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ABSTRACT
In this paper we consider vibrations of the baffled elastic fuel tank partially filled with a liquid. The 
compound shell was a simplified model of a fuel tank. The shell is considered to be thin and the 
Kirchhoff–Love linear theory hypotheses are applied. The liquid is supposed to be an ideal and incom-
pressible one and its flow introduced by the vibrations of a shell is irrotational. The problem of the 
fluid-structure interaction was solved using the reduced boundary and finite element methods. The tank 
structure was modeled by the FEM and the liquid sloshing in a fluid domain was described by using the 
multi-domain BEM. The rigid and elastic baffled tanks of different forms were considered. The depen-
dencies of frequencies via the filling level were obtained numerically for vibrations of the fluid-filled 
tanks with and without baffles.
Keywords: baffles, fluid-structure interaction, free vibrations, liquid sloshing, multi-domain boundary 
element method, systems of singular integral equations.

1  INTRODUCTION
In fluid dynamics, the sloshing is defined as the motion of the free surface of a liquid in a 
partially filled tank or container. The computation of dynamic slosh forces arising due to the 
liquid motion within a partially filled tank is quite important in analyzing the directional 
behavior of tank trucks during various highway maneuvers. This problem is common in fuel 
tanks of automobiles, aircrafts, large ships and tankers.

When liquids slosh in closed containers, one can observe the multiple configurations 
(modes) in which the surface may evolve. Commonly, the different modes can be defined by 
their wave number a (number of waves in the circumferential direction) and by their mode 
number n.

Although baffles are commonly used as the effective means of suppressing the slosh-
ing magnitudes, the only few studies have assessed the role of baffle design factors. The 
size and location effects of a baffle orifice on the sloshing has been reported in only 
two studies devoted rectangular Popov et al. [1] and generic Guorong and Rakheja [2] 
cross-section tanks. It should be noted that anti-slosh properties of baffle designs have been 
investigated through laboratory experiments by using small size tanks of different geometry  
Lloyd et al. [3].

The overview of the research on the topic [2–5] demonstrates that the dynamic response of 
liquid-containing structures can be significantly influenced by vibrations of their elastic walls 
in interaction with the sloshing liquid.

The most of researchers have described the fluid-structure interaction neglecting gravity or 
elasticity effects. The considerable results were obtained in [4, 5]. Bermudez et al. [4] studied 
in vibrations of the 2D elastic vessel partially filled with an incompressible fluid under the 
gravity force. Here the only 2D rectangular tank was under consideration. The research work of 
Gavrilyuk et al. [5] was devoted to the vibration analysis of baffled cylindrical shells, but both 
shells and baffles were rigid. In this work the authors developed the analytical method. So there 
are some limitations in these methods, and a further study is needed for each new form of tanks.
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With respect to the all numerical work, which has been done, it is fair to say that there is 
still no fully efficient numerical method to deal with the sloshing in elastic fluid-filled baffled 
tanks. The novelty of the proposed approach consists in possibility to study the influence of 
both rigid and elastic baffles in the fluid-filled tanks in the form of shells of revolution with 
an arbitrary meridian.

2  PROBLEM STATEMENT
Consider the problem of free harmonic vibrations of the fluid-filled elastic shell of revolution 
having an arbitrary meridian, with internal baffles installed to damp the liquid sloshing. The 
shell is of uniform thickness h, and height L, made of homogeneous, isotropic material with 
elasticity modulus E, Poisson’s ratio n and mass density rs. The shell structure and its sketch 
are shown in Figure 1.

Denote the wetted part of the shell surface through s and the free surface of a liquid as S0. 
The liquid volume was divided here into two domains. The shell surface s consists of four 
parts, σ = ∪ ∪ ∪S S S S1 2 bot baf . Here S1 and S2 are lateral surfaces of first and second fluid 
domains, respectively, Sbot is the surface of the tank bottom and Sbaf is the baffle surface.

Let U= U U U1 2 3, ,( ) denote the vector-function of shell displacements.
Consider at first stage the free vibrations of the shell without a liquid (the empty shell). 

Assume that the time dependent shell displacements are given by

U = u exp u =i t u u uΩ( ) ( ); , ,1 2 3 .

Here Ω is the vibration frequency; the time factor exp iΩ( ) will be omitted further on. After 
the separation of the time factor, the vibrations of the shell without a liquid are described by 
the system of three partial differential equations

L u u jij i j
i

= =
=
∑ Ω2

1

3

1 2 3, , , ,,

where Lij are linear differential operators of Kirchhoff–Love shell theory Levitin and  
Vassiliev [6].

The finite element method was applied by Ventsel et al. [7] to evaluate the natural frequen-
cies Ωk  and modes uk, k N= 1, of the shell of revolution without a liquid. After forming the 

Figure 1: Shell structure with an internal baffle.
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global stiffness L and mass M matrices, the following equation of motion for the shell con-
taining fluid was obtained in [7]:

LU +MU = n�� pd ,

where n is an external unit normal to the shell wetted surface, the term pdn gives the fluid 
dynamical pressure upon the shell, normal to its surface. Note that the following equalities 
are valid for each eigenvalue and eigenmode

	 Lu MU MU uk k k k j kj= ( ) =Ω2 , , δ .	 (1)

To model the fluid domain, a mathematical model has been developed based on the following 
hypotheses: the fluid is incompressible, the motion of the fluid is irrotational and inviscid, 
only small vibrations (linear theory) need to be considered. So a scalar velocity potential 
Φ(x,y,z,t) whose gradient represents the fluid velocity can be introduced.

The fluid pressure p p x y z t= ( ), , ,  acting on the wetted shell surface is obtained from the 
linearized Bernoulli’s equation for a potential flow Lamb [8]

p
t

gz p p gz p
tl s l d l= − ∂

∂
+





+ = − = − ∂
∂

ρ ρ ρΦ Φ
0 , , ,

where g is the gravity acceleration, z is the vertical coordinate of a point in the liquid, rl is the 
density of a liquid, ps and pd are static and dynamic components of the fluid pressure, p0 is for 
atmospheric pressure.

At any instant the velocity potential Φ(x,y,z,t) could be determined from the following 
boundary value problem:

	 ∇ = ∂
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0

0

0
ζ ∂ ζ; ,	 (2)

where w denotes the normal component of the displacement vector U, namely, w = ( )U,n ; 
the unknown function ζ ζ= ( )x y t, ,  describes the form and position of the free surface. The 
second equation in (2) is the no-penetration condition on the wetted surfaces of the shell, the 
third equation here is the kinematics boundary condition, which assumes that a fluid particle 
of the free surface will always stay on this surface, the forth equation in (2) is the dynamic 
boundary condition, which consists in equality of the liquid pressure on the free surface to 
atmospheric one.

So we reduce the problem under consideration to the following system of differential equations:

	 LU +MU = n�� pd ; ∆ =Φ 0	 (3)

with boundary conditions from (2), relative to Φ, and fixation conditions of the shell, relative  
to U.

3  THE MODE SUPERPOSITION METHOD FOR COUPLED DYNAMIC PROBLEMS
Consider modes of fluid-filled shell vibrations in the form

	 U = uc tk
k

N

k
=

∑ ( )
1

,	 (4)
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where ck(t) are unknown coefficients and uk are the eigenmodes of vibrations of the empty 
shell. In other words, the mode of vibration of the shell filled by a liquid is determined as a 
linear combination of eigenmodes of its vibrations without liquid. Due equalities (1) we have

Lu uk j k kj,( ) = Ω2δ ,

where Ωk is the k-th frequency of the empty shell vibrations.
Consider the potential Φ as a sum of two potentials Φ Φ Φ= +1 2 , as it was done by 

Degtyarev et al. [9].
The series for potential Φ1 can be written as

Φ1
1

1= ( )
=

∑ �c tk
k

N

kϕ .

Here time-dependant coefficients ck(t) are defined in eqn (4). To determine functions j1k the 
following boundary value problems is formulated:

	 ∆ =ϕ1 0k , 
∂
∂

=ϕ
σ

1k
kw

n
, ϕ1 0

0k s = ,wk k= ( )u n, , k N= 1, 	 (5)

The solution of boundary value problems (5) was done by Ventsel et al. [7].
Thus the dynamic analysis of elastic shells of revolution with a liquid, neglecting the grav-

ity force, is formulated in terms of the functions U and Φ1. The above functions satisfy the 
system of differential eqn (3), the no-penetration condition and the lack of the pressure on a 
free surface, as well as the conditions of the shell fixation. The solutions of the boundary 
value problems (5) can be represented in the symbolic form as ϕ1k ki= ( )ΩH u , where H uk( ) 
is the inverse operator of the hydrodynamic problem [7].

Suppose that c t C i tk k( ) = ( )exp ω , where w is an own frequency of the shell with a fluid. 
Based on the eqns (1), (4) and (5) we obtain

	 Ωk kj kj j l k
k

N

k jC C2 2

1

δ δ ω ρ+( ) = ( )( )
=

∑ H u u, .	 (6)

The above equation represents a generalized eigenvalue problem. Solving this problem yields 
the natural frequencies w of the vibrations of the elastic shell conveying fluid, but without the 
gravity effects.

When the potential Φ2 is known, the low frequency sloshing modes will be obtained. To 
determine the potential Φ2 we have the problem of fluid vibrations in the rigid shell with 
gravity effects.

Use the expansion Φ2 2
1

= ( )
=

∑d tk k
k

M

ϕ , where dk.(t) - unknown coefficients, functions j2k 

are natural modes of the liquid sloshing in the rigid tank. To obtain these modes the following 
boundary value problems are considered:

	 ∆ =ϕ2 0k ; 
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Differentiate the third equation in relationship (7) with respect to t and substitute there the 
expression for ′ζ t

 from the forth one of (7). Suppose ϕ ϕχ
2 2k

i k t
kt x y z e x y z, , , , ,( ) = ( ) and 

obtain the next conditions on the free surface for each mode j2k with the sloshing  
frequency ck:
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It leads to the following eigenvalue problems

	 ∆ =ϕ2 0k ; 
∂
∂

=ϕ
σ

2 0k

n
  

∂
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= =ϕ χ ϕ2
2

2 1k k
kg

k M
n

, , .	 (9)

Solving these problems yields the sloshing frequencies ck. and modes j2k.
Finally, for the sum of potentials Φ Φ Φ= +1 2 , the following expression can be written

	 Φ = ( ) + ( )
= =

∑ ∑� �c t d tk k
k

N

k k
k

M

ϕ ϕ1
1

2
1

.	  (10)

The unknown function z takes the form

	 ζ ϕ ϕ= ( ) ∂
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+ ( ) ∂
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k
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1
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To define coupled modes of harmonic vibrations, suppose that c t C i tk k( ) = ( )exp ;ω
d t D i tl k( ) = ( )exp ω . Substituting these expressions into eqns (10) and (11) and then into 
equations

LU +MU = n�� pd , 
∂
∂

+ =Φ
t

g sζ
0

0

results in the generalized eigenvalue problem where both elasticity and gravity effects are 
taken into account [9].

4  SYSTEMS OF THE BOUNDARY INTEGRAL EQUATIONS AND  
MULTI-DOMAIN APPROACH

To define functions j1k and j2k we use the boundary element method in its direct formulation 
Brebbia et al. [10]. Dropping indexes 1k and 2k the main relation can be written in the form

2
1 1

0
0 0

πϕ ϕp q
p p

ds
p p

ds
s s

( ) =
−

− ∂
∂ −∫∫ ∫∫ n

,

where S S= ∪σ 0. The function j, defined on the surface s, presents the pressure on the wet-
ted shell surface and the function q, defined on the surface S0, is the flux, q = ∂ ∂ϕ / n.

To apply the multi-domain approach we divide the fluid domain into two sub-domains Ω1 
and Ω2, shown in Figure 2. Here we introduce the artificial interface surface Sint. Let 
σ1 1= ∪ ∪S S Sbot baf  and σ2 2= ∪S Sbaf  are the surfaces of the shell contacting with a liquid in 
sub-domains Ω1 and Ω2. Then boundaries of sub-domains Ω1 and Ω2 are 1 1∑ = ∪σ Sint and 

2 2 0∑ = ∪σ S .

 

Figure 2: Fluid sub-domains.
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Denote by j1, j2, j0 the potential values in nodes of s1, s2 and S0, respectively. The 
fluxes on s1, s2 are known from the no-penetration boundary condition as w w1 2, and on the 
free surface the unknown flux is denoted as q0. The potential and flux values on the inter-
face surface Sint will be unknown functions jji and qj , S jjint , ,⊂ =∑ 1 2, and we have 
ϕ ϕ2 1 1 2i i q q= = −, .

Consider the boundary value problem for determining the potential Φ1.
There are two types of kernels in the integral operators introduced above

	 A S
p p

ds B S
p p

ds p
s s

, ; , ;σ ψ ψ σ ψ ψ σ( ) = ∂
∂ −

( ) =
−

∈∫∫ ∫∫n
1 1

0 0
0

	 (12)

Introducing �S1 = σ1, �S2 = Sint, 
�S3 = σ2, �S4 = S0 allows us to obtain A A S Sij i j= ( )� �, ;  

B B S S i jij i j= ( ) =� �, ; , ,1 4.
By using the multi-domain approach to determine the potential Φ1 the next system of inte-

gral equations in the operator form was obtained:

	
A A B w B q p

A A B w B q p
i

i

11 1 12 1 11 1 12 1 0 1

21 1 22 1 21 1 22 1 0

ϕ ϕ σ
ϕ ϕ

+ = + ∈
+ = +

; ;

; ∈∈ Sint ;
	 (13)

A A B w B q B q pi32 1 33 2 33 2 32 1 34 0 0 2ϕ ϕ σ+ = − + ∈; ;

A A B w B q B q p S

A A B w
i

i

22 1 23 2 23 2 22 1 24 0 0

42 1 43 2 43 2

ϕ + = − + ∈
+ = −

ϕ
ϕ ϕ

; ;int

BB q B q p S42 1 44 0 0 0+ ∈ ⋅;

From the first two eqns in (13) the expressions for j1 and j1i were received as functions of 
fluxes w q1 1, .

	 ϕ ϕ1 1 1 2 1 1 1 1 2 1= + = +F w F q F w F qi i i; 	 (14)

F A B F A B A A A A B B A Bw q w1
1

1 2
1

1 11 12 21 1 11 12 212= = = − ( ) = − ( )− −
ϕ ϕ ϕ π; ; / ; / 22π;

B B A B F B A F F B A Fq i i1 12 12 22 1 21 21 1 2 22 21 22 2 2= − ( ) = −( ) = −( ) ⋅/ ; / ; /π π π

From third and forth eqns in (13) the analogical expressions were obtained for j2 and j1i as 
functions of fluxes w q q2 1 0, , . Then q1 can be written as

	 q D w D w D q1 1 1 2 2 3 0= + + ,	 (15)

where matrices D D D1 2 3, , are combinations of A B i jij ij, , , , ,= 1 2 3.
Using eqn (15) one can obtain unknowns j2 and j1i as functions of w w q2 2 0, , .
From fifth equation of (13) one can receive q0 in the form

	 q H w H w0 1 1 2 2= + ,	 (16)

where matrices H H1 2, are obtained by using A B i jij ij, , , ,= 1 4.
With the above expressions (15), (16) for q0 and q1, we have

	 ϕ =Qw, ϕ ϕ= W = Q =i i i i ij i jw Q{ } { } { }= = =1
2

1
2

1
2; ; , , 	

where Qijare obtained by using matrices D D D H H1 2 3 1 2, , , , .
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So for each j1k the pressure on the surface s will be defined by formulae

p c t p p S S S p c t pk l k k
i

k l k k k= − ( ) ( ) ∈ ∪ ∪ = − ( ) ( ) −ρ ϕ ρ ϕ ϕ�� ��1 1 2 1
1

1; ;bot
22 p P S( )  ∈; baf .

The boundary value problem for determining the potential Φ2 with multi-domain BEM 
(MBEM) was solved by Gnitko et al. [11]. The whole fluid domain was divided into several 
sub-domains for better computational performance than at using the single-domain BEM 
(SBEM).

5  SOME NUMERICAL RESULTS
In this study two kinds of eigenmodes were found by solving the boundary value problems 
(9) and (6): low frequency sloshing modes and hydroelastic vibration modes. The first ones 
correspond to the gravity waves on the surface of the liquid, whereas the second ones are the 
vibration modes of the elastic shell structure modified by the interaction with the liquid.

5.1  Low frequency sloshing modes

5.1.1 Cylindrical shell with baffle
The partially fluid- filled rigid cylindrical shell with baffles was considered. The parameters of 
the shell are following: the radius is R = 1 m, the thickness is h = 0.01 m, the length is L = 2 m. 
The filling level is H = 0.8 m, the baffle position is H1, the baffle radius is Rb = R – Rint. (Fig. 1).

Figure 3 demonstrates monotonic dependencies of the first 4 eigenvalues for a = 1, denoted 
by F1,F2,F3,F4, via the radius of the interface surface Rint at different baffle position H1, m.

Figure 3: Eigenvalues at a = 1 versus Rint for H = 1 m and different H1.
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From these results one can concluded that graphs of Fi as functions of Rint are essentially 
differ for different i and H1. The effect of baffles is considerable only for the lower frequen-
cies. Also small baffles (when Rint is relatively large) do not affect the lower frequencies. This 
conclusion corresponds to results of Gavrilyuk et al. [5]. The liquid above the baffle behaves 
like a sloshing one while the liquid below the baffle behaves like a rigid one. On the right 
border of the graphs the values of frequencies coincide with ones obtained for the unbaffled 
tank.

The first three modes of liquid vibrations are shown on Figure 4.
It should be noted that modes of the shells with and without baffles are similar.

5.2.1 Conical shell with baffle
Conical shells in interaction with a fluid have received less attention in scientific literature in 
spite of the wide usage of thin walled conical shell structures in a number of different branches 
of engineering.

The numerical procedure for a conical shell in the proposed method is the same as for a 
cylindrical one. The only distinction consists in formulae for the unit normal and coordinates 
of considered shell surfaces.

The first estimation was done for unbaffled coextensive cylindrical and conical shells with 
equal radiuses of free surfaces.

Consider the cylindrical shell with R1 = R2 = 0.4 m and H = 3.8464 m. That corresponds to 
the coextensive Λ-shape conical shell with R2 = 0.4 m and R1 = 1.0 m, H = 1.0392 m and 
q = p/6. Then consider the cylindrical shell with R1 = R2 = 1 m and H = 0.6154 m. That cor-
responds to the coextensive V-shape conical shell with R2 = 1.m and R1 = 0.4 m, H = 1.0392 m 
and q = p/6. Note that for V-shape tank the value R1 is for the free surface radius, whereas for 
Λ-shape tank the value R1 is for the radius of bottom.

Table 1 provides the numerical values of the natural liquid sloshing frequencies at a = 1 
for the coextensive cylindrical and conical shells.

The first frequency of cylindrical shell differs essentially for both Λ and V-shape tanks. 
With increasing the frequency number n, the difference between results became smaller.

The comparison of our numerical results with data obtained by Gavrilyuk et al. [12] was 
done. We consider both V-shape and Λ-shape conical tanks with R1 = 1.m and q = p/6. If R1, 
R2 and q are known quantities, than the corresponding value of H can be easy found as 
H R R= −( )1 2 cot θ. In Table 2 the results of numerical simulation are presented for a = 0, 1, 

Figure 4: Modes of vibrations of unbaffled and baffled cylindrical tanks, a = 1.
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2; n = 1 and different values of R2 in comparison with data [12]. The results are in good agree-
ment except for the frequency of Λ – shape tank at a = 0 and R2 = 0.2 m. But it was noted in 
[12] that in this case the low convergence was achieved by the proposed analytical method.

The numerical simulation of the natural frequencies of liquid sloshing for both V – shape 
and Λ – shape conical tanks was carried out for different n and a. Here H = H1+H2 = 1.0 m, 
R1 = 1.0 m, R2 = 0.5.m for both type of tanks, H1 is the baffle positions (Fig. 5).

In Table 3 the results of numerical simulation are presented for a = 0,1 and n = 1,..,4 and 
different H1, H2, Rint/Rb.

Natural frequencies of V – shape and Λ – shape conical tanks without baffles correspond 
to values H1 = H2 = 0.5 m, Rint/Rb = 1.

Results obtained show different behaviour for V – shape and Λ – shape conical tanks. For 
Λ– shape tanks the baffle positions and their sizes are not affected essentially on the frequen-
cies, while for V – shape tanks these effects are more considerable.

5.2  Hydroelastic vibration modes for baffled cylindrical shell

The elasticity effects of both baffles and tank walls were considered in studying the effects of 
fluid-structure interaction. We considered the cylindrical shell with a flat bottom, with 
R = 1 m, h = 0.01 m, L = 2 m, Young’s modulus E = 2·105 MPa, Poisson’s ratio n = 0.3. The 

Table 1: Comparison of frequencies, Hz.

Modes n = 1 n = 2 n = 3 n = 4 n = 5

Λ-shape conical shell
Cylinder 4.6079 13.3504 21.3866 29.3409 37.3589
Cone 5.6206 13.9162 21.8827 29.7942 37.6864
V – shape conical shell
Cylinder 1.4952 5.3163 8.5358 11.7059 14.8635
Cone 1.3052 4.9255 8.1411 11.3169 14.6724

Table 2: Natural frequencies of V – shape and Λ – shape conical tanks, Hz.

V – shape Λ – shape

R2 0.2 0.6 0.8 0.9 0.2 0.6 0.8 0.9
a = 0, n = 1
[12] 3.386 3.382 3.139 2.187 24.153 6.669 4.545 2.678
MBEM 3.389 3.391 3.192 2.200 20.027 6.669 4.545 2.678
a = 1, n = 1
[12] 1.304 1.254 0.934 0.542 11.332 3.515 1.661 0.726
MBEM 1.305 1.259 0.954 0.574 11.303 3.481 1.651 0.732
a = 2, n = 1
[14] 2.263 2.255 2.015 1.361 17.760 8.967 5.941 3.724
MBEM 2.265 2.269 2.048 1.394 17.939 8.965 5.941 3.726
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material’s density is rs = 7,800 kg/m3, the fluid density is rl = 1,000 kg/m3, the filling level is 
H = 0.8 m. In Table 4 the frequencies of axisymmetric vivrations are presented. The baffle 
position is H1 = 0.45 m, the baffle radius Rb was variable. The value Rb = 0 corresponds to the 
unbaffled tank.

From these results one can concluded that both elasticity effects and the size of baffles are 
affect essentially on the values of natural frequencies.

6  CONCLUSIONS
The multi-domain boundary element method has been implemented to solve the problems of 
hydro-elastic vibrations without neglecting gravity effects. The proposed approach allows us 

Figure 5: Baffled conical shells of Λ and V shapes.

Table 3: Natural frequencies of V – shape and Λ – shape baffled conical tanks, Hz.

H1 H2 Rint/Rb

V – shape tank Λ – shape tank

a = 0

0.5 0.5 1 3.466 6.681 9.845 12.99 7.985 14.37 20.70 27.01
0.5 0.5 0.5 3.408 6.668 9.843 12.99 7.968 14.37 20.69 27.01
0.8 0.2 0.2 2.443 6.059 9.565 12.88 7.113 14.20 20.65 26.99

a = 1
0.5 0.5 1 1.416 4.997 8.206 11.37 4.424 11.09 17.46 23.79
0.5 0.5 0.5 1.228 4.974 8.197 11.37 4.192 11.06 17.46 23.79
0.8 0.2 0.2 0.630 4.191 7.849 11.23 2.529 10.66 17.36 23.75

Table 4: Frequencies of elastic cylindrical shells with baffles, Hz.

n

Rb

Empty elastic shell Fluid-filled elastic shell

0 0.2 0.5 0.8 0 0.2 0.5 0.8

1 23.233 23.233 23.234 23.234 7.9259 7.5901 5.5213 1.7874
2 91.1011 91.1014 40.4818 24.4105 43.3566 42.350 15.172 9.7932
3 205.252 192.172 91.1015 91.1016 117.034 116.02 46.769 45.914
4 365.795 205.253 205.253 100.789 230.316 228.95 119.14 52.908
5 392.787 365.795 214.258 205.253 392.787 229.18 168.05 119.77
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to carry out the numerical simulation of vibrations for tanks with baffles of different sizes and 
positions in the tank. This gives the possibility of governing the baffle radius and its position 
within the tank by using numerical simulation. The rigid and elastic baffled tanks were con-
sidered. Dependencies of frequencies via the filling level were obtained numerically for 
vibrations of the fluid-filled cylindrical and conical tanks with and without baffles. The 
geometry of tank can be easy changed without complicated analytical calculations. The elas-
ticity effects were considered.
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