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ABSTRACT
In this paper, we apply the recently proposed fast block-greedy algorithm to a convergent kernel-based 
collocation method. In particular, we discretize three-dimensional second-order elliptic differential 
equations by the meshless asymmetric collocation method with over-sampling. Approximated solu-
tions are obtained by solving the resulting weighted least squares problem. Such formulation has been 
proven to have optimal convergence in H2. Our aim is to investigate the convergence behaviour of some 
three dimensional test problems. We also study the low-rank solution by restricting the approximation 
in some smaller trial subspaces. A block-greedy algorithm, which costs at most O(NK2) to select K 
columns (or trial centers) out of an M × N overdetermined matrix, is employed for such an adaptivity. 
Numerical simulations are provided to justify these reductions.
Keywords: ansa method, kernel-based collocation, adaptive greedy algorithm, elliptic equation

1 INTRODUCTION
Unsymmetric meshless kernel-based collocation methods, a.k.a. Kansa methods, have been 
used to solve various problems in science and engineering [1–5]. In 1990, Kansa solved 
time-dependent partial differential equation (PDEs) for the first time by such formulation 
using multiquadric [6, 7]. Because of the ease of implementation and (potentially) high accu-
racy, the methods were widely adopted for over 10 years without any theoretical backup. In 
2001, Hon and Schaback [8] showed that linear systems for Kansa methods could be singular. 
In order to obtain a non-singular linear system, the symmetric collocation method has been 
proposed [9], which requires a set of collocation-dependent basis functions. Until 2006, the 
convergence of the unsymmetric collocation method [10] has been proven provided that the 
collocation points are dense enough relative to the trial centers. The resulting linear system 
becomes over-determined, and it is natural to solve the resulting system in a least square 
sense. In [11], we investigate the convergence of the meshless collocation method for solving 
second-order elliptic equations in some bounded domain ll. The theories showed that we have 
to impose certain weighting for the boundary part to obtain the stability estimate. Using 
reproducing kernels of the Sobolev space Hm(Ω), we proved that the weighted least square 
solution converges to the analytical solution in an optimal rate hm–2 in H2-norm. Numerical 
evidence in two dimensions also showed that the weighted least square problem gives more 
accurate results than the unweighted one [12].

So far, we did not address the problem of ill-conditioning, which depends on the choice of 
the kernel, its shape parameter, data points distribution, and literally everything in the partial 
differential equation. One solution is to look for a well-behaved subspace of the trial space so 
that the condition of the reduced linear system can be controlled. We proposed various sub-
space selection algorithms [13,14] for such a purpose. The previously proposed sequential 
versions of adaptive greedy algorithms have a potentially high computational cost when the 
number of selections is large. Suppose we start from an M × N over-determined linear system 
with full rank M. If these sequential-greedy algorithms select K columns out of the provided 
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N, the cost would be O(K4 + NK2), i.e., it is O(N4) if K ≈ N. Recently, a more efficient 
 block-greedy algorithm [15] was proposed and the cost of selection is reduced to at most 
O(NK2), i.e., in the order as any direct method.

In this paper, we consider solving weighted least square problem by applying the block-
greedy algorithm for subspace selection. The two main benefits of employing adaptivity are: 
(1) to improve numerical stability by avoiding the problem ill-conditioning and (2) to improve 
efficiency by working with smaller linear systems. We aim to see how adaptivity would affect 
the theoretical convergence rate of the least-squares Kansa formulation.

2 CONVERGENT WEIGHTED LEAST SQUARES KANSA FORMULATIONS
In this section, we will discuss the weighted least square formulation and the block greedy 
algorithm in more detail. Let Ω C Rd be a bounded domain in Rd. We strongly consider sec-
ond-order elliptic differential equations subjected to a Dirichlet boundary condition  
on Г = ∂Ω:
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where the differential operator with bounded coefficients is defined as
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Let Φ be a symmetric positive definite kernel that reproduces a Sobolev space Hm(Ω) for 
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1 . Let Z = {z1,..., znz} be a discrete set of trial centers in, Ω, 

a.k.a. RBF centers. We define the finite dimensional trial space as

 u u z zz j j= = ⋅ −( ) ∈{ }Ω, , : : ,f span ZΦ  (3)

within which we seek for a numerical approximation to the PDE. Let X Ã Ω and Y Ã Г be two 
discrete sets of collocation points in the domain Ω and on the boundary Г. In order to measure 
the denseness of the data points x Ã U ∈ Ω{ },Γ ,we define the fill distance and separating 
distance as
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respectively, and the mesh ratio is given by rx:= hx/qx.
Assumption 2.1 We assume that he bounded domain Ω has a piecewise Cm -boundary Г 

so that Ω is Lipschitz continuous and satisfies an interior cone condition. Also, the functions 
f and g in (1) are smooth enough to admit a classical solution u* ∈ Hm (Ω). The operator L as 
in (2) is a strongly elliptic operator with coefficients belonging to W

∞
Ω( )

m . Let Φ be a 
 translation-invariant symmetric positive definite kernel that reproduces kernel of Hm (Ω) for 
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some integer m d≥ + +( )
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1 . Let the trial space be defined as in (3) by a discrete set oí 

trial centers Z. Let X = {x1,..., xnx} be another discrete set of PDE collocation points in Ω and 
Y = {y1,..., ynY} be a set of boundary collocation points on Г. We assume the set Z of discrete 
trial centers to be sufficiently dense with respect to Ω, Φ, and L but independent of the solu-
tion, and these three sets of points X, Y and Z to be asymptotically quasi-uniform. That is, 
there exist constants ϒ

x
 > 1 such that

 ϒ ϒx x x x xq h q for x X Y Z−
≤ ≤ ⋅ ∈{ }⋅

1 , ,  (4)

Under the above standard smoothness assumptions for high-order convergence, the following 
theorem ensures the convergence of a class of weighted least square (WLS) formulations. 
Most importantly, the necessary ratio of over-sampling in the over-determined Kansa formu-
lation is linear. It also specifies the scaling factors required for boundary collocations, i.e., the 
hX and hY dependent term in front of the discrete Y norm in (5).

Theorem 2.2 (Theorem 2.8 [11]) Suppose Assumption 2.1 holds, see details in [11]. Let 
uθ

X,Y,Z be the weighted least-squares solution defined as
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Moreover, the relative mesh norm hx/hz∪y and hz/hz∪y are sufficiently small and satisfy the 
denseness requirement
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for some constant C L mΩ, ,  that does not depend on the sets of points X, Y, and Z. Then for any 
0 ≤ θ ≤ 2, the error estimates
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 and m > 3 + d/2, respectively, hold for some constant C that depends only 

on Ω, Φ, L and uniformity constants ϒX, ϒY and ϒZ in (4).
Denoting the number of points in X, Y and Z be nX, nY and nZ, respectively. The matrix 

form of the least square problem must be an over-determined system since the number of 
collocation points X and Y must be larger than the number of trial centers so as to satisfy the 
denseness requirement suggested in Theorem 2.2. Suppose the above collocation method 
yields an (nX + nY) × nZ matrix system Aλ = b for identifying the unknown coefficient vector 
A ∈ Rnz and, hence, specifying the numerical solution
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We employ the block-greedy algorithm in [15] deal with such problems. For the algorithm to 
run, the original matrix A = A((X, Y), Z) does not need to be pre-computed.

Instead, only some of its components, which are determined based on the selected subset 
of collocation points (X, Y)k and trial centers Zk, are required for the algorithm to run. In each 
step, only the solutions of subsystems

A X Y Z b and A X Y Z vk k
k k k k k

T
, , , ,( )( ) = ( )( ) =λ λ

are required to compute the primal and dual residuals. These sub-systems can be efficiently 
solved by carefully updating the QR factorizations of the expanding sub-matrices. To 
improve stability and robustness, the algorithm uses more selected collocation points than 
trial centers in all sub-systems and tries to double the numbers of points in each step. An 
iterative stopping criterion is implemented to select a subset of K trial basis so that the 
condition number of A((X, Y)k, ZK) is below the user-specified tolerance. The result of 
applying the block-greedy algorithm is a subset of K trial centers out of the input nZ. The 
coefficients of the adaptive least-squares Kansa solution is then given by the least-squares 
solution to A((X, Y), ZK)λ

k
 = b, in which we use all available collocation conditions. The 

coefficients associated with the selected K trial basis are specified by λk ∈ Rk and those for 
the unselected are set to be zero. As a demonstration, Figure 1 shows the error profiles 
when solving a modified Helmholtz problem with Neumann boundary by a Kansa method 
with the (unscaled) GA trial function. To set up the method, it is not trivial tell the optimal 
number of trial basis required a priori and is not straightforward to uniformly distribute 
data sites in the Dupin cyclide. With “adaptivity” in place, a proper set of trial basis will be 
selected to yield better accuracy in a smaller amount of time. We refer readers to the origi-
nal article for the details of the block-greedy algorithm. In the next section, we will examine 

Figure 1:  Numerical error of Kansa solutions (left) using all the trial functions and (right) 
using a subset selected by the block-greedy algorithm.
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the convergence behaviour when we apply the adaptive algorithm to the convergent formu-
lation in (5).

3 NUMERICAL DEMONSTRATION
In this section, we present two numerical experiments to illustrate the effects of add-on adap-
tivity to the efficiency and accuracy of the weighted least-squares Kansa formulation. We use 
the Whittle-Matérn-Sobolev kernel given as:

Φ x x x x
m d

m d
d( ) = ( ) ∈−
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/e k e
2

2
2 2

for all �

where kv is the Bessel function of the second kind. The parameters m controls the smoothness 
and є controls the shape of the kernel. We know that Φ is a reproducing kernel for Hm(Rd) for 
any m > d/2.

All numerical simulations are implemented on a workstation equipped with Ten cores 
Xeon E5-2690 v2 3.0 GHz CPUs, 128GB RAM running CentOS Linux version 6. The MAT-
LAB code for the block-greedy algorithm can also be downloaded from [16].

3.1 Example 1

In this example, we consider solving a second-order elliptic equation on a rectangular domain 
Ω = [–1,1]3 in R3. i.e.,
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The analytical solution is set to u(x, y, z) = sin(πx/2) cos(πy/2) cos(πz/2) and the right-hand 
functions f and g are computed analytically. The parameters are set to ε = 0.7 and m = 6 being 
the smoothness of the kernel. These values are chosen to yield more noticeable demonstra-
tions. In practice, one can simply use any parameters with the block-greedy subspace selection 
algorithm. In Figure 2, we show the distribution of the regular trial centers and some selected 
trial centers. The original nZ = 4,913 trial centers are evenly distributed in Ω. Only K = 1,827 
trial centers are selected out of these nZ trial centers. It is obvious to see that the selection are 
rather uniform over both interior and the boundary of l, also see Figure 3.

In the process of block-greedy algorithm, one measure for the performance of point selec-
tion is the condition number of the reduced matrix. In all (double precision) computations, 

Figure 2:  Example 1: A schematic demonstration of (left) all nz = 4,913 trial centers and 
(right) the subset of K = 1,827 selected by the block-greedy algorithm.
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we use a tolerance of 1016 in the “condition number” stopping criterion in the block-greedy 
algorithm. Without any surprise, the condition numbers of the resulting reduced matrices are 
at most 1016. In Figure 4, we show the condition number of the full over-determined system 
of the WLS without adaptivity and those of the reduced system. We can see that the condition 
numbers of the original system increase as the numbers of trial centers increase. When we 
use all nz = 4,913 trial centers, the condition number becomes 1017. However, with the block-
greedy algorithm in place, the condition numbers of the reduced systems remain smaller 
than the prescribed tolerance. This is the direct consequences of the subspace selection  
by design.

One of the main reasons of using subspace selection is that it can select an appropriate 
subspace from the given trial space (determined by all the other user’s settings) so that the 
obtained approximation with the subspace yields a similar performance. Using the subspace 
to do the approximation can also reduce the problem size, and hence the computational time. 

Figure 3: Example 1: The selected trial centers on the top layer z = 1.

Figure 4:  Example 1: The condition numbers of (left) the original (nX + nY ) x nZ matrix 
without any selection and (right) of the reduced matrices using only the selected 
trial basis.
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Figure 5 shows both the computational times and the numbers of selected trial basis with 
respect to different numbers of total basis nZ. When the number of trial centers is small, 
say nZ ≤ 2,000, the over-determined systems do not suffer the problem of ill-conditioning, 
and it is unnecessary to make the selection. Yet, employing the block-greedy algorithm does 
not increase the computational time significantly. When the numbers of selected trial basis 
stagnate (due to ill-conditioning), we can see that the computational times of the adap-
tive approach grow slowly, i.e., O(nZ). We can also see from Figure 5 that the numbers of 
selected points keep at around 1,800 when the numbers of trial centers are greater than 2,000. 
These are the situations when the user’s setups yield ill-conditioned linear systems and are 
exactly when the subspace selection becomes significant. Finally, we show the H2-error 
with respect to the mesh norm hZ in Figure 6. The H2-error for the adaptive-WLS solution 
with block-greedy algorithm is no worse (or slightly better) than that the one from the full 

Figure 5:  Example 1: (left) computational time for obtaining the convergent weighted least 
square solution with and without subspace selection, and (right) number of selected 
trial centers by the block-greedyalgorithm.

Figure 6:  Example 1: The H2-convergence profile for the convergent weighted least square 
solution with and without adaptivity.
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system. Seeing no loss in accuracy is a good news. By using the block-greedy algorithm, 
we gain efficiency by significantly reducing a large number of trial centers to a smaller  
subset.

3.2 Example 2

In this example, we investigate the convergence behaviour for the different smoothness of the 
kernel. In this case, we consider solving the modified Helmholtz equation with wave number 
one whose analytical solution is set to

u x y z e x yx y z, , .( ) = +( )
− − −

2 2 22 2 2

When the smoothness of kernel is m, it means that the corresponding reproducing kernel 
Hilbert space, a.k.a. the native space, is norm-equivalent to Hm(Ω). In our simulations, we 
study the convergence behaviour for m = 5, 6, 7. We can see from Figure 7 that the numerical 
convergence rates are nearly 4.43, 6.17 and 8.63, respectively, before the problem of ill-con-
ditioning kicks in. In all tested m, the rates are all faster than m–2 predicted by theories. 

Figure 7:  Example 2: The H2-error profiles and computational times for various kernel with 
smoothness m.
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Similar to Example 1, we see that the H2-errors are similar with or without the block-greedy 
algorithm. However, the computational time can be reduced significantly. As an example, the 
algorithm selects K = 1,839 trial basis out of the 4,913 total, the computational time for solv-
ing the resultant least-squares system becomes one-fifth of the original one.

4 CONCLUSION
In this paper, we consider using an adaptive-weighted least squares Kansa formulation to 
solve second-order elliptic differential equation. In our previous work, we showed that such 
weighted least square solution is convergent in H2 optimally and the order of convergence is 
related to the smoothness of the kernel. The proven convergence results give theoretical sup-
port to the method and the proper way to set up Kansa method. Yet, they do not solve the 
problem of ill-conditioning commonly seen in meshless methods with global kernels. In 
order to tackle this problem, we apply a newly proposed block-greedy algorithm for subspace 
selection. The fast block-greedy algorithm is an improvement of the sequential-greedy algo-
rithm. The block-greedy takes only O(NK2) when the sequential-greedy takes O(K4 + NK2) 

when we want to select K trial centers out of N trial centers. This extra adaptivity can reduce 
computational costs. The remaining question is its effect on the accuracy. Numerical demon-
strations show that the accuracies of lower-rank solutions obtained from smaller trial 
subspaces are as good as those from the whole space.
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