved by means of a 
preconditioned conjugate gradient method. The present method has been implemented in the 
context of a parallel c++/MPI code called Termofluids. See Ref. [7] for further details on the 
numerical implementation and on the finite volume discretization of the governing equations.
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2.2 Mesh movement

The mesh is linearly moved at the vertical velocity of the drop. Therefore, the drop apparently 
is not vertically moved, although is deformed. The needed boundary conditions for this 
arrangement are explained in Section 3. We use the so-called Space Conservation Law (SCL) 
[17] in order to preserve the total computational volume, which is a needed condition when 
an Arbitrary Lagrangian-Eulerian framework is used. This law results in a modification of the 
mass fluxes through the cell faces by taking into account the corresponding swept volume of 
the mesh movement. As this mesh is linearly moved, the volume correction is straightforwardly 
computed.

2.3 Immersed boundary treatment

The immersed body is represented by means of a triangular surface mesh in stereo-lithography 
format (STL). This allows intricate geometries to be handled. For the sake of simplicity, we 
assume a single solid within the domain, but the changes needed to extend the formulation to 
the case of multiple solids are straightforward. The solid can be moving at a given velocity Vs. 
A signed minimum distance field is defined in order to classify the different nodes of simula-
tion domain in interior, exterior and forcing point, as seen in Fig. 1. Additionally, ϕ x , t( ) is 

Figure 1: Sketch of the performance of the proposed CLS+MM+IB method, for a generic 
falling drop problem, where main features are highlighted. Cells colored in light grey 
correspond to forcing nodes, and those in dark grey correspond to interior nodes.
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defined as a smoothed Heavisade function that takes the value of 0 inside the solid, and 1 far 
in the fluid domain [18]. As the relative position of the mesh and the solid can change at each 
time-step (either because the solid moves or because the mesh does), this function should be 
computed at each iteration.

The needed extra source term Ψ IB of the momentum equation is locally computed by using 
a direct forcing approach [19]:

 Ψ IB mesh=
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where V is the desired value of the velocity field. It is directly computed at interior nodes, 
since the velocity of the solid is known. An approximation for the case of forcing points is 
used. In this case, V is computed by means of a second-order interpolation among the local 
velocity of the solid Vs and the predictor velocity v

ΨIB =0
*  of neighbor nodes calculated when 

Ψ IB = 0. The reader is referred to Ref. [19] for further details about the calculation of Ψ IB.

2.4 Time step

A CFL condition is applied to compute the admissible time step at each iteration, in order to 
get stable simulations. By comparing the different terms of the momentum equation (eqn. 2), 
the following condition is obtained:
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where h  is the characteristic cell size calculated as the cubic root of its volume, and CCFL ≈ 0 1.  
is a safety constant. Note that the Immersed Boundary source term Ψ IB does not introduce an 
additional restriction to the time step. This is because at the moment of computing the time 
step, the effect of the embedded body has already been taken into account in the calculus of 
the velocity field, so the convective restriction (first term of the right-hand part of eqn. (15)) 
already includes it.

2.5 Calculation algorithm

The calculation procedure needed to advance from the current time instant t n to the next one 
t n+1 is:

1. Calculate the mesh velocity, as explained in Section 2.2.
2. Choose a suitable time step, as explained in Section 2.4.
3. Advect the level set function φ  by solving eqn. 6.
4. Compress the interfaces between both fluids by solving eqn. 7.
5. Compute ϕ , as explained in Section 2.3.
6. Update the density, viscosity, curvature and normal fields.
7. Solve eqns. 1 and 2 by using the fractional step method:
 - Calculate the predictor velocity v

ΨIB =0
*  without considering the solid.

 - Evaluate Ψ IB as explained in Section 2.3.
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 - Calculate the final predictor velocity v*.
 - Solve the Poisson equation (eqn. 13) to get the pressure field.
 - Calculate the cell-face velocity [7]

8. Move the mesh and the solid (if needed).
9. Update mass fluxes by imposing the SCL.

10. Repeat the previous steps to reach the final time.

2.6 Discussion on the method

The method formulated above established a general technique to simulate bubbles/drops 
interacting with an arbitrary surface. Some of the major advantages are summarized hereun-
der. First, it constitutes a full three-dimensional method, so the axisymmetric hypothesis is 
not needed, being potentially able to handle any complex geometry. Second, the fact of 
including a domain optimization method (i.e. the moving mesh) allows substantial savings in 
the needed computational resources, both by minimizing the fluid domain and by allowing 
improved meshes. Finally, by using an STL-represented Immersed Boundary method, intri-
cate surfaces can be easily reproduced. In that sense, the use of the IB method allows to 
actually compute the geometrical domain, forcing the simulation domain to face the real 
boundaries has it moves.

However, an important drawback should be beard in mind when more challenging cases 
are addressed by using this method. The fact of using open boundaries could difficult a proper 
applicability of this technique. First, the placement of the drop within the domain should not 
be arbitrary, and it should assure that the open boundaries do not alter the behavior of the 
drop. Furthermore, the treatment of the solution in the open boundaries could be difficult, for 
instance, in cases where the pressure profile is not well-defined over these boundaries.

3 DESCRIPTION OF THE CASE STUDY
The problem of a drop falling against a plane is addressed in subsequent sections, aiming to 
validate the method previously posed. As reference case, we chose one of the cases studied 
by Han and Tryggvason [6]. This reference case is defined by the following dimensionless 
numbers: η

ρ
= 1 15. , η

µ
= 1, Eo = 12, Ohd = 0 0466. . η ρ ρ

ρ
= 2 1/  and η µ µ

µ
= 2 1/  are the 

density and the viscosity ratios, respectively, Eo gd= −( )
2

2 1ρ ρ σ/  is the Eötvös number, 
Oh dd = µ ρ σ2 2/  is the Ohnesorge number, and d  is the initial droplet diameter.

A sketch of the initial arrangement is presented in Fig. 2a. The initial shape of the drop is 
a sphere of diameter d . The initial distance from the drop centre to the solid is set to 12d . We 
used that value since, based on previous studies available in the literature [20], it is enough in 
order to assure that the drop achieves its steady state before interacting with the solid. The 
lateral distance from the drop centroid to the lateral boundaries is fixed to 5d , since it gives 
rise to enough accurate results, as studied in Ref. [21]. The values of the distances from the 
drop to the inlet h di = 2 9.  and to outlet h do = 5 1.  are founded on a compromise between 
domain size and disturbance of the solution due to the proximity of those boundaries to the 
drop. See Ref. [10] for further notes about the setting of these magnitudes. No-slip boundary 
condition is imposed at the lateral walls. The used inflow and outflow boundary conditions 
are described in Ref. [10].

We used an unstructured mesh composed by tetrahedral control volumes. The drop is 
going to stay vertically steady at its initial position, and based on previous studies, it is known 
that at the selected regime the lateral movement of the drop is negligible. Therefore, we 
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designed a mesh with a dense core of radius d , and a radial exponential growing in the size 
of the control volumes (see Fig. 2b). A mesh independence study is included in the results 
description, where the meshes presented in Table 1 were used.

4 RESULTS
In the present section, results of the gravity-driven falling drop problem are summarized. First, a 
comparison of the dimensionless terminal velocity U U dgT T

* /
= ( )

−1 2
 and the deformation 

parameter ∆ = −( ) +( )L B L B/  at the falling state is presented in Table 2, where L  is the 

Figure 2: Initial arrangement and mesh configuration for the gravity-driven falling drop 
problem studied in the present paper.

Table 1: Description of the meshes used in the gravity-driven falling drop problem, where 
hmin  is the cell size in the core of the mesh and hmax is the maximum cell size.

Mesh name Mesh size hmin hmax

M1 1 4 105. ⋅ d / 10 1 5. d

M2 4 1 105. ⋅ d / 16 d

M3 9 1 105. ⋅ d / 22 0 8. d

Table 2: Summary of achieved results at the falling steady state ( t*
= 35), where 

U U dgT T
* /
= ( )

−1 2
 is the dimensionless terminal velocity, ∆ is the deformation param-

eter, E
UT

*  is the relative error of the dimensionless terminal velocity referred to the 
results of [6], and E  is analogously the relative error of the deformation parameter.

Case U T
* ∆ E

UT
* E ∆

Present work (M1) 0 2958. 0 4466. 2 38. % 13 03. %

Present work (M 2) 0 3029. 0 4677. 0 03. % 8 92. %

Present work (M 3) 0 2983. 0 4885. 1 56. % 4 87. %
Muradoglu and Kayaalp [20] 0 306. --- 1 00. % ---

Han and Tryggvason [6] 0 303. 0 5135. --- ---
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average length of the drop and B  is its average width. Good agreement were found in those 
results, especially for the finer mesh M 3, with errors of less than 5% in both magnitudes in 
comparison with reference data [6]. Furthermore, Fig. 3a shows the time evolution of the dimen-
sionless velocity UT

* . As this figure reveals, the proposed method properly capture the time in 
which the drop achieves to the solid (at a dimensionless time t tg d* / /

=
−1 2 1 2of around 45).

The time evolution of the vertical distance from the drop centre to the plane surface is 
plotted in Fig. 3b. The last part of this evolution reveals that the mesh M 3 is the sole one 
capable to maintain a constant distance from the drop interface to the wall. This shows that 
the coarser meshes do not properly capture the interaction of the drop with the plane, even 
though the falling behavior is correctly reproduced.

The mass conservation is evaluated in Table 3 by means of the percentage change in the 
drop volume. This table shows that, in that sense, the proposed CLS+MM+IB method behaves 
better than other methods available in the literature. This may be attributed to the smaller 
numerical errors of the CLS method, to a proper design and placement of the open bounda-
ries, and to a bigger resolution in the region of interests. Note also that the references use 
axisymmetric solvers.

Figure 3: Falling drop problem results for the tested method, showing (a) dimensionless 
terminal velocity UT

*  and (b) axial coordinate from the solid y y d* /=  over 
dimensionless time t tg d* / /

=
−1 2 1 2, for the different mesh resolutions tested.

Table 3: Comparison of the percentage of change in the drop volume Ω2  by means of its 
relative error E '2

.

Case E
Ω2

Present work (M1) 3 24 10 6. %⋅
−

Present work (M 2) 8 99 10 7. %⋅
−

Present work (M 3) 1 7 10 7. %⋅
−

Muradoglu and Kayaalp [20] 1 2. %
Han and Tryggvason [6] 0 4. %
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Streamlines and vorticity field are plotted in Figs. 4 and 5, obtained by using the results 
from M 3 mesh. First, the Fig. 4a shows the streamlines and vorticity in a plane perpendicular 
to the surface toward which the drop heads for. A single vortex is observed in the wake of the 
drop, close to the drop interface. Figure 4b shows that this vortex moves upwards and loses 
intensity when the drop is close to the solid. Additionally, two low-intensity counter-rotating 
vortices appear on the periphery of the drop. Figure 5a and b show the streamlines and vortic-
ity field in a plane parallel to the floor, through the center of the drop. Both graphs highlight 
that the problem is intrinsically axisymmetric. Moreover, a clear pattern of pairs of low-intensity 
counter-rotating vortices can be observed in the vicinities of the interface, for both states.

Finally, the profiles evolution is presented in Fig. 6 in comparison with reference data [6]. 
Those profiles where obtained by using the mesh M 3. As can be observed, results from the 
present method qualitatively match the reference results.

Figure 4: Streamlines and vorticity field (s−1) in XY  plane (a) in the steady falling state  
( t* . )= 35 0  and (b) when the drop is closest to the solid ( t* . )= 44 85 .

Figure 5: Streamlines and vorticity field (s−1) in XZ plane (a) in the steady falling state  
( t* . )= 35 0  and (b) when the drop is closest to the solid ( t* . )= 44 85 .
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5 CONCLUSIONS
In the present paper, a CLS-MM-IB method is formulated. This approach aims to couple the 
flexibility to represent intricate geometries of the Immersed Boundary method [19], the opti-
mized domain obtained by using a Moving Mesh method [10], and the intrinsic advantages of 
mass conservation and robustness of the employed CLS method [7]. Therefore, the movement of 
bubbles/drops through full three-dimensional complex geometries could be addressed, with a 
very reasonable computational cost.

This method has been validated by solving the gravity-driven falling drop problem. 
Obtained results have been successfully compared with the reference data [6]. Reported 
results include velocity evolution, mesh independence study, evolution of the vertical posi-
tion of the drop, streamlines and vorticity fields, and profiles evolution. These results present 
a very reasonable level of accuracy in comparison with reference results, and a consistent 
physical behavior.
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Figure 6: Comparison of the evolution of drop profiles of the present work (mesh M 3) against 
results of [6] obtained by using a Front-Tracking method. The gap between 
successive drop profiles represents the distance the drop falls at a fixed time interval, 
and the last time instant corresponds with t* .= 38 3. Note that, for the reference 
results, some intermediate profiles were suppressed from the ones punished in [6], 
in order to make the evolution coherent with the chosen vertical initial position.
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