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ABSTRACT
The quantification of overall mass transfers in gas–liquid systems depends on the spatial evolution of 
the relevant variables close to the interface of the two phases. When turbulence is present (in the present 
study the turbulence is considered in the liquid phase), the methods of treating the problem consider the 
differential form of the momentum and mass conservation equations. The continuous hypothesis that 
underlies these equations in principle allows verifying the limiting trends very close to the interface. 
Because the theoretical concepts of turbulence are defined using statistical tools, the mentioned veri-
fication depends on the intrinsic definitions used in the statistical approach. In this study the turbulent 
mass transfer parameters are calculated for the thin region close to the interface based on the tool of 
random square waves (RSW). Theoretical results are obtained and analyzed in the context of existing 
experimental data and conceptual discussions of the literature, using a constant ‘reduction function’, a 
parameter defined in this methodology. The results of the present analysis show that the RSW method 
allows obtaining functional trends, as well as indicate the adequacy of using a variable reduction function 
to better represent reality.
Keywords: concentration fluctuations, gas-liquid interfaces, RSW, turbulence statistics.

1  INTRODUCTION
Transfer phenomena related to moving interfaces, like the gas liquid interfaces, are still not 
definitively quantified, a situation more evident if turbulence is present. From the molecular 
point of view, the interface is a transition region from the gaseous phase to the liquid phase, 
having a thickness of several molecular diameters of the species that compose the system. 
From the macroscopic point of view, the interface is a continuous surface, and the physical 
properties of the species under study are defined at this surface applying thermodynamic or 
constitutive laws. Turbulence must be taken into account in both cases: (1) it is a macroscopic 
‘random’ event composed by ‘immense’ populations of molecules that interferes in the 
molecular interaction of the volumetric interfacial region, or (2) it is a continuous ‘random’ 
event that interacts with the defined surface imposing local (microscopic) conditions for the 
transfer processes to occur. The term ‘random’ suggests the use of statistical tools in both 
approaches. The second approach, macroscopic and continuous, is the one considered in the 
present study.

The liquid side of the turbulent air–water interface is traditionally viewed as a superposition 
of sublayers that coexist in the region that forms the ‘surface-induced layer’ [1]. Figure 1 
shows the idealized structure. The thickness ‘S’ of this layer was defined as the far integral 
length scale L∞, considering that larger distances would not depend on viscous effects. The 
thickness of the so-called ‘viscous sublayer’ is indicated by ‘V’, and smaller distances to the 
surface are affected by viscous effects [2]. The turbulent Reynolds number Ret is used to quantify 
a mean value for V. Considering the Definition of Kolmogorov for the smallest eddies in 
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isotropic turbulence, the thickness ‘K’ is defined for the ‘Kolmogorov sublayer’ using the 
same variables of the viscous sub-layer. When mass transfer occurs, an ‘outer-diffusive sublayer’ 
is defined, which inserts the Schmidt number Sc in the quantification of the mean value of the 
thickness ‘O’. Finally, very close to the surface, the ‘Batchelor sublayer’ is defined with thickness 
‘B’, representing the mean distance that is more affected by characteristics of the smallest eddies in 
mass transfer. This last sublayer uses the same parameters of the outer-diffusive sublayer for its 
quantification. In the sketch of Fig. 1, it is assumed that Sc>1.

Measurements of independent and of simultaneous instantaneous concentration and velocity 
fields close to the air–water interface may be found in the literature, as Refs. [3–11], for example. 
These measurements allow obtaining statistical parameters like mean concentration profiles, 
concentration RMS profiles and experimental estimates of turbulent mass fluxes. When describ-
ing the used experimental optical techniques, different authors mention adjustments of the 
concentration measurements in the very near surface region, and interpolations for the velocity data, 
which have influences in the evaluation of the turbulent mass fluxes, for example, [4, 6–8]. Figure 2 
illustrates schematically the obtainment of mean concentration fields from instantaneous 
data, together with a sketch of the thickness of the sublayers of Fig. 1, emphasizing its 
sense as mean values. Details of the instantaneous concentration fields may be found in 
Refs. [3] and [4].

2  MATHEMATICAL MODELS
In the method of random square waves (RSW) variables that oscillate between two limiting 
values (boundary layer like problems) have their statistical properties evaluated using 

Figure 1: Superficial structure of successive sublayers that coexist in the region influenced by 
the surface during mass transfer.
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bi-modal random signals and corrective functions. In the 1D case of scalar transport four such 
functions are needed. Thus, as mentioned by Refs. [12] and [13], also four equations are 
needed. By rearranging terms, two of the parameters were linked, remaining three to be 
solved through only three equations. By considering one of the parameters constant (the 
reduction function ‘α’) it was possible to reduce the problem substantially and establish one 
equation for the so-called partition function ‘n’. In fact, the reduction function varies with z, 
the distance to the surface, and profiles of ‘α’ obtained from experimental data may be found 
in Refs. [14] and [8], for example (see Fig. 3). For stationary turbulence and constant α the 
equation for n was theoretically solved ([15] and [16]), allowing checking the behavior of the 
mean concentration profile. Equations (1) and (2) are the 1D mass conservation equation and 
the nondimensional form of the turbulent mas flux for the RSW method, respectively.
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These equations show the four mentioned functions: n, the cited ‘partition function’, which 
coincides with the normalized mean concentration; β is the normalized ‘superposition func-

tion’, which quantifies the coherence between concentration and velocity fluctuations; ω
2  is 

the RMS of ω, the fluctuation of the vertical velocity (ms-1), being ω *2  the normalized 
intensity of turbulence and A=1-α replaces the normalized reduction function. c* and z* are 
the normalized concentration fluctuation and the vertical dimension, respectively, the last 
with origin at the surface and positive downwards; D is the molecular diffusivity of the gas in 
the liquid (ms-2), E is the concentration boundary layer thickness (m), given by the position 
where n=0.01; IJ* = ω * *c  is the normalized turbulent mass flux. CS and Cb are the concen-
trations of gas at the surface and the bulk liquid, respectively (kg.m-3). The integration of eqn 
(1) furnishes the mass flux that crosses the medium, j*= -dn/dz*+IJ*, nondimensional and 
constant along z* (integration constant). Equation (1) shows that if dn/dz* has a critical point 
(maximum or minimum) in the physical domain, then IJ* also has a critical point at the same 
position. By assuming a minimum value of zero for IJ*, the integration constant assumes the 
value j*=-dn/dz*critical. On the other hand, considering the structure shown in Figs 1 and 2, 

Figure 2: Mean statistical properties obtained from series of instantaneous measured fields.
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where diffusion is dominant at the surface, and for which no vertical movement was pro-

posed, ω *2 0=  at z*=0 may be used, implying IJ*0=0, and j*=-dn/dz*|z*=0. This situation 
can also be applied when dn/dz* has no critical point. For the two described situations we 
have, then:
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2.1  Literature Solutions for ‘n’

The equation furnished by Ref. [16] for the mean concentration n and any constant value of 
A = 1-α is:

	
d n

d z
K

n

n*

/

/

=
+

−













−

+

+

−

























1

1

1
1

1
1

2

2

2
3

2

3

2

1

1

θ

θ

θ

θ

θ

θ

θ

θ 22

1
2

2
2

3

1

2 1 4 1

2 1 4 1

4

−





























= − +

= − +

=

,

( ) / [ ]

( ) /

/

θ

θ

θ

A A A

A A

A 44 12A +














.	 (4)

K is a nondimensional constant coefficient. Equation (4) was integrated for several values of 
θ1, or A, the last being a measure of the relative influence between molecular diffusivity and 
turbulence in the transfer phenomenon, or, equivalently, a measure of agitation. In the present 
study the values θ1=2 (or A=0.43099) and θ1=4 (or A=0.30007) are considered, which allow 
integrating eqn (4) obtaining eqns (5a) and (5b), respectively:

	 z n n* . [ . ln( ) ]= − + −0 20470 0 84587 1 	 (5a)

	 z n n n* . . ln . ln . .= − ( ) − −( ) − +





0 19690 0 68076 5 7913 2 5009 3 3517 .	 (5b)

Figure 3 allows visualizing the assumption of constant ‘α’ in the range of possible profiles of 
the reduction function. The grey cloud considers the sets of profiles shown in Refs. [8] and 
[14] for different agitation conditions in a tank with oscillating grids. The values of ‘α’ used 
in eqns (5a) and (5b) are shown in the figure.

Figure 4 shows calculated n profiles for different values of θ1, including θ1=2 (or 
A=0.43099) and θ1=4 (or A=0.30007). Data of Ref. [6], presented as a grey cloud, were 

Figure 3: Experimental data of α varying along z*, and the two constant values used here.
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compared with the calculated profiles, and the agreement with the solution obtained for θ1=2 
is remarkable ([16, 17]).

3  STATISTICAL FUNCTIONS FOR EQUATIONS (5A) AND (5B)

3.1  Central Moments: the Concentration RMS Function

n, α, β, and ω
2  allow obtaining any statistical function related to mass transfer for the 

boundary layer situation under study. The normalized central moments of the concentration 
fluctuations need only A and n, and are given by eqn (6) (see Ref. [12]), for η=1, 2, 3…. The 
RMS of the concentration fluctuation is obtained for η = 2.

	 c n n n n A* ( )[( ) ( ) ]η
η

η η ηη

= − − + −
− −1 1 11 1 .	 (6)

Equations (5a) and (5b) and the correspondent moments obtained through eqn (6) are plotted 
together against z* in Fig. 5. Because all calculated profiles depend on n, Fig. 5a shows the 
profiles n of eqns (5a) and (5b) and the RMS concentration, while Fig. 5b shows higher order 
moments.

The full lines of Fig. 5a were already presented in Fig. 4. Because θ1 (or A) are measures of the 
agitation, these curves show that different agitation conditions produce different normalized pro-
files. For η=2, eqn (6) furnishes the RMS function, given by:

Figure 4: Theoretical n profiles compared with experimental data.

Figure 5: (a) n and concentration RMS profiles; (b) Higher order central moment profiles.
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	 c n n A* ( )2 1= − .	 (7a)

Using eqn (5a) and assuming a power law c c z q* *2
1=  for z*→0, or n→1, where c1 is a constant, 

it is obtained that the RMS of the fluctuation increases at this position as

	 c z* ~ . *2 0 70115= .	 (7b)

Using eqn (5b) and steps similar to that followed to obtain eqn (7b), the result is:

	 c z* ~ . *2 0 35945= .	 (7c)

Equations (7a) and (7b) show that the solutions for constant ‘α’ produce RMS profiles that are 

paralel to the c *η
η

axis at z*=0. That is, the derivative of the RMS function tends to inifinite 
at this point. Figure 6 shows experimental and theoretical RMS profiles, the last obtained 
with eqns (5a), (5b) and (7). In this figure the horizontal axis follows, for convenience to 
reproduce the data, the normalization adopted by [5] as z+=z/δ, being δ the position where the 
concentration difference C(z)-Cb atains 36.7% of the total difference CS-Cb. The shape of the 
theoretical solutions follow the experimental data. Maximum values and peak positions are 
in the range of the observed values, and eqn (5a) follows more closely the observed data. The 

Figure 6: Experimental and theoretical concentration RMS profiles. Data of [5, 19, 20].
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experiments represented by the light grey cloud (envelope of data of Ref. [5]) show a finite 
slope (derivative) of the RMS function at z*=0. The studies of Refs. [3, 4, 6, 8, 10] also show 
RMS profiles with well-defined finite slopes at the origin. The study of Ref. [18] shows RMS 
results that do not attain zero at z*=0, although they also approach the surface with a finite 
slope. Such observed finite values imply that constant ‘α’ solutions probably not describe 
properly concentration RMS details at the origin, for mass transfer descriptions. Figure 3 
shows that α itself tends to zero at this point, and the maintenance of the nonzero constant 
value near the surface may be the cause of the observed differences between the theoretical 
and experimental RMS profiles. In general, as already mentioned, the theoretical solution for 
θ1=2, eqn (5a), represents better the experimental data.

3.2  Covariances: the Turbulent Transport Function

Although β and ω are still unknown functions, they appear combined in IJ*=ω * *c , which, 
together with the mentioned solutions, allow obtaining a second set of relevant statistical 
functions and analysing them. Equations (3) show that ω * *c  is related to the derivative of n 
given by eqn (4). When using equations (5a) and (5b) the derivatives simplify, respectively, 
to:

	 dn dz n n/ * . / ( . )= − +4 8853 0 84587 	 (8a)

	 dn dz n n n/ * . . / .= − −( ) +( )5 0787 2 5009 1 3048
2
	 (8b)

Equation (8a) has no critical point for 0≤n≤1. So, using eqns. (2), (3) and (8a), we have:

	 ω * * . / ( . ) .c n n= − + +4 8853 0 84587 2 6466	 (9a)

Equation (8b) has a critical point at n=0.63852. Using ω * *c =0 at this position, the equation 
for the turbulent flux is:

	 ω * * . . / . .c n n n= − −( ) +( ) +5 0787 2 5009 1 3048 1 5992
2

	 (9b)

Alternatively, when using the condition ω *2 0=  at z*=0, we have:

	 ω * * . . / . .c n n n= − −( ) +( ) +5 0787 2 5009 1 3048 1 4350
2

	 (9c)

Equation (9a) produces positive ω * *c  for z*>0, and a zero value at z*=0. About eqns. (9b) 
and (9c), although the small difference between them, the profiles are qualitatively different, 
as shown in Fig. 7. Equation (9b) shows a positive function ω * *c  with a nonzero value at 
z*=0, while eqn (9c) shows a negative ω * *c  close to the interface with a zero value at z*=0.

In the present case, the existing experimental data do not allow a definitive conclusion 
about the behaviour of ω * *c . Positive and negative values of ω * *c  are described in the 
literature ([5, 6, 20]), with both results occurring very close to the surface, being measurement 
inaccuracies pointed as possible causes of such results. Although frequently presented together 
with a constant j* profile (ω * *c tending to a nonzero constant value far from z*=0), data 
obtained for water in closed tanks do not lead to constant j* along z*, even near to the 
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concentration boundary layer. In Ref. [8] the authors discussed this point in their approach for 
turbulent fluxes using Taylor series around z*=0.

Figure 8 shows the envelope of experimental data of ω * *c  for several agitation conditions 
obtained by Ref. [5], together with eqns (9a), (9b) and (9c). The horizontal axis follows the 
same definition used in Fig. 6. The envelope shows possible positive, null, and negative val-
ues of ω * *c close to z*=0. The negative range of ω * *c  would imply, when using eqn (2), 
also negative values of the RMS velocity, a situation not observed in the experimental data. 
The growing region of the experimental data for z+<~1 (dark grey) is followed more closely 

Figure 8: Normalized theoretical turbulent fluxes from indicated equations, and envelope of 
measured values showing the decreasing of the turbulent flux for z+>~1.

Figure 7: Diffusive flux dn/dz*; turbulent flux ω * *c , and total constant flux j*.
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by eqn (9a), although the slope is better reproduced by eqns (9b) and (9c). The decreasing of 
the data for z+>~1 (light grey) ratifies that the constant flux condition is not attained in closed 
tanks, even near the interface. The mass accumulates in the closed volume, don’t being trans-
ported far away. The study of Ref. [8] presents experimental ω * *c  results with null values of 
the functions and their derivatives at z*=0, a situation better approached by eqn (9b), although 
its null value is deviated to z*=0.23 (or z+=0.57). As already mentioned, the equations used in 
this study reflect the constant α condition, which restrict the possibility of further adjust-
ments. Additional studies considering the non-constant α condition are thus desirable.

3.2.1  The RMS Velocity Function
Equation (2) allows writing the turbulent intensity (RMS velocity) in the following manner:

	 ω
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β, the superposition function is still unknown. This function assumes the value 1.0 in the 
RSW method when the records of velocity and concentration fluctuations superpose perfectly 
[12]. In the present case it implies that a volume of water descending into the bulk liquid 
carries the concentration of the surface, and a volume of water ascending to the surface carries 
the concentration of the bulk liquid. This situation is expected to occur close to the interface, 
so that β=~1 in this region may be assumed as a first approximation, and eqn (10) simplifies 
to:

	 ω
ω ω

*
* *

( )

* *

*

2

21
=

−

=
c

n n A

c

c
 or ω ω* * * *c c=

2 2 	 (11)

Considering here only the case of n profiles without inflexion points (derivatives without 

critical points), eqn (11) can be easily calculated because eqns (5a) and (7a) furnish c *2 , 

and eqn (9a) furnishes ω * *c . For the mentioned equations, Fig. 9 shows the ω *2  profile 
obtained from the RSW method, evidently applied to the space of the concentration boundary 
layer, together with experimental data from the literature, obtained as nearer as possible to the 
interface, but not entering the boundary layer. The measured values were obtained from the 
references [1] and [20]. In order to consider similar experimental conditions of both sources, 
the data having similar reference turbulence velocities at the surface were used. The reference 

Figure 9: (a) Inner and outer sides of the boundary layer; (b) Overall ½ slope trend.
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velocity was the so-called ‘Hopfinger and Toly velocity’, defined for oscillating grid setups. 
This velocity scale is given as 7.27 mm/s for the data of Ref. [20], and was calculated as 6.83 
mm/s for the data of Ref. [1]. Because of the proximity of the results, the same mass transfer 
velocity was used in both cases, with a value of 7.9.10-6 m/s for oxygen being absorbed by 
water, furnished by Ref. [20]. The molecular diffusivity of the oxygen into water was taken 
as 2.1.10-9 m2/s. These parameters allowed normalizing the data in order to compare them 
with the theoretical trends.

Figure 9a describes the condition of this comparison, with the present formulation applied 
to the inner side of the boundary layer, and the experimental data in the outer side. Fig. 9b 
shows the auxiliary line with slope 1/2, which seems to be followed as an ‘overall’ trend 
inside and outside the boundary layer. The study of Ref. [1] compares their data with a 1/3 
slope, but in the present analysis the 1/2 trend also composes well with the additional data 
of Ref. [20]. At the end of the boundary layer the theoretical predictions produce higher 
slopes.

It is interesting to note that the present evaluations of the RMS velocity are furnished without 
solving the equation for the movement of the liquid. Equations (10) and (11) follow from the 
mass conservation equation.

4  CONCLUSIONS
The comparisons presented in this study show that, although using the simplifying hypoth-
esis of a constant reduction function (α) in the RSW method, the theoretical behaviour of 
different statistical functions follow the general shape of measured data. In particular, the 
mean concentration is very well reproduced by the formulation for θ1=2, a fact already 
emphasized in previous studies. On the other hand, this simplifying hypothesis leads to dif-
ferences between experiments and theoretical calculations when considering details close to 
the interface for the statistical parameters associated to mass transfer. Because the RMS 
concentration and the turbulent mass flux, two lower order statistical parameters, are more 
commonly cited in the literature, they were used for the comparisons performed in this 
study. It was observed that the predictions using α=0.56091 (or θ1=2) follow better the 
experimental results of both the RMS fluctuation and the turbulent mass flux. In the last 
case, the used literature experimental data for turbulent fluxes do not reproduce the condi-
tion of constant total flux (the sum of diffusive and turbulent fluxes), because of the 
accumulation process in the bulk liquid (instead of being transported to greater distances, 
the mass stays in the closed tank, accumulating). In this case, the solution for θ1=2 followed 
more adequately the experimental data, however showing a different growing rate of ω * *c  
with z*, and not presenting the decay of ω * *c  (which results from the accumulation, not 
considered in the theoretical solution).

A first evaluation of the RMS velocity was furnished for the near surface region of the 
concentration boundary layer using the solution for θ1=2. The velocity data used in the present 
analysis did not attain the concentration boundary layer, but their general trend composed a 
kind of ‘prolongation’ of the theoretical solution. Considering the inner and outer sides of the 
boundary layer, an overall evolution following a ½ power law of z* was observed. The result 
for the RMS velocity was obtained from the formulation for mass conservation in the RSW 
method. It was not necessary to solve equations for the movement itself.

The best agreement between the experimental data used in this study and theoretical predictions 
of the different statistical functions (mean concentration, RMS concentration, turbulent flux and 
RMS velocity) was obtained using the solution for θ1=2.
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