
© 2017 WIT Press, www.witpress.com
ISSN: 2046-0546 (paper format), ISSN: 2046-0554 (online), http://www.witpress.com/journals
DOI: 10.2495/CMEM-V5-N3-395-403

 T. Bashford, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017) 395–403

PARALLELISATION TECHNIQUES FOR THE DUAL
RECIPROCITY AND TIME-DEPENDENT BOUNDARY

ELEMENT METHOD ALGORITHMS

TIM BASHFORD, KELVIN DONNE, ARNAUD MAROTIN & ALA AL-HUSSANY
Faculty of Architecture, Computing and Engineering, University of Wales, Trinity Saint David Swansea, Wales,

United Kingdom.

ABSTRACT
The Dual Reciprocity BEM (DRBEM) and the Time-Dependent BEM (TDBEM) are considered in
the context of radiative and time-dependent thermal transport, respectively. In order to achieve sen-
sible solution times for realistic 3D problems with large meshes, a range of optimisation techniques
are considered, and a number of parallelisation techniques applied: shared memory using multi-core
threading, Graphics Processing Unit (GPU) acceleration using CUDA, and distributed memory on a
high performance cluster using MPI. Particular consideration is given to practical methods to invert
large dense matrices.
Keywords: BEM, CUDA, MPI, threading

1 INTRODUCTION
The DRBEM and TDBEM algorithms are applied to a three-dimensional radiative-thermal
problem illustrated in Figure 1. The context is light-based hair removal, where the clinician
requires an estimate of the time-evolving temperature distribution through the hair follicle
and the surrounding tissue. A representative target follicle is considered and an unstructured
tetrahedral mesh is generated to facilitate final temperature mapping onto the Nv tetrahedral
elements.

This paper considers the parallelisation of both the DRBEM and TDBEM for three distinct
approaches: shared memory using multi-core threading, GPU acceleration using CUDA, and
distributed memory on a high performance cluster using MPI. Details of the DRBEM and
TDBEM can be found in, for example, Donne et al. [1] and Brebbia et al. [2].

A number of authors, including Brebbia et al. [2], suggest that the number of internal
poles, L, could be significantly less than the total number of volume elements, Nv (~ 29,000
in this case), required. This paper also investigates the accuracy and speed of the DRBEM as
a function of internal pole count for this problem.

2 COMPUTATIONAL OPTIMISATION OF THE DRBEM
A significant optimisation was made to the model, through code analysis of the longest
 sections of code. Following analysis and profiling of the DRBEM code during operation,
two methods were identified as major bottlenecks, both comprising three nested loops, each
ranging to the total number of elements in the simulation. As such, in the case of the problem
under consideration, a mesh comprising ~ 29,000 elements, requiring a total of ~ 2.4 × 1013

iterations for each method. While the code internal to the innermost loop was not especially
computationally expensive, even a very minor increase in performance for one iteration will
yield a significant improvement in time taken overall.

Through code profiling, a major inefficiency was discovered. As 2D matrices are repre-
sented as 1D arrays, column-ordered access to matrices flattened by row inevitably resulted
in an extremely poor cache hit rate of ~ 48%. Cache hits for these row-flattened matrices are

396 T. Bashford, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017)

achieved essentially only by coincidence, nearly always at L3 as a result of other threads
having recently transferred the block, the probability of a cache hit inevitably decreasing in
inverse proportion to the mesh size, compounding the problem. Furthermore, as these cache
misses will require block fetches from main memory, they will trigger block replacement
especially in the L1 and L2 caches, invariably removing data which will be quickly referenced
again, essentially resulting in a higher rate of cache turnover, and causing cache misses for
blocks unrelated to the non-sequentially accessed arrays which may otherwise have been hits.

To remedy this, the matrices being accessed were modified to permit sequential access
by swapping rows and columns around the pivot value, that is, matrix transposition. This
facilitates sequential rather than non-consecutive element access, meaning that access to sub-
sequent array elements is highly likely to result from cache hits. As such, the sampled last
level cache hit rate for these functions changed from ~ 48%, the lower figures in the range
for larger matrix simulations, to ~ 94%, with matrix size making little difference to the cache
hit rate. Most importantly, the increase in cache hit rate resulted in a factor of 10 increase in
performance for these portions of the algorithm. For the problem considered, this resulted in
a real-time change from ~ 18 hours to ~ 5 hours processing time.

2.1 The inversion of large dense matrices

While the finite element method generates diagonally banded sparse matrices, the BEM is
characterised by large, dense matrices, which require inversion. There is significant litera-
ture in the inversion of sparse matrices, but very little pertaining to inverting large, dense
matrices.

BLAS comprises a low-level specification of linear algebra operations, implemented by a
host of well-established linear algebra libraries. Tightly coupled to specific hardware princi-
ples, BLAS libraries are almost always considerably faster than bespoke implementations of
the same operation.

Figure 1: Mesh modelling a hair follicle buried in tissue.

 T. Bashford, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017) 397

Libraries which implement BLAS include LAPACK, ATLAS, Eigen BLAS and Intel MKL.
A number of very similar libraries, including Armadillo, Eigen, MAGMA and PLASMA also
exist; while not fully BLAS-compliant, these libraries tend to include a significant degree of
crossover. Several of these were investigated for performance, especially with respect to par-
allelism. Figure 2 compares the efficiency of these BLAS implementations for varying matrix
order, and indicates the benefit of choosing the Intel MKL library.

By contrast, LU decomposition was found to be extremely computationally fast. This was
tested using the BLAS LU factorisation preconditioning function dgetrf and a second func-
tion, dgetri to take the preconditioned matrix and complete the inversion in serial. These
methods were selected by following the LAPACK naming scheme [3] where the first charac-
ter denotes the data type, the second and third the matrix type and the final 2–3 a descriptor
of the operation. In this case:

2.2 Parallelisation strategy

An important consideration of any parallel implementation is the model through which
memory is shared. One of the greatest restricting factors for an implementation is often that
memory may not be accessed outside of a process which allocates it, requiring a form of
inter-process communication. Inter-process communication methods often require an unde-
sirable replication of data to permit each process to access identical memory across process
boundaries. In nearly all parallel implementations, access to shared memory is highly desira-
ble as it negates copy overheads and memory duplication requirements.

Utilisation of shared and/or distributed memory is dictated by the mode of parallelism
being implemented and the hardware available. While some approaches, such as thread-
ing, can trivially make use of shared memory, others such as cluster processing through the
Message Passing Interface (MPI) provide numerous methods for interacting with distributed
memory, requiring specialised hardware to access shared memory. Distributed memory does
not always necessarily cross physical system boundaries; in the case of GPGPU implemen-
tations data must be transferred between system and graphics memory across the system
bus, resulting in a form of distributed memory. Recent development in approaches are work-
ing towards rationalising this, with Nvidia implementing algorithms which simulate shared
memory in CUDA 6.0 called ‘unified memory’ [5, 6].

2.2.1 Threading
A thread is a stream of executable code, which may be scheduled, sometimes considered
and previously termed a ‘lightweight process’. Threads are very similar to processes and,
while having less overhead, they cannot run autonomously. All threads are attached to
a process and all processes have a main thread of execution, including those intended

398 T. Bashford, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017)

for sequential processers. The development of multiple cores on a single die meant that
multithreading became an important method of improving program performance. Unlike
parallelism methods across multiple systems, or even multiple processes, threading has a
major advantage in that every thread may have access to the same memory, meaning that

Figure 2: LU decomposition efficiency for different parallel BLAS libraries, generated by
Hasan and Whaley [4].

 T. Bashford, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017) 399

complex inter-process communication, such as TCP, semaphore, signals and MPI are usu-
ally unnecessary.

Threading was applied to the matrix calculation steps of the DRBEM algorithm by uti-
lising the shared memory architecture such that no additional allocation of memory was
required. This resulted in a near-linear improvement in speed, scaling nearly linearly with
available core count.

2.2.2 MPI
A computer cluster (from here on, ‘cluster’) is a term often applied broadly and ambiguously,
but is specifically used to describe an ‘ensemble of independently operational elements inte-
grated by some medium for coordinated and cooperative behaviour’ [7]. Cluster computing
exists in the domain of high-performance computing (HPC) alongside grid and distributed
computing [8]. In more general terms, a cluster is a group of distinct physical computers,
capable of separate operation, which can cooperate as one via a network to distribute and
perform computing tasks. Clusters come in a variety of formats, from purpose-built systems
forming some of the world’s most powerful supercomputers, to small collections of desktop
computers.

Clusters can vastly surpass the capabilities of individual servers and are highly extensible,
with it usually being possible to add additional processing power to a cluster by increasing
the number of processing machines (blades). Clusters have long been utilised as research
tools for calculations which require substantial processing power to complete in a timely
fashion, however, are increasingly being used in commerce.

Considering the non-trivial memory requirements of the algorithm, any distributed memory
implementation must consider the risk of encountering page file. With the possible exception
of compute clusters specifically designed for heavy paging, generally utilising high-speed
hardware for swapping (for example node-level solid state drives), page file is ubiquitously
undesirable. The DRBEM requires simultaneous read access to large matrices for all four
stages of the calculation, and read and write access for the matrix inversion stages. As such,
a core affinity implementation would effectively enforce the required memory for each node
to at least memory (per simulation instance) × core count.

Given the relatively large matrices which are desirable for accuracy, this is an unacceptable
limitation. While it would be possible to reduce some of the matrices, this would still result in
a large amount of overlap of data causing additional memory requirements, and necessitating
a significant amount of network traffic to facilitate this secondary distribution of data. As
such, this method is sub-optimal. Instead, an approach was utilised whereby the application
was designed for node affinity, with each node maintaining a monolithic copy of the data, but
processing only a subset of it. By utilising node affinity, MPI parallelism occurs at the inter-
node level, but intra-node parallelism occurs through threading. This reduces the impact of a
cluster’s distributed memory such that each node requires no more physical memory than the
serial implementation, and also greatly reduces network traffic.

It should be noted that, while an MPI wrapper exists for the dgetrf function, the timings
generated were found not to exceed the performance of a single highly parallel compute node
due to the overheads involved. Therefore, this was not implemented, and instead the threaded
implementation utilised.

2.2.3 CUDA
Unlike a CPU, GPUs have been heavily optimised for graphical display, which at a compu-
tational level means large numbers of floating point calculations for every frame; indeed a

400 T. Bashford, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017)

GPU is in essence a specialised numeric computing engine. At a hardware level, GPUs are
hierarchical, comprising of multiple streaming multiprocessors, each with their own stream-
ing multiprocessors. GPU design revolves around maximising numerical throughput, and the
predominant way this is achieved in the hardware industry is through parallelism on a sub-
stantial scale. Modern GPUs include a very large number of Algorithmic Logic Units (ALUs)
and run a large number of threads, each with concurrent memory access to perform the same
operation on different parts of the data simultaneously, being classified as single instruction
multiple data (SIMD) within Flynn’s taxonomy [9].

An NVIDIA CUDA implementation was finally generated, using the threaded imple-
mentation as an initial code base due to the comparable shared memory technique of the
two approaches. While CUDA 6.0 supports shared memory between system and device for
cross-kernel access, the efficiency of this is poor for non-monolithic data storage. As such,
a block-copy implementation was selected instead, with each kernel being given exactly the
data it needs to calculate a memory-limited subset of the results, with as many kernels being
launched as necessary for processing to complete.

Memory overheads for this code were largely avoided as memory was copied from the
device to host directly into storage arrays in blocks, avoiding allocation of temporary host
storage. Despite this, processing overheads for these copy operations were significant. The
speed of these three methods relative to one another for a variety of mesh sizes is discussed
in section 2.4.

Similar to the MPI implementation, while a GPGPU-compliant implementation of the
dgetrf function exists in the MAGMA libraries, the performance was found to be significantly
worse than that of the CPU threaded implementation. As such, the matrix inversion routine
was not offloaded to the GPU.

2.3 Internal pole count

The DRBEM does not require the number of internal poles to be the same as the number of
volume elements where the solution is desired. Therefore, calculation time can be signif-
icantly reduced if the number of internal poles is reduced and the poles are selected from
the regions of interest where there is a graduated fine mesh. This was easily achieved using
a random number generator, where the selection of internal poles is automatically biased
towards the fine mesh region of interest. Given that meshes are generated to be dense around
the regions of interest, selection of entirely random elements will result in selection of a good
range of elements, assuming sufficient elements are selected.

This means that the ideal outcome is one which makes at worst a very minor sacrifice for
accuracy, but in doing so gains a significant increase in speed. Table 1 illustrates the dramatic
reduction in calculation time for varying pole count. Due to the DRBEM being of time complex-
ity O(N3) for much of the simulation, a relatively small decrease in the number of input elements
results in a significant decrease in time taken. 9 values to test were selected based on previous
experience with the algorithm, along with timing taken for each simulation. Experiments on
1,000 and 1,200 internal poles were re-run a series of times to test for statistical variance.

For each experiment where L < Nv, the mean square error relative to the L = Nv experiment
is calculated and displayed in Table 2.

Simulations at 1,500 internal poles and lower suffer from the greatest degree of error,
with simulations less than 5,000 poles making only a moderate improvement to accuracy.

 T. Bashford, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017) 401

The optimal choice of internal pole count will be considered in a future paper, including the
approach through which an appropriate value may be selected.

2.4 Computational results

Figure 3 outlines the time taken for each parallelism technique, for a range of internal pole
counts. Prior to any optimisation or parallelisation, the DRBEM algorithm required ~ 78 days
to complete processing for 29,000 elements. Optimised and parallelised, the model can be
run for 10,000 internal poles in 33 min on a threaded CPU, 28 min on a GPU, or 9 min on a
cluster.

Table 1: Values selected for pole-limited DRBEM testing.

Total elements Total non-follicle elements Time taken (mins)

1,000 159 0.4

1,200 359 0.5

1,500 659 0.6

2,000 1,159 0.9

5,000 4,159 8.1

10,000 9,159 33

12,000 11,159 94

15,000 14,159 869

20,000 19,159 145

28,761 27,920 296

Table 2: Mean squared error (MSE) for each selected internal pole value.

Total elements MSE

1,000 0.000552

1,200 0.000508

1,500 0.000461

2,000 0.000294

5,000 0.000128

10,000 0.000037

12,000 0.000023

15,000 0.000012

20,000 0.000002

402 T. Bashford, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017)

Similar optimisation of the TDBEM has been partially undertaken. Initial results are
extremely promising, using the same techniques applied in this paper. Without modifying
the internal pole count, an improvement in processing speed occurred, from ~ 6 h to ~ 7 min,
on the same hardware, using threading. An investigation into the improvement in speed
which can be achieved through modifying the internal pole count, and the resultant impact on
 accuracy, is the subject of future work.

3 CONCLUSIONS
Optimisation of the DRBEM has yielded a significant improvement in computational per-
formance. Prior to optimisation, the DRBEM algorithm required ~ 78 days to complete
calculation for the problem considered. By making a very minor sacrifice to accuracy, and
through the application of other optimisation and parallelisation techniques, this calculation
may be completed through the optimised model in ~ 28 min for the same hardware.

Similar success has been indicated for the TDBEM, however an investigation into the
impact of modifying the internal pole count has not yet been conducted. Nonetheless,
through optimisation and parallelism, a ~ 6 h calculation has been reduced to ~ 7 min.
Consideration of the selection of an appropriate internal pole count value without the need
for a parametric study has not been discussed here; these investigations will form the basis
of future work.

Figure 3: Time taken to run the dual reciprocity boundary element method implementation
for high-end CPUs, GPUs and Clusters.

 T. Bashford, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017) 403

REFERENCE
 [1] Donne, K.E., Marotin, A. & Al-Hussany, A., Modified dual reciprocity boundary ele-

ment modeling of collimated light fluence distribution in normal and cancerous prostate
tissue during photodynamic therapy. In 34th International Conference on Boundary
Elements and Other Mesh Reduction Methods, 2012.

 [2] Brebbia, C.A., Telles, J.C.F. & Wrobel, L.C., Boundary Element Techniques - Theory
and Applications in Engineering, ed. C.A. Brebbia, Springer, 1984.

 [3] Susan Blackford. LAPack Naming Scheme, Online. Oct. 1999, available at: URL: http://
www.netlib.org/lapack/lug/node24.html.

 [4] Hasan, M.R. & Whaley, R.C., Effectively exploiting parallel scale for all problem sizes
in LU factorization. In Parallel and Distributed Processing Symposium, 2014 IEEE
28th International, pp. 1039–1048, 2014.
http://dx.doi.org/10.1109/ipdps.2014.109

 [5] Landaverde, R., Zhang, T., Coskun, A.K. & Herbordt, M., An investigation of unified
memory access performance in CUDA. In High Performance Extreme Computing Con-
ference (HPEC), IEEE, pp. 1–6, 2014.
http://dx.doi.org/10.1109/hpec.2014.7040988

 [6] Asaduzzaman, A., Gummadi, D. & Yip, C.M., A talented CPU-to-GPU memory map-
ping technique. In Southeastcon, IEEE, pp. 1–6, 2014.
http://dx.doi.org/10.1109/secon.2014.6950676

 [7] Sterling, T.L., Beowulf Cluster Computing With Linux, Mit Press, 2002.
 [8] Yang, L.T. & Guo, M., High-Performance Computing: Paradigm and Infrastructure,

Wiley-Interscience, 2006.
 [9] Tibayrenc, M., Genetics and Evolution of Infectious Diseases, Elsevier Science, 2010.

