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ABSTRACT
A new method that evaluates dominant local dynamics by skeletonization, mathematical term decom-
position and the re-combination of a reduced number of dominant terms around the skeleton points is 
proposed to clarify the dynamics of hairpin vortices generated during the boundary-layer transition 
under free-stream turbulence (FST). The development of the method is based on the results of direct 
numerical simulations conducted for the laminar-turbulent transition on a flat plate with FST intensi-
ties of 0–6% and a free-stream Mach number of 0.5. Regarding the skeletonization, a new algorithm 
for extracting the interior points of vortex structures represented by enclosed iso-surfaces is developed. 
To identify the dominant terms, governing equations are decomposed into non-further-decomposable 
(NFD) terms. The proposed method is also extended to time series flow field data to reveal the variation 
of the combination set of dominant NFD terms during the evolution of vortex structures. The present 
method enables the automatic finding and categorization of the variations of the sets of dominant terms 
that govern local dynamics during the evolution of hairpin vortices.
Keywords: boundary layer, direct numerical simulation, hairpin vortex, laminar-turbulent transition, 
stability, turbulence

1 INTRODUCTION
Hairpin vortices are considered to be elementary building blocks of turbulence near a solid 
wall [1]. Since the work of Theodorsen [2], there have been many studies on hairpin/horse-
shoe vortices, and the generation of hairpin vortices has been discussed in numerous reports 
[3–8]. Among previous studies, Moin et al. [9] numerically examined the deformation of a 
hairpin-shaped vortex filament under self-induction and in the presence of shear using the 
Biot-Savart law. Hon and Walker [10] proposed a numerical method based on a Lagran-
gian vortex method that allows accurate computations of the trajectory of a three-dimensional 
vortex having a small core radius. Using this method, they clarified that a two-dimensional 
vortex containing small three-dimensional disturbances distorts into a complex shape, with 
subsidiary hairpin vortices forming outboard of the original hairpin vortex. Singer et al. [11] 
computationally studied the formation and growth of a hairpin vortex in a flat-plate boundary 
layer and its later development into a young turbulent spot. By direct numerical simulation 
(DNS), Zhou et al. [12,13] studied the evolution of a symmetric pair of quasi-streamwise 
vortex structures extracted from the two-point correlation tensor of turbulent channel flow 
data by a linear stochastic estimation procedure. They observed that sufficiently strong hair-
pin vortices generate a hierarchy of secondary hairpin vortices, and the mechanism of their 
creation closely resembles the formation of the primary hairpin vortex. Using a compressible 
DNS, Liu et al. [14] studied the nonlinear stages of laminar–turbulent transition. They dis-
cussed the coherent vortex structure appearing in the late stages of transition and the forma-
tion mechanism of single vortex rings, multiple vortex rings, and small length scales. Cohen 
et al. [15] proposed a model consisting of minimal flow elements that evolves into packets of 
hairpins. The three components of the model are simple shear, a counter-rotating vortex pair 
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having finite streamwise vorticity magnitude, and a two-dimensional wavy (in the stream-
wise direction) spanwise vortex sheet. Eitel-Amor et al. [16] studied the characteristics of 
hairpin vortices in turbulent boundary layers using parallel and spatially developing simula-
tions. They found that secondary hairpins are only created shortly after initialization, with all 
rotational structures decaying at later times. Kim et al. [17] studied the effects of background 
noise on the generation of coherent packets of hairpin vortices. They showed that the hairpins 
become asymmetric, leading to more complicated packet structures than are observed in the 
symmetric hairpin vortex train of the flow with a clean background.

Although there have been many studies on hairpin vortices, investigations into the effects 
of free-stream turbulence (FST) on the evolution of hairpin vortices are relatively scarce. 
Generally, hairpin vortices extend to various heights from a wall and widths in the spanwise 
direction. FST makes flow fields more disorganized and difficult to understand compared 
with flow fields without FST. A new method that can analyse vortex dynamics even under the 
influence of FST is needed to understand the effects. To the best of my knowledge, important 
mathematical terms that describe the behaviours of hairpin vortices have not been systemati-
cally clarified.

On the other hand, numerous methods have been proposed for vortex visualization [18,19]. 
Among these techniques, one of the most compact methods to represent the feature of a 
vortex tube is the vortex core representation, or skeleton method. To name a few, Sujudi and 
Haimes [20] proposed an algorithm for identifying the core of a swirling flow in 3-D discre-
tized vector fields based on the critical point theory. The core is found as the centre of the 
velocity fields where the rate-of-deformation tensor has one real and a pair of complex conju-
gate eigenvalues. Kida and Miura [21] proposed the sectional-swirl-and-pressure-minimum 
scheme, in which individual vortices are visualized by its skeleton representation. Peikert and 
Roth [22] proposed the “parallel vectors” operator as a basic tool for vector field visualiza-
tion, and demonstrated various techniques for computing feature lines, such as the vortex 
core and extremal curves, from field data using this operator in a unified manner. Meanwhile, 
other published tracing-oriented methods view the problem as integrating an ordinary differ-
ential equation. Gelder and Pang [23] proposed a method called “PVsolve” based on a root 
finding technique. Schafhitzel et al. [24] proposed a vortex core line extraction method based 
on the λ

2
 vortex region criterion. Liu et al. [25] and Gao et al. [26] proposed, by introducing a 

newly defined tensor “Liutex,” a series of third-generation vortex identification methods that 
can give improved vortex structures and vortex core lines which are unique and threshold-
free. However, these methods are not necessarily combined with the exploration of math-
ematical terms that describe the behaviours of hairpin vortices.

In this study, a new method that can evaluate dominant local dynamics by skeletonization, 
mathematical term decomposition, and the re-combination of a reduced number of dominant 
terms around the skeleton points is proposed to clarify the dynamics of hairpin vortices gen-
erated during boundary-layer transition under the influence of FST. In Section 2, computa-
tional methods employed in this study are described. In Section 3, computational cases are 
explained. Section 4 introduces the newly proposed method. Section 5 discusses the effects 
of FST on hairpin vortex evolution, the point cloud representation of vortices, skeletoniza-
tion, the selection of the sets of important terms for the system dynamics, and the variation 
of the sets associated with the time evolution of hairpin vortices. In Section 6, conclusions 
are presented. In Appendix A, the continuity equation, the compressible Navier–Stokes equa-
tions, the energy equation, and the compressible vorticity equations are decomposed into the 
non-further-decomposable (NFD) terms used in this study.
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2 COMPUTATIONAL METHODS
The governing equations are the unsteady three-dimensional fully compressible Navier–
Stokes equations written in general coordinates for body-fitted mesh geometries. The system 
of equations is closed by the perfect gas law. A constant Prandtl number of Pr = 0.72 is 
assumed. The equations are solved using a sixth-order finite-difference method. Time-
dependent solutions to the governing equations are obtained using the third-order explicit 
Runge-Kutta scheme. The present numerical method has been extensively validated for the 
prediction of transitional and turbulent subsonic flows [27,28].

Regarding the boundary condition, inflow profiles are specified at the inlet. Depending on 
the computational case, disturbances are added to a base inflow profile. The base inflow pro-
file is obtained by solving the boundary layer equation [29]. At the outflow and upper bound-
aries, non-reflecting boundary conditions with a mean static pressure of p

∞
 = 101,325 Pa are 

imposed. At the wall, the non-slip, isothermal wall condition T
∞
  =  273.15  K is imposed. 

Periodicity is imposed in the spanwise direction. The computational domain is a rectangular 
region with dimensions 416.31δ

in
, 80.0δ

in
 and 22.0δ

in
 in the x (streamwise), y (wall-normal) 

and z (spanwise) directions, respectively, for Cases A and C–D, and 318.0δ
in
, 80.0δ

in
 and 

22.0δ
in
 for Case B. Here, δ

in
 is the displacement thickness at a virtual point x = 300.79δ

in
. The 

Reynolds number based on the free-stream quantity and the length δ
in
 is 1,000. The inlet posi-

tion of the computational domain for Cases A and C–D is x = 300.79δ
in
, and that for Case B 

is 5δ
in
. The number of mesh points is basically 1,001 × 241 × 128 in the x, y and z directions, 

respectively, for Cases A and C–D, and 765 × 241 × 128 for Case B. 

3 COMPUTATIONAL CASES
Four cases (A–D) are considered in this study. The scenario for each case is summarized in 
Table 1. Cases A and B are reference examples. Case A has no FST, and the transition of 
the K-regime is reproduced. Case B has FST with a high intensity, Tu = 6%, and produces a 
bypass transition. In Cases C–D, the evolution of hairpin vortices is influenced by FST. The 
FST has an intensity of 0.5% in Case C, 1% in Case D. The mean free-stream Mach number 
is 0.5 in all cases. In Case A, disturbances comprising a two-dimensional Tollmien–Schlicht-
ing wave and a pair of oblique waves are superimposed on the Blasius solution [14]. In Cases 
B–D, FST is superimposed on the free-stream region of the velocity profile. In Cases C–D, 
the initial conditions are the resultant instantaneous flow field of Case A. At the inlet, the 
sinuous disturbances from Case A and isotropic FST are added to the inflow laminar bound-
ary layer profile.

In the present study, FST is obtained from an instantaneous flow field of isotropic tur-
bulence that had been computed separately. Velocity fluctuations in planes with a constant 

Case FST intensity IC Inflow BC

A 0% Steady LBL profile LBL + SD
B 6% Steady LBL profile LBL + FST(IST) 
C 0.5%

Case A LBL + SD + FST(IST)
D 1%

Table 1:  Computational cases. IC: initial condition, LBL: laminar boundary layer, BC: 
boundary condition, SD: sinuous disturbances, IST: Isotropic turbulence.
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separation distance are extracted from the instantaneous flow field. After an appropriate scal-
ing of the turbulence intensities, the resultant velocity perturbations are specified at the inlet 
boundary at every time step. Details of generating FST are explained in [27].

4 THE PRESENT METHOD FOR ANALYZING THE DOMINANT LOCAL 
DYNAMICS OF HAIRPIN VORTICES

A new method that consists of skeletonization, mathematical term decomposition and the 
combination of dominant terms around the skeleton points is proposed. 

For the skeletonization, a new algorithm for extracting the interior points of vortex struc-
tures represented by enclosed iso-surfaces is developed. By this algorithm, vortex structures 
are converted into point cloud data. Then, nearly mean skeleton points SP

k
 (k = 1,…,N

s
) are 

computed from the point cloud data, and local neighbourhoods W
k
 (k = 1,…,N

s
) are generated 

around each of the skeleton points. To identify dominant mathematical terms in each W
k
, the 

governing field equations are transformed to the form of

Π≡
∂
∂

∂
∂

∂
∂
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(1)

and the RHS is decomposed into NFD terms. Here, ρ, u, v, w, T, ζx, ζy, ζz are den-
sity; the x, y, and z components of a velocity vector; and the x, y, and z components of 
a vorticity vector, respectively. NFD terms that have large absolute values (LAVs) in 
W

k
 are then selected, and finally terms that have strong correlation with RHS in W

k
, 

which are called strong-correlation (SC) terms, are selected. The combination of the 
SC terms and the time-derivative terms of the variables, that is, Π, constitute a reduced-
order model or data-compressed model for the system dynamics within W

k
. When a set 

of NFD terms, LAV terms and SC terms in W
k
 are denoted as S S SNFD W LAV W SC Wk k k, , ,, ,  ,  

respectively, the hierarchical relationship Σ Σ ΣNFD W LAV W SC Wk k k, , ,⊃ ⊃  holds among them.

4.1 Newly proposed algorithm for judging interior points of a vortex

The interior region of a vortex tube is expressed using particles extracted by the algorithm 
devised in this study. This algorithm extracts mesh points surrounded by the iso-surface of 
the function f(x,y,z) = const. Although an arbitrary function could be used for f(x,y,z), the iso-
surface of the second invariance of the velocity gradient tensor (SIVGT), which is one of the 
most prevalent quantities for vortex visualization, is employed in this study. The details of the 
algorithm are explained in [30].

4.2 Nearly mean skeleton points

The present method then computes nearly mean skeleton points of the point clouds obtained 
as the interior points of vortex structures visualized by SIVGT. The nearly mean skeleton 
points are computed as the collection of the averaged locations of intersection of rays from 
interior points with the iso-surfaces, i.e. PR

k,m
 close to a cut point around the circle C in figure 

1 of [30]. Nearly mean skeleton points are also obtained by the algorithm for the L
1
-medial 

skeleton proposed by Huang, et al. [31]. It has been confirmed that both methods give similar 
results, although they are not shown here.
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4.3 Local neighbourhood of a skeleton point

For each skeleton point, the local neighbourhood W
k
 is assumed as mentioned previously. 

In this study, a rectangular-shaped neighbourhood specified in terms of mesh indices W
k
 = 

j j k k l lk k k k k k- , - , - ,∆ ∆ ∆ ∆ ∆ ∆+ × + × +  is generated for a skeleton point for which 
the closest mesh point is (j

k
, k

k
, l

k
). Here, Δ is the half width of W

k
 in the index space. In this 

study, Δ = 3.

4.4 NFD, LAV, and SC terms 

As mentioned previously, NFD terms are selected in each equation. In Appendix A, the NFD 
terms that constitute the RHS of Eq. (1) are shown. Although numerous NFD terms appear, 
not all terms become important. First, LAV terms are evaluated. The magnitude of a NFD 
term f nn , , , =1 2, in W

k
, which is denoted as fn Wk

, is defined as the maximum value of 

the absolute value of f
n
, in W

k
, i.e. f f j k ln W j k l W

n
k k

≡
∈

max ( , , )
( , , )

. LAV terms are then defined as 

NFD terms f
n
 such that f fn W n

n Wk k
³ emax{ }. In this study, ε = 0.3. 

The LAV terms selected as described above do not necessarily determine the variation of 
the RHS in W

k
 because these terms may cancel out and only a small subset in the set of LAV 

terms may control the variation of the RHS. Thus, SC terms that have cross-correlation coef-
ficients with an RHS larger than 0.7 in W

k
 are selected. The reason for selecting the SC terms 

from the set of LAV terms is to exclude terms of small magnitude that have strong correlation 
with the RHS. Flow variation in W

k
 is driven by competition between the SC terms. The set of 

the SC terms is selected within the neighbourhood W
k
 belonging to a skeleton point SP

k
, and 

therefore, the set of SC terms becomes different for different skeleton points. 

5 RESULTS AND DISCUSSION

5.1 Effects of FST on hairpin vortex evolution

Figure 1 shows the vortices generated in the process of the laminar-turbulent transition for 
Cases A and B. In Case A, symmetric hairpin vortices are generated, and the secondary 
hairpin vortices are well aligned. The amalgamation of hairpin vortices generated around 
both sides of the aligned region leads to the formation of turbulent regions. Although not 
shown here, the skin-friction coefficient C

f
 detaches from the laminar correlation at around 

x = 416δ
in
 and reaches the turbulent correlation at around x = 575δ

in
 [30]. In Case B, hairpin 

vortices are much smaller and more asymmetric. Dense and sparse regions are randomly gen-
erated. C

f
 detaches from the laminar correlation at around x = 36δ

in
 and reaches the turbulent 

correlation at around x = 81δ
in
 [30]. 

Figure 2 shows the time evolution of hairpin vortices influenced by FST. The hairpin vor-
tices are deformed due to the FST and become asymmetric. Although the arrangement of 
hairpin vortices is straight in Case A, the arrangement becomes staggered in Cases C and D. 
Many more secondary hairpin vortices are generated.
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Figure 1:  Instantaneous vortex structures that appear in Cases A and B [28]. Vortex struc-
tures are visualized by SIVGT. The colour on the iso-surface and in the legend is 
the Mach number: (a) Case A and (b) Case B.

(a) Case A (b) Case B

Figure 2:  Effect of FST on the time evolution of hairpin vortices, left: t = 258.0δ
in
/u

∞
, centre: 

t = 281.5δ
in
/u

∞
, right: t = 305.0δ

in
/u

∞
. The iso-surface quantity and the colour on the 

iso-surfaces are the same as in Fig. 1 [30]: (a) Case C and (b) Case D.

(a) Case C

(b) Case D
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5.2 Point cloud representation of vortices, skeletonization and the set of dominant terms

Figure 3 shows the vortex structures represented by the iso-surfaces of SIVGT, and also 
interior points enclosed by the iso-surfaces. These results show that the present algorithm can 
successfully pick up interior points surrounded by the SIVGT accurately. 

Figure 4 shows the time evolution of hairpin and satellite vortices represented by skeleton 
points and the iso-surfaces in Case B. For the purpose of visualization, the iso-surfaces are 
transparent. The skeleton points agree well with the deformation of the iso-surfaces due to the 
auto-generation of secondary hairpin vortices, and showing that the present skeletonization 
method can model even small deformations of the iso-surfaces sharply.

LAV terms are extracted for the equations of ρ, u, v, w, T, ζ
x
, ζ

y
, and ζ

z
 and collected over 

all skeleton points at t = 0, 258.0δ
in
/u

∞
, 281.5δ

in
/u

∞
, and 305.0δ

in
/u

∞
. The results are shown in 

Table 2, where t = 0 is the initial condition for Case C, in which symmetric hairpin vortices 

Figure 3:  Vortex structures visualized by SIVGT and its interior points (black points) en-
closed by the iso-surfaces (Case A). The iso-surface quantity and the colour on the 
iso-surfaces are the same as in Fig. 1.

Figure 4:  Time evolution of hairpin and satellite vortices represented by the skeleton points 
and the transparent iso-surfaces (Case C), The iso-surface quantity and the colour 
on the iso-surfaces are the same as in Fig. 1. (a) t = 258.0δ

in
/u

∞
, (b) t = 281.5δ

in
/u

∞
, 

(c) t = 305.0δ
in
/u

∞
.

(a)  t = 258.0δin/u∞ (b) t = 281.5δin/u∞ (c) t = 305.0δin/u∞
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are periodically distributed in the flow field. As found from the table, only a small number of 
NFD terms become large. In the equations of ρ, u, v, w, and T, the values of the NFD terms 
are smaller than those for the vorticity equations. The sets of LAV terms do not change sig-
nificantly for the present range of time spans. However, at t = 0, the terms of second-order 
derivatives appear in the sets in contrast to the other times where asymmetric hairpin vorti-
ces appear. As found from the iso-surfaces of SIVGT, vortex structures have an inclination 
towards the wall. Basically, viscous effects become small as vortex structures are lifted up.

Figure 5 shows the skeleton points around which the RHS of the u-equation in W
k
 is repre-

sented by one SC term, two SC terms, and three SC terms. At all times, the RHS around the 
skeleton points are mainly determined by one or two SC terms. This property is especially 
evident around the heads of hairpin vortices where the auto-generation of hairpin vortices 
takes place.

So far, the present method is applied to the analyses of the instantaneous flow fields. To 
investigate the variation of the sets of SC terms during vortex evolution, two time series data 
sets are analysed. Figure 6 shows the time evolution of skeleton points from t

1
 = 258.0δ

in
/u

∞
 

and t
2
 = 281.5δ

in
/u

∞
. In the figure, the evolution of three selected regions of skeleton points is 

also shown. Region 1 of t = 258.0δ
in
/u

∞
 corresponds to the near-head region of a two-leg hair-

pin vortex, Region 2 corresponds to a leg region, and Region 3 corresponds to the near-head 
region of a one-leg hairpin vortex. The reason for investigating the evolution of the skeleton 
points of each region separately is to identify the local dynamics that become strong in each 
region.

For each region, a corresponding region on the skeleton points at t = t
2
 is found. In each 

region at t = t
1
, only points corresponding to the skeleton points at t = t

2
 are considered. The 

corresponding points are found as follows: When the local velocity u
i
 of a skeleton point and 

time increment Δt = t
2
 − t

1
 are taken into account, it is predicted that each point x

i
 at t = t

1
 

moves to x
i
 + u

i 
Δt. By judging the distance between the predicted point and a skeleton point 

at t = t
2
, if the point x

j
 that satisfies min ( )x u xi i jt+ − <∆ e is found among the skeleton 

points at t = t
2
, the point x

j
 is deemed as the corresponding point of x

i 
. In this study, ε = 0.3δ

in
 

was assumed. 
The algorithmically explored results of the transition of the sets of SC terms from t = t

1
 

to t = t
2
 associated with Regions 1–3 are shown in Table 3. As found for the u-equation, the 

Table 2:  Collection of LAV terms in the equations of ρ, u, v, w, T, ζ
x
, ζ

y
, and ζ

z
 over all 

skeleton points at each time, where t = 0 is the initial condition for Case C.

Eq. k, t = 0 k, t = 258.0δ
in
/u

∞
k, t = 281.5δ

in
/u

∞
k, t = 305.0δ

in
/u

∞

ρ {r
k
} 1,3,5 1,3,5 1,3,5 1,3,5

u {u
k
} 1,2,3,4,5,17 1,2,3,4,5 1,2,3,4,5 1,2,3,4

v {v
k
} 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5

w {w
k
} 1,2,3,4,5,21 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5

T {t
k
} 10,11,12 10,11,12 10,11,12 10,11,12

ζ
x

{o
k
} 1,2,3,4,5,6,7,8,9,39 1,3,5,6,8 1,2,3,5,6,8,9 1,2,3,4,5,6,8

ζ
y

{p
k
} 1,2,3,4,5,6,7,8,9,44 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9

ζ
z

{q
k
} 1,2,3,4,5,6,7,8,9,82 1,2,3,5,7,8,9,82 1,2,3,5,6,7,8,9,82 1,2,3,4,5,6,7,8,9,82
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Figure 5:  Distribution of skeleton points at which the RHS of the u-equation in W
k
 is mainly 

represented by a single SC term (left), two SC terms (centre), and three SC terms 
(right) in W

k
 for Case C. The iso-surface quantity and the colour on the iso-surfaces 

are the same as in Fig. 1. (a) t = 258.0δ
in
/u

∞
, (b) t = 281.5δ

in
/u

∞
, (c) t = 305.0δ

in
/u

∞
.

(a) t = 258.0δin/u∞

(b) t = 281.5δin/u∞

(c) t = 305.0δin/u∞

same transitions u u u1 4 1,{ }→ { } and u u1 1{ }→ { } take place and are most frequently associ-
ated with Regions 1 and 3. In contrast, different transitions, such as {u

1
,u

5
} → {u1,u3,u5} and 

{u
1
,u

3
,u

5
} → {u1,u3,u5} take place in Region 2. In particular, the term u

3 
contains the effects 

of the z direction, which is reasonable when the fact that hairpin legs are oblique to the x 
direction is taken into account. The relative frequencies of the second and third transitions 
are higher in Region 2 compared with Regions 1 and 3. Based on these results, it is found that 
the regions are categorized inversely from the viewpoint of set transition.

By the present method, the variations of the sets of SC terms that govern the local dynam-
ics are automatically found and categorized during the evolution of hairpin vortices. The 
amplification and attenuation of disturbance can be evaluated in a Lagrangian manner. These 
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Table 3:  Transition of the sets of SC terms from t = t
1
 to t = t

2
 associated with Regions 1–3 

for u, v, w, ζ
x
, and ζ

z
. The number written in parenthesis on the right side of each 

equation name is the total number of points included in a region that has corre-
sponding points among the skeleton points at t = 281.5δ

in
/u

∞
. Each column “fq” 

shows the number of points on which a set transition takes place. The notation k;kʹ 
denotes the set transition f f f fk k k k1 2 1 2

, , , , { }→ { }′ ′ . The symbol φ denotes the 

null set where no SC terms satisfy the indicated condition. For example, the set 
transition {u

1
,u

4
} → {u1} takes place at 15 points out of 40 points associated with 

Region 1 for the u equation.

Region 1

u(40) v(40) w(40) ζ
x
(40) ζ

z
(40)

fq k;kʹ fq k;kʹ fq k;kʹ fq k;kʹ fq k;kʹ
15 1,4;1 21 1;1 29 1;1 30 1;1 3 1;1

15 1;1 4 1,5;1 8 1,2;1 4 φ;1 5 1;1,2

5 φ;1 4 1;1,3 1 1,2;1,2 3 1;1,9 2 1;1,3

3 1;1,3,4 4 1,4;1 1 1;1,3 2 1;1,3 1 1,5;1

Region 2

u(120) v(120) w(120) ζ
x
(120) ζ

z
(120)

29 1,5;1,3,5 24 1,5;1,3 46 1,4;1,4 34 1,3;1,3 21 1;1,5

24 1,3,5;1,3,5 19 1,5;1,3,5 24 1,4;1,3,4 10 1,8;1,2,8 19 1;1

14 1,5;1,5 18 1,5;1 20 1,3,4;1,3,4 8 1,3;1,2,8 13 1,3,82;1,3

14 1,3,5;1,3 13 1,3,5;1,3 19 1,3,4;1,4 7 1,8;1,3 12 1,3;1,3,82

440

x/δ i
n

z/δin

y/
δ i
n

460

skelton points at t = 258.0δin / u∞
skelton points at t = 281.5δin / u∞
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Corr. points of Region 1
Corr. points of Region 2
Corr. points of Region 3
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Figure 6: Time evolution of skelton points from t=258.0δ
in
/u

∞
 to t=281.5δ

in
/u

∞
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Region 3

u(65) v(65) w(65) ζ
x
(65) ζ

z
(65)

42 1,4;1 19 1,2,4;1 24 1,2;1 41 1;1 27 1;1

10 1;1 16 1;1 22 1;1 8 1;1,9 20 1,2;1

4 φ;1,4 11 1,4;1 17 1;1,4 4 1;1,2,8 5 1,9;1

3 1,4;1,4 4 1,2,4;1,4 2 1;1,3 3 1; φ 5 1,2,9;1

aspects give new information on stability when the present method is compared with the con-
ventional linear/nonlinear stability methods based on the Eulerian viewpoint.

6 CONCLUSIONS
The effects of FST on the evolution of hairpin vortices during the boundary-layer transition were 
investigated by DNS. FST intensities of Tu = 0–6% were considered with a free-stream Mach 
number of 0.5. When FST was introduced along with sinuous inlet disturbances, asymmetric 
hairpin vortices and numerous secondary hairpin vortices, which are qualitatively different from 
the case of no FST, are generated. The arrangement of hairpin vortices also becomes different. 
To clarify the dynamics of the hairpin vortices, a new method that evaluates the dominant local 
dynamics by skeletonization, term decomposition and the combination of dominant terms was 
proposed. For the skeletonization, a new algorithm for extracting interior points of vortex struc-
tures represented by SIVGT was developed. To identify dominant terms, the governing equations 
were decomposed into NFD terms. In addition, the proposed method was extended to time series 
flow field data to reveal the variation of the combination of SC terms during the evolution of the 
vortex structures. The transitions of the sets of SC terms become different according to the vortex 
region. The present method enables the automatic finding and categorization of the set transition 
that governs the local dynamics during the evolution of hairpin vortices.
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APPENDIX A
Here, NFD terms are derived for the continuity equation, the compressible Navier-Stokes 
equations, the energy equation, and the vorticity equations [32]. These equations are non-
dimensional, and the method of non-dimensionalization is same as Matsuura [33]. 
ρ ζ ζ ζ γ µ, , , , , , , , , Re         , , u v w T Mx y z  shows density, velocities in the x, y, z directions, 

temperature, vorticities in the x, y, z directions, the heat ratio, the dynamic viscosity, Mach 
number and Reynolds number, respectively. ∂(∙;∙) denotes a partial differential operator, and 
¶( ; )f x  denotes ¶

¶
f
x
. The number of letter on the right of the semicolon denotes the order of the 

derivative, e.g. ∂ ≡ ∂
∂ ∂ ∂( ; )f xyz f
x y z

3

.

Table 3: (Continued )
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