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ABSTRACT
The boundary element method (BEM) is a widely used engineering tool in acoustics. The major disad-
vantage of the three-dimensional boundary element method (3D-BEM) is its computational cost, which 
increases with the size of the simulated obstacle and the simulated wave number. Thus, the geometrical 
details of the obstacle and the simulated frequency range are limited by computer speed and memory.

The computational cost for simulating large obstacles like noise barriers is often reduced by applying 
the two-dimensional boundary element method (2D-BEM) on three-dimensional obstacles. However, 
the 2D-BEM limits the geometry of the boundary to obstacles with a one-dimensionally constant pro-
file. An interesting compromise solution between the 2D-BEM and the 3D-BEM is the quasi-periodic 
boundary element method (QP-BEM). The QP-BEM allows the simulation of periodically repetitive 
complex three-dimensional structures and periodic sound fields while keeping the computational cost 
at a reasonable level.

In this study, first, the QP-BEM was implemented and coupled with the fast multipole method. 
Second, the QP-BEM was used to simulate the sound field radiated by a simple geometric object, i.e., 
a uniformly vibrating cylinder. Results were compared to an analytic solution, for the evaluation of the 
numerical accuracy of our QP-BEM implementation. For the demonstration of some use cases, third, 
the QP-BEM was used to simulate the sound field scattered by a sonic crystal noise barrier and a noise-
barrier top element.
Keywords: acoustics, boundary element method, diffraction, fast multipole method, helmholtz equation, 
noise barriers, periodicity, scattering.

1 INTRODUCTION
The boundary element method (BEM) [1] is a widely used engineering tool to simulate the 
radiation, scattering, and diffraction of acoustic waves for a bounding geometry, i.e., the 
obstacle. Applications include the design of exhaust pipes, loudspeaker waveguides, virtual 
acoustics as well as noise barriers [2]. For instance, the BEM was used to investigate the 
acoustic properties of various noise-barrier materials and noise-barrier shapes, e.g., the gen-
eral noise-barrier shape [3] or the design of noise-barrier top edges [4].

The major disadvantage of the three-dimensional boundary element method (3D-BEM) 
is its computational cost, i.e., the required amount of physical memory (RAM) and the 
computation time. The computational cost increases with the size of the obstacle and the 
simulated wave number. For instance, the calculation of the standardized sound diffraction 
index (defined in the European standard EN 16272-4) of a noise barrier’s top edge stipulates 
the simulation of a 10 m long and 4 m high noise barrier in third-octave bands ranging from 
100 Hz to 5,000 Hz resulting in a numerical problem of approximately two million unknowns 
(when considering eight constant rectangular elements per wavelength in the simulation [5]). 
However, the available amount of RAM limits the number of unknowns in the numerical 
calculation and CPU speed defines the computation time to solve the numerical problem.

In the field of acoustics, the computational cost for simulating large obstacles like noise 
barriers and high frequencies is often reduced by applying the two-dimensional boundary 
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element method (2D-BEM) on three-dimensional obstacles [6]. However, the 2D-BEM lim-
its the boundary geometry to obstacles with a one-dimensionally constant cross section. An 
interesting compromise solution between the 2D-BEM and the 3D-BEM is the quasi-periodic 
boundary element method (QP-BEM) [7]. The QP-BEM allows the simulation of periodi-
cally repetitive complex three-dimensional structures, e.g., noise barriers, while keeping the 
computational cost at a reasonable level. For instance, the calculation of the sound diffraction 
index of a periodic noise barrier with a period width of 5 cm can be reduced to a numerical 
problem of approximately 10,000 unknowns. However, as a consequence of the mathemat-
ical formulation of the QP-BEM also the sound field has to be periodic, e.g., produced by 
a periodic point source, or one-dimensionally constant, e.g., a plane wave or a cylindrical 
wave, in the simulation.

In this study, we present an implementation of the QP-BEM coupled with the fast multi-
pole method (FMM). We start with the mathematical formulation of the BEM, the QP-BEM, 
and the FMM approximation. Our QP-BEM implementation was then used to simulate the 
sound field radiated by a simple geometric object, i.e., a vibrating cylinder, and the results 
were compared to an analytic solution to evaluate the numerical accuracy of the code. Finally, 
to demonstrate some use cases the QP-BEM was used to simulate the sound field scattered by 
a sonic crystal noise barrier and a noise-barrier top element.

2 METHODS

2.1 Boundary element method

Starting from the Helmholtz (see Figure 1) equation, the sound field in an exterior domain 
Ωe bounded by the surface Γ of an object Ω is determined by the boundary integral equation 
(BIE):
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By the use of collocation with constant basis functions [8] and by discretizing the boundary 
as mesh, the BIE is transformed into:
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where j is the index of elements defining Ω and i is the index of collocation nodes at the 
center of each element.

2.2 Periodic BEM

For periodic obstacles (e.g. noise barriers) and periodic or one-dimensionally constant 
sound fields, eqn 2 can be simplified to an infinite sum over periods of the object and sound 
field [7]:
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where p is the index of the period and np is the orthonormal vector of the period cross section. 
i and j now represent the element and collocation node indexes in the periodic cut out Γp only.

A periodic sound field can be generated, for instance, by an infinite line of equidistant 
point sources:
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Figure 1:  Sketch of the an infinitely long noise barrier to illustrate the acoustic problem of 
interest. Ω is the periodic obstacle, i.e., the noise barrier, Ωe the exterior domain, 
Γ the boundary of Ω, n the normal vector on Γ, Γp the boundary in a period of 
the obstacle, wp the width of a period, and np the vector orthonormal to the cross 
section of the periodic obstacle.
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where x* represents the position of a point source in the period of the object and Q0 is the 
source strength of a point source.

2.3 Quasi-periodic BEM

In the QP-BEM, the infinite sums in eqn 3 and eqn 4 are truncated after P periods:
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For the periodic object and sound field, the Kirchoff-Helmholtz integral is then used to 
 calculate the sound field in the exterior domain:
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2.4 Fast multipole formulation

In the fast multipole method, the boundary mesh is clustered and the Green’s function is 
approximated for far-field clusters by:
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z1 and z2 are the center points of two clusters, D = z2 – z1, S is the unit sphere surface, hl
( )1  

denotes the spherical Hankel function of the first kind and order l, Pl are l-th order Legendre 
polynomials, and L is the multipole truncation parameter.

Then, the system matrix in the QP-BEM can be separated into a near-field and a far-field 
component:
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where Np is the sparse near-field matrix, T the far-field signature, Dp the translation matrix 
and S the near-field signature. The right-hand-side b is defined by the incident field and 
boundary conditions. For more details about the fast multipole method refer to [9, 10].

2.5 Implementation

The QP-BEM was implemented based on an existing open-source BEM code (the BEM-
Solver from Mesh2HRTF (Version 0.1.2) was used [10, 11], available from http://mesh2hrtf.
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sourceforge.net). To ensure a unique solution in the calculations, the Burton-Miller approach 
was used [12]. All simulations ran on a Linux desktop PC, equipped with two Intel Xeon 
E5-2667 processors (3.30 GHz) and 128 GB RAM.

3 EVALUATION
For the evaluation of the implemented QP-BEM, the sound field of an infinitely long and 
uniformly vibrating cylinder was simulated and compared to an analytic solution. The radius 
R of the cylinder was 20 cm. In all calculations, the sound pressure on the boundary and in the 
exterior domain was evaluated for frequencies ranging from 100 Hz to 5,000 Hz.

For the analytic solution, the sound field of an infinitely long and uniformly vibrating cyl-
inder was calculated by [13]:
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where H 0
2( ) and H1

2( ) are Hankel functions and v0 is the orthogonal particle velocity at the 
surface of the cylinder. For the QP-BEM calculation, a cut out of the infinitely long cylinder 
was modeled as a mesh. The period width wp was defined to be 40 cm and the mesh consisted 
of 20,480 rectangular elements. The edge length was 5 mm everywhere, which corresponded 
to approximately 14 elements per wave length at 5 kHz.

For the quantification of the accuracy of the QP-BEM implementation, the relative numer-
ical error for field points lying on the boundary surface Γ and for field points in the exterior 
domain Ωe was evaluated:
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where ||·||2 and ||·||∞ denote the Euclidean and infinity norm for discrete values of the sound 
pressure, respectively.

Figures 2 and 3 show the relative numerical error on Γ and in Ωe based on the Euclidean 
and infinity norm, respectively, for different truncation parameters ranging from P = 0 to 
P = 1,000. For P > 300 (corresponding to a cylinder length of 240.4 m used in the QP-BEM 
calculations), the relative numerical error decreased below 0.5%.

4 USE CASES
Relevant use cases of the QP-BEM are noise barrier simulations, e.g., numerical calcula-
tion of the insertion loss or diffraction index. Thus, we show two use cases of noise barrier 
simulations. In the first one, the sound diffraction at a noise barrier’s top edge consisting of 
quarter-wave resonators was simulated. In the second one, the sound field inside and behind 
a sonic crystal noise barrier consisting of finite-length vertical cylinders was simulated. Note 
that both use cases are not computable by the 2D-BEM or the 3D-BEM. On the one hand, it 
is not possible to represent sonic crystals of finite length or arbitrarily shaped quarter-wave 
resonators in the 2D-BEM. On the other hand, RAM requirements for simulating those exam-
ples by the 3D-BEM exceed the specification of current desktop PCs, even when coupling the 
BEM with the FMM.
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Figure 2:  Relative numerical error for the Euclidean norm. (a) Relative numerical error on the 
boundary. (b) Relative numerical error in the exterior domain.
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Figure 3:  Relative numerical error for the infinity norm. (a) Relative numerical error on the 
boundary; (b) Relative numerical error in the exterior domain.
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4.1 Noise barrier top element

When developing a noise barrier, the design of its top edge is of special interest since the 
top edge is mainly responsible for the diffraction. As an example, quarter-wave resonators 
can be used to damp the diffracted sound at the top edge. The QP-BEM was used to simu-
late the diffraction at a noise barrier’s top edge consisting of quarter-wave resonators. The 
QP-BEM reduced the numerical problem to the period width of the periodic noise barrier. The 
 quarter-wave resonators and the mesh of one period of the noise barrier are shown in Fig. 4a. 

Figure 4:  Simulation result of the sound diffraction at a noise barrier’s top edge (1,096 Hz). 
(a) 3D-view of a noise barrier top edge consisting of acoustic resonators which 
should damp the sound diffraction. The orange grid represents the mesh used for 
the QP-BEM simulation. (b) Sound field simulated with the QP-BEM around the 
top edge of the noise barrier and on the surface of the acoustic resonators.
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The period width wp was 9 cm, the mesh consisted of 17,992 rectangular elements and the 
average edge length in the mesh was approximately 1 cm. For the simulation, a periodic point 
source was placed in front of the top edge with a distance of 2 m. The truncation parameter 
P was set to 1,500, which approximately matches the length used in the cylinder example 
(P = 300, compare section 3). The calculated sound pressure is shown in Fig. 4b. The sound 

Figure 5:  Sound field simulated for a sonic crystal noise barrier at 816 Hz. (a) 806 Hz, 3-D 
view; (b) 806 Hz, top view. 
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pressure vanishes at different locations in the resonators (corresponding to the simulated fre-
quency and the length of the resonators), e.g., the sound pressure vanishes at the entrance of 
the resonators of the third resonator row.

4.2 Sonic crystal noise barrier

A sonic crystal noise barrier consists of equidistantly placed rigid cylinders. The radius of the 
cylinders and the distance between cylinders define its band gap frequency. The radius of the 
cylinders was 50 mm, the cylinders were 3 m high, and the distance between the cylinders 
was 150 mm. In the simulation, one period of the sonic crystal noise barrier consisted of two 
cylinder rows (compare Fig. 5b), the wp was 21.5 cm, the mesh consisted of 38,514 rectangu-
lar elements, and the average edge length in the mesh was 1.5 cm. The truncation parameter 
was set to P = 600, which approximately matches the length used in the evaluation example 
(P = 300, compare section 3). A periodic point source was placed at ground level with a dis-
tance of 3 m to the noise barrier. The sound field in and behind the sonic crystal noise barrier 
simulated with the QP-BEM is shown in Figure 5.

5 CONCLUSIONS
The QP-BEM allows the simulation of periodic sound fields scattered at periodic 3D obsta-
cles. The QP-BEM was implemented, coupled with the FMM and evaluated for a vibrating 
cylinder. The accuracy of the simulation increases, i.e., the relative numerical error decreases, 
for an increasing truncation parameter. In our implementation, the relative numerical error 
decreased below 0.5 percent when including more than 300 periods of the obstacle in the 
calculations. The QP-BEM can be used to simulate the sound field scattered around noise 
barriers with periodic geometry, which cannot be simulated by the 2D-BEM at all or by 
the 3D-BEM on current desktop PCs. Two possible use cases of the QP-BEM were shown, 
the sound field in a sonic crystal noise barrier and around a noise barrier top edge were sim-
ulated. In a following study, the QP-BEM will be used to optimize the shape of various noise 
barrier designs.
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