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ABSTRACT
The objective of this article is to develop a boundary element numerical model to solve coupled prob-
lems involving heat energy diffusion, convection and radiation in a participating medium. In this 
study, the contributions from radiant energy transfer are presented using two approaches for optical 
thick fluids: the Rosseland diffusion approximation and the P1 approximation. The governing Navier–
Stokes equations are written in the velocity–vorticity formulation for the kinematics and kinetics of the 
fluid motion. The approximate numerical solution algorithm is based on a boundary element numeri-
cal model in its macro-element formulation. Validity of the proposed implementation is tested on a 
one-dimensional test case using a grey participating medium at radiative equilibrium between two 
isothermal black surfaces.
Keywords: compressible fluid flow, radiation models, boundary element method

1 INTRODUCTION
The Navier–Stokes equations set is commonly used as a frame for the solution of transport 
phenomena in a fluid flow. It provides a mathematical model of physical conservation laws 
of mass, momentum and energy considering specific rheological models describing non-con-
vective fluxes of momentum and energy. In general, all three physically different mechanisms 
of heat transport can occur, that is diffusion, convection and radiation. The energy radiation 
phenomenon, which is a complex non-linear mode of heat transfer, gains importance at suf-
ficiently high temperature [1]. At temperatures which are high enough these processes are 
essentially interdependent; energy transfer by one mechanism can influence heat exchange 
by the other mechanism and vice versa. The objective of this article is to develop a boundary 
element numerical simulation model to solve coupled problems involving heat energy diffu-
sion, convection and radiation in a participating viscous compressible fluid flow.

The governing equation for radiative heat transfer is the radiative transfer equation [2], 
which is based on an energy balance for radiation passing through a differential volume in a 
participating medium in local thermo-dynamic equilibrium.

The radiation impact on overall heat transfer is conveyed in the energy equation, where, 
in the non-convective energy flux, besides the diffusion heat flux the radiative heat flux also 
needs to be taken into consideration. This is done in such a way that we include the term for 
the divergence of the radiative flux vector into the energy equation as the radiative energy 
source [3, 4]. The radiative transfer equations (RTE) is an integro-differential equation 
 presenting a serious issue in computational fluid dynamics. Applying the chosen radiation 
model means, under the given physical circumstances, a simplification of the radiative trans-
fer equation. In this study, the contributions from radiant energy transfer are presented using 
two approaches for optical thick fluids, that is the Rosseland diffusion approximation and the 
P1 approximation.
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2 GOVERNING EQUATIONS
The analytical description of the motion of a continuous viscous compressible heat radiation 
semi-transparent fluid is based on the conservation of mass, momentum and heat energy 
with associated rheological models for the non-convective fluxes of the momentum and heat 
energy and equations of state. The present development is focused on the laminar flow of 
compressible isotropic radiation semi-transparent fluid in solution domain R T= ×Ω , where 
Ω stands for the two-dimensional plane domain bounded by boundary Γ defined by the 
outward-pointing unit normal 

�
n, whilst T  represents the time dimension of the transport 

phenomenon.

2.1 Conservation equations

The field functions of interest are the velocity vector field ui(rj, t), scalar pressure field p(rj, t), 

temperature field T(rj, t) and the field of mass density ρ(rj,t), so that the mass, momentum and 
energy equations are given by the following set of non-linear equations:
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in the Cartesian frame xi, where ρ  and c denote changeable mass density and isobaric spe-
cific heat capacity per unit volume, c = cp ρ, t is the time, gi is the gravitational acceleration 
vector and tij  represents the tensor components of the momentum diffusion, whilst the  vector 

variables qj
D and qj

R
 are heat diffusion and radiation fluxes, respectively. The differential 

 operator D Dt⋅( ) /  stands for the Stokes material derivative.

2.2 Rheological models for non-convective fluxes

The conservation eqns (2) and (3) contain two molecular diffusive fluxes, that is tij and qj
D,  

representing the diffusion of linear momentum and heat energy, respectively. The New-
ton linear momentum diffusion constitutive model for compressible viscous shear fluid is 
 considered, such as

 t h h deij ij ijD= −2
2

3
� , (4)

where D di ii= =∈υυ
� �  represents the divergence of the velocity field or local expansion field, 

and η is a dynamic viscosity. For most heat transfer problems of practical importance, the 
simplification known as the Fourier law of heat diffusion is accurate enough, namely
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where kD  is the thermal heat conductivity.
All bodies at absolute temperature T  emit electromagnetic radiation continuously over a 

wide range of wavelengths. At temperatures which are high enough, the simulation of the 
heat transfer becomes very complex. The mechanism of the heat transfer plays an important 
role in radiation which can present a great deal of the total heat flux. The governing equation 
for radiative heat transfer is the radiative transfer equation (RTE) [2], which is based on an 
energy balance for radiation passing through a differential volume in a participating medium 
in local thermodynamic equilibrium (LTE). The change in spectral intensity i rλ

�( ) along a 
path from r  to r dr+ , where the time dependence of the intensity is neglected, expresses the 
quasi-steady form of the RTE
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The spectral extinction coefficient K r a r rSl l ls� � �( ) = ( ) + ( ) is defined as the sum of the 
spectral absorption coefficient aλ  and the spectral scattering coefficient σ

λ λS bi,  is the black 
body isotropic spectral intensity and ϕl is the scattering phase function. The eqn (6) is a 
first-order integro-differential equation for i

λ
in a fixed direction 

�
r . Due to the dependence 

on three spatial coordinates, two local direction coordinates and wavelength, an analytical 
solution is almost impossible for most engineering applications.

Thus, the eqn (6) has to be solved numerically using radiation transport models for spatial 
and directional dependencies and spectral models for the spectral dependency. In this study, 
we present an analysis of two common approximations for modelling radiative heat transfer 
that occurs in optically thick fluids. The contributions from the radiative energy transfer are 
presented using two approaches: the Rosseland diffusion approximation and the P1 approx-
imation.

2.2.1 Rosseland diffusion approximation model
In diffusion approximation, we consider an absorbing and emitting medium with isotropic 
scattering (f λ = 1). In an optically thick medium, radiation travels only a short distance before 
being absorbed or scattered. The Rosseland approximation reveals that the local spectral 
intensity i

λ
 depends only on the magnitude and the gradient of the local black body spectral 

intensity, i Tbλ
( ), at that position [2]. The radiative flux vector for a grey medium can be 

approximated as
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where KR is the Rosseland mean extinction coefficient, n is the refractive index and σ  is the 
Stefan–Boltzmann constant. Although the Rosseland model provides a substantial simpli-
fication of the RTE and is recommended for use in problems where the optical differential 
thickness kl l= ∫ K dr

L

0
 exceeds 10 [2], it is often used for simulation of the radiation processes 

in many engineering applications. In analogy to eqn (5) the radiation heat conductivity kR is 
introduced in eqn (7).
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For the Rosseland radiation model it is possible to specify an adiabatic boundary condition, 
that is a zero-temperature gradient dT dn/ = 0 at the solid wall or a specific wall temperature 
as the Dirichlet boundary condition. However, near a boundary, the diffusion approximation 
may not be accurate as the radiation is not isotropic [2]. To overcome this difficulty, the 
boundary condition at the edge of the medium is modified by using the effective jump bound-
ary condition. Using the Deissler jump boundary condition concept for pure radiation [5], 
Goldstein and Howell introduced a similar concept for combined conduction and radiation 
[6]. In this model, the radiative heat flux at the wall boundary qw

R is defined using the jump 
coefficient
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where Tw is the wall temperature and T x( )→ 0  is the extrapolated temperature of the medium 
at the wall. The jump coefficient is a function only of the conduction-radiation parameter 
N k K Tw w

D
R= / ,4 3s  which expresses a measure of the ratio of the energy transferred by 

conduction and radiation. For large Nw the jump effect can be neglected, as heat conduction 
dominates over radiation effects near the wall. In general, the jump coefficient is approxi-
mated by a curve fit to the plot given in [3]
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where we note that x Nw= log . To calculate a physical feasible jump temperature 
T T xw − →( )0 , a one-dimensional radiative energy balance for an infinitesimal medium 
layer adjacent to the solid wall is regarded, and delivers

 q k
T

n

T x T
w
R R

w

w

w

= −
∂
∂

=
→ −



s 4 40( )

Ψ
 (10)

As shown in the derivation of Ψw , the conditions for which the diffusion model 
is valid lead to the temperature jump T T xw − →( )0  being small, so the difference 

T T x T T T xw w w
4 4 30 4 0− →( ) ≈ − →( )( )  can be linearized. The jump temperature follows 

the relation
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2.2.2 Spherical harmonics approximation-P1 radiation model
The P1 radiation model relies on reducing the integral terms of the RTE to differential terms 
via a finite set of moment equations [2]. To develop the general PN method, the intensity 
at each position 

�
r  is expressed as an expansion in a series of orthogonal harmonics and the 

series is truncated after a finite number of N terms. The P1 radiation model is the simplest 
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case if only four terms in the series are retained. The method is a generalization of the Milne–
Eddington equations analysed in [7, 2]. In engineering radiative transfer problems, the P1 
model should typically be used for spectral optical thickness κ

λ
> 1 [3].

A medium with spectral extinction coefficient K rl
�( ) and isotropic scattering is consid-

ered. The spectral incident radiation at position 
�
r  is defined as

 G r i r l dl l
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where the integration takes over all solid angles [2]. Note that the spectral incident radiation 
divided by the speed of light G c

λ
/  is the spectral radiative energy density at location 

�
r  in the 

radiation field. The P1 radiation model yields two spatial differential governing equations, 
one for the gradient of the directionally averaged spectral intensity
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where the parameter Γ
λ λ

= 1 3K , and another for the divergence of net radiative heat flux 
density vector
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Equations (13) and (14) can be combined to yield a second-order elliptic PDE for the incident 
radiation.
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This equation is simply a statement that the net radiative heat flux out of any region occupied 
by the medium is the difference between that emitted and that absorbed in the volume under 
consideration.

In the grey medium with constant absorption and extinction coefficients eqn (15) is simpli-
fied to a non-linear inhomogeneous modified Helmholtz equation:
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whilst the divergence of the radiation flux vector in eqn (3) can be expressed as the local 
radiation source term SR:
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If it is assumed that the walls are diffuse grey surfaces, the eqn (16) is solved using Marshak 
boundary condition [3]
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where ∈w is the emissivity of the wall and the subscript w denotes the value of the indicated 
variable at the wall. Unlike the Rosseland diffusion approximation discussed above, there is 
no ambiguity about boundary conditions for the P1 approximation.

For the coupling of the radiative heat transport with the fluid dynamics, LTE is assumed 
and the time dependence of the radiative transfer equation is neglected. It follows from LTE 
that the temperature of the fluid and the corresponding radiative temperature in the medium 
are equal.

3 VELOCITY–VORTICITY FORMULATION OF NAVIER–STOKES EQUATIONS
In velocity–vorticity formulation, the fluid motion computation procedure may be partitioned 
into its kinetics and kinematics. The kinematics deals with the relationship and restriction 
between the velocity field at any given instant of time and the vorticity and local expansion 
field at the same instant, and is given by the following vector elliptic Poisson equation for the 
velocity vector
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For the known vorticity and local expansion field functions, the corresponding velocity 
vector can be determined by solving eqn (19), provided that appropriate boundary condi-
tions for the velocity are prescribed, that is the normal and tangential component of the 
velocity vector. The kinetic aspect of the fluid motion is governed by the vorticity transport  
equation.
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describing the redistribution of the vorticity in the fluid domain by different transport phe-
nomena, for example diffusion, convection, twisting and stretching, whilst the buoyancy, 
compressibility, and the non-linear terms act as a source or strengthen terms. The vorticity 
transport equation is a highly non-linear partial differential equation due to the products 
of velocity and vorticity in convective and in stretching-twisting terms, and the velocity 
field function is kinematically dependent on vorticity and local expansion. However, strong 
coupling of the kinematics and kinetics can be clearly observed, even in the case of incom-
pressible fluid.

The energy conservation equations are
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= +  and SR
= 0 for the Rosseland radiation model and k keff
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=  and 

S a G TR = − −( )4 4s  for the P1 one, respectively.
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The pseudo body force term 
�
f m and pseudo heat source term ST

mwere introduced into 
the vorticity fransport eqn (20) and into energy eqn (21) respectively, capturing the variable 
transport property effects, and given by expressions
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while the pseudo heat source term is given by an expression
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4 BOUNDARY-DOMAIN INTEGRAL EQUATIONS
In general, the set governing equations have to be transformed, using the Green identities 
or weighted residual techniques in combination with appropriate weighting function or fun-
damental solution, into boundary-domain integral equations. Boundary-domain integral 
formulation of the kinematics equation and the compressible vorticity equations has been 
presented by Skerget and Ravnik [8].

The integral representation of the non-linear heat energy diffusion convection transport 
equation is derived considering the linear parabolic diffusion differential operator yielding
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Therefore, the following integral representation can be evaluated
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The boundary integrals describe the total heat flux on the boundary due to molecular diffusion 
and convection. The first domain integral gives the influence of the perturbated convection 
and the nonlinear diffusion flux, the second domain integral includes the non-linear material 
effects and radiation source, while the last domain integral is due to the initial temperature 
distribution effect on the development of the temperature field in subsequent time interval.

The incident radiation equation is an elliptic modified Helmholtz equation and, therefore, 
by employing the linear elliptic modified Helmholtz differential operator, we obtain the 
 following expression
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and the corresponding boundary-domain integral representation to eqn (22) can be stated as
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where u∗ is now the modified Helmholtz fundamental solution given by
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whilst K
α

 is a modified Bessel function of the second kind of order α .

5 DISCRETIZED INTEGRAL EQUATIONS
The integral formulation of the governing PDE for the velocity, vorticity, temperature, pres-
sure and incident radiation are written in a discretized form in which the integrals over the 
boundary and domain are approximated by a sum of the integrals over all boundary elements 
and over all internal cells.

Since the implicit set of equations is written simultaneously for all boundary and internal 
nodes, this procedure results in a fully populated influence and system matrices, resulting in 
large computing times and memory demands, which is especially true considering the fluid 
flow characterized by a high Reynolds number value. In order to improve the economics of 
the computation, we employ the macro-element approach [9]. The idea is to use a collocation 
scheme for integral equations for each domain cell separately and require that the field func-
tions and their normal derivatives must obey the compatibility and equilibrium conditions 
over the domain cell boundaries. The final system of equations for the entire domain is then 
obtained by adding the sets of equations for each macro element, resulting in a sparse system 
matrix suitable to solve with iterative techniques [10, 11].

6 VALIDATION
To check the validity of the implemented Rosseland and the P1 radiation models we inves-
tigated a one-dimensional case. We consider a grey participating medium at radiative 
equilibrium between two isothermal black surfaces ∈=( )1  at temperatures T Kh = 600  and 
T Kc = 300 . We consider radiation as being coupled to the energy equation via Rosseland 
diffusion approximation with specified Dirichlet boundary condition and radiative heat 
transfer as a source term using the P1 radiation model with specified Marshak boundary  
condition.

The coefficient of the diffusion thermal heat conductivity is reduced to the value where 
k W mKD

=
−10 4 . The test example is analysed for a grey medium with optical thickness 

kL aL= = 10 and κL = 2. The influence of the natural convection was neglected. The exact 
results of the RTE are available for these cases and can be found in [1]. Figures 1 and 2 show 

the non-dimensional temperature T T T T Tc h c
∗

= −( ) −( )
4 4 4 4  versus non-dimensional coor-

dinate x x L∗
=  and compare the results of the P1 and the Rosseland radiation models with 

the results of [1].
The results reveal good agreement between present numerical results and the exact solu-

tion of Modest [1]. Results also reveal a temperature discontinuity (a sharp temperature 
profile) at the walls. In a limiting case of a transparent medium κL → 0, the non-dimensional 
temperature takes the value of 0.5. The temperature slip at the walls decreases as the optical 
thickness increases and vanishes as κL → ∞ .
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Figure 1:  The comparison of pure radiation simulation results for the dimensionless 
temperature versus non-dimensional coordinate for a grey medium between 
two plates. Results of the P1 model are shown versus benchmark results of  
Modest [1].

Figure 2:  The comparison of pure radiation simulation results for the dimensionless 
temperature versus non-dimensional coordinate for a grey medium between two 
plates. Results of the Rosseland model are shown versus benchmark results of 
Modest [1].



 P. Crnjac, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 3 (2017) 357

While the Rosseland model reveals the temperature discontinuity at the walls, the P1 model, 
due to low heat conductivity, results in a more physically realistic temperature profile at the wall.

7 CONCLUSIONS
We have implemented two approaches to solve for radiation energy transport within an optically 
thick fluid. The choice of any one of the solution methods will depend upon the computational 
effort needed for the solution as well as for the accuracy of the solution. Based upon the results 
of this study, there are some clear recommendations. The Rosseland approximation is easy to 
implement and economical in computing needs. These issues are especially important with 
regard to incorporating internal radiant heat transfer into existing heat transfer codes. However, 
this simplicity carries with it a significant source of inaccuracy – the inability of this method 
to capture the physics of the thermal boundary layer near the walls. Indeed, this downfall may 
lead to significant errors, especially in systems such as this where the thermal boundary layers 
are important for driving flow. The P1 model is slightly more difficult to implement, since it 
requires solving an additional coupled partial differential equation for an additional field var-
iable, the incident radiation. In addition, the computational effort needed to solve with the P1 
model is slighter greater than that needed for the Rosseland diffusion methods.
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