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ABSTRACT
In this paper, we present briefly the derivation of the equations of motion and boundary conditions 
for elastic plates with functionally graded Young’s modulus and mass density of the plate subjected 
to transversal transient dynamic loads. The unified formulation is derived for three plate bending 
theories, such as the Kirchhoff–Love theory (KLT) for bending of thin elastic plates and the shear 
deformation plate theories (the first order – FSDPT, and the third order – TSDPT). It is shown that 
the transversal gradation of Young’s modulus gives rise to coupling between the bending and in-
plane deformation modes in plates subject to transversal loading even in static problems. In dynamic 
problems, there are also the inertial coupling terms. The influence of the gradation of material coef-
ficients on bending and in-plane deformation modes with including coupling is studied in numerical 
experiments with consideration of Heaviside impact loading as well as Heaviside pulse loading. To 
decrease the order of the derivatives in the coupled PDE with variable coefficients, the decomposi-
tion technique is employed. The element-free strong formulation with using meshless approximations 
for spatial variation of field variables is developed and the discretized ordinary differential equations 
with respect to time variable are solved by using time stepping techniques. The attention is paid to the 
stability of numerical solutions. Several numerical results are presented for illustration of the coupling 
effects in bending of elastic FGM (Functionally Graded Material) plates. The role of the thickness and 
shear deformations is studied via numerical simulations by comparison of the plate response in three 
plate bending theories.
Keywords: functional gradations of young’s modulus and mass density, MLS approximations, plate 
bending theories, strong formulation, transient dynamic load.

1 INTRODUCTION
The FGM composites have gained significant utilization in design of structural elements not 
only because of superior properties of micro-constituents but also for elimination of inter-
face discontinuities occurring in laminated composite structures. FGMs became very 
attractive in a wide variety of plate problems (static, dynamic, buckling,…) considered 
within various plate theories (KLT, SDPT, higher order plate theories, Von-Karman assump-
tions for geometrical nonlinearities) and loadings (mechanical, thermal, electromagnetic,…). 
The most frequently used modelling of functional variation of material coefficients is the 
rule of mixture where the material coefficients of multiphase materials are related directly 
to the volume fractions and individual coefficients of the constituents [1, 2]. From the phys-
ical point of view as well as from the view of engineering applications the transversal 
gradation of material properties is more interesting than the in-plane gradation in plate prob-
lems. The transverse gradation gives rise to coupling between the deflections and in-plane 
deformations [3–6] even in the case of thin plate theory and static problems. Since grada-
tions of material coefficients affect the coefficients in equations of motion for plate bending 
problems, one can expect an influence of the material gradation not only on the magnitude 
of the response to dynamic loadings but also on the frequency of such response. Therefore, 
a detailed study of FGM plates is topical and interesting form the view of both the physical 
and mathematical aspects in both the static [3–6] and dynamic loading conditions. In recent 
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work [7], we have studied the coupling effects in thin as well as thick elastic plates subject 
to transient dynamic loadings via numerical simulations in plates without consideration of 
damping.

In this paper, we extend the formulation to FGM plates under the impact loads and pulse 
impact loads with including Rayleigh damping (damping is present in real engineering 
problems). We present briefly the derivation of the unified formulation for plate bending 
problems within three different theories such as the Kirchhoff–Love theory (KLT) for thin 
plates, the 1st order and 3rd order shear deformation plate theories (FSDPT and TSDPT). 
Despite the shortcomings of the KLT and the FSDPT, they are applicable to bending prob-
lems of thin and moderate thick plates, respectively, and because of certain simplifications 
they are still attractive. Recall that it is impossible to extend the formulation derived for a 
homogeneous plate to FGM plates by simple replacement of constant material coefficients 
by spatially variable ones. The correct derivation of equations of motion leads to discovery 
of coupling between the bending and in-plane deformation modes as well as to specifica-
tion of necessary conditions for such a coupling. Since the governing equations are given 
by rather complex PDE with high order derivatives of field variables, an efficient numerical 
treatment has been proposed by simplifying the mathematical complexity with preserving 
the physical nature of the problems. In order to decrease the order of derivatives, the orig-
inal governing equations are decomposed into the system of lower order PDE with 
introducing new field variables. Then, the strong formulation is developed with using the 
Moving Least Square (MLS) approximation for spatial variations of field variables. The 
semi-discretized governing equations lead to a system of the ordinary differential equa-
tions for nodal unknowns, which can be solved by using standard time stepping techniques. 
In this paper, we employ the Wilson θ -method [8] which is one-step, implicit method 
offering unconditional stability if θ ≥ 1 37. . In numerical simulations, we illustrate how the 
frequency and amplitudes of response oscillations are affected by gradation parameters, 
such as the levels and exponents of the power-law gradations of the Young modulus and/or 
mass density.

2 UNIFIED FORMULATION FOR TRANSIENT ELASTODYNAMIC 
FGM COMPOSITE PLATE BENDING PROBLEMS

Let us consider a straight plate structure occupying the 3D domain V x x x x x x h h= ∀ ∈ = ∈ ∈ −{ ( , , ) ; ( , ) , [ / , / ]}
1 2 3

3
1 2 3

2 2� x Ω
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2 2� x Ω = × −Ω [ / , / ]h h2 2 , with the thickness being significantly 
smaller than the in-plane dimensions, h L� . Expanding the in-plane displacements 
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being two key factors for switching among the three theories (KLT, FSDPT, TSDPT). Recall 
that the dependence of displacements on x

3
 coordinate is known and hence, this is true also 

for strains and stresses. Thus, we have to solve 2D problems. As regards the functional grada-
tion of the Young modulus and mass density, we assume the power-law gradation in the 
transversal direction as

 E x E E x
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It will be seen that the transversal gradation of the Young modulus gives rise to coupling 
between the bending and in-plane deformation modes. Therefore, it is impossible to take into 
account the governing equations derived for homogeneous plate and modify their coefficients 
with incorporating the spatial variation of material coefficients. Equations of motion as well 
as the boundary condition possibilities can be derived using Hamilton’s principle

 δ U W K dt
e

T

− −( ) =∫ 0
0

. (4)

Without going into details [7], we present the governing equations written for the primary 
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The superscript (*) is used for dimensionless quantities [7]. Taking into account the gov-
erning eqns (5)–(7) and the explicit expressions for the coefficients C( )⋅⋅  and D( )⋅⋅  (see e.g. 
[7]), one can find the necessary condition for the static coupling between the bending and 
in-plane deformation modes is the transversal gradation of Young’s modulus (since
C Cu u( ) ( )ϕ ϕ
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≠ 0, if ζ ≠ 0), while the necessary condition for the 
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≠ 0, if η ≠ 0). The coupling between the deflections and rotations (w −ϕ  

coupling) is controlled by the key factors c
1
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2
.

In order to eliminate the 3rd and 4th order derivatives of field variables in the governing 
equations, we propose to utilize the decomposition of the derived system of the PDE into a 
set of PDE with derivatives not higher than second order [3] by introducing new field varia-
bles m t∗( , )x , s t
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Recall that the formulations within three particular theories can be obtained from the pre-
sented unified formulation by proper selection of the key factors c

1
, c

2
.

3 NUMERICAL IMPLEMENTATION
The MLS-approximation belongs to mesh-free approximations, since no predefined connec-
tivity among nodal points is required [9]. The nodal points are freely distributed inside the 
analyzed domain and on its boundary. Beside the standard MLS-approximation, one can 
utilize also the Central Approximation Node (CAN) concept [10, 11] which enables to utilize 
the local support character of the approximation efficiently. In the case of strong formula-
tions, however, the advantages of the local support approximation are utilized immediately 
[12, 13]. The MLS-approximation of a field variable g t( , )x  is expressed in terms of the shape 
functions ψ a ( )x  and certain nodal unknowns ˆ ( )g ta  as

 g t g tq
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where the central approximation nodal point xq can be selected as the nearest nodal point to 
the point of approximation x, and a n q a: ( , )=  is the global number while a is the local num-
ber of the node from the support domain of the nodal point xq.

For solution of the system of the ODE for nodal unknowns

u t u t s t t f t w t m ta a a a a a( ) ( ), ( ), ( ), ( ), ( ), ( )∈{ }∗ ∗ ∗ ∗ ∗ ∗

α α α α
ϕ

aa

N
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we employ the Wilson θ -method [8, 14, 15] which assumes a linear change of accelerations 
within the time interval t t t

k k
, +



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θ∆ , where ∆t is the time step and t t t
k k+
= +

1
∆ . The proper 

correlation between the spatial and temporal discretization determines the stability of numer-
ical solutions. The Courant-Friedrichs-Levy (CFL) criterion is usually used as the necessary 
but not sufficient condition for stability: c t∆ / δ ≤ 1, where c, ∆t and δ  are the velocity, time 
step and spatial discretization step, respectively. Therefore, after many time steps one can 
observe divergence or non-physical damping of the numerical solution of transient problems. 
In the case of coupled field transient problems, the proper selection of the time step becomes 
problematic, if spreading of excitations of particular fields is characterized by various veloc-
ities. This is expected in the considered transient problems in FGM plates, because of the 
coupling between the bending and in-plane deformation modes with various velocities of 
elastic waves.

4 NUMERICAL EXAMPLES
Let us consider the square plate L L×  ( )L = 1  with clamped edges and constant thickness 
h h L L= ∈

0
50 5{ / , / }. The plates are either homogeneous or FGM with transversally graded 

Young’s modulus and/or mass density (see eqn. (3)). The Poisson ratio is assumed to be con-
stant ν = 0 3. . The homogeneous initial conditions are assumed for plates under transversal 
loading with two kinds of time dependence: (i) impact load q t H t∗

=( , ) ( )x , (ii) impact pulse 
load q t H t H t t

I
∗

= − −( , ) ( ) ( )x , where H t( ) is the Heaviside unite step function and t
I
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duration of the pulse load. Recall that the dimensionless loading is correlated with the actual 
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added to semi-discretized equations of motion as
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In the numerical computations we have used a uniform distribution of 256 nodes, i.e. the 

shortest distance between two neighbour nodes is δ = 1 15/ . The size of the time step is vari-
able according to the velocity of spreading of elastic excitations depending on the plate 
thickness as well as on the bending stiffness which depends on the gradation of Young’s 
modulus. In the MLS-approximation, we have chosen the radius of the interpolation support 
domain ra

= 3 001. δ , the shape parameter in Gaussian weights ca
= δ , and cubic polynomial 

basis with 10 monomials. In the Wilson θ -method, we have chosen θ = 1 4.  in order to guar-
antee unconditional stability.
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4.1 Example 1- Plates under Heaviside impact loading

Firstly, consider the homogeneous plate subject to impact loading. Fig. 1 shows oscillations 
of the thin plate (L h/ = 50) obtained by three plate bending theories. Rather small  differences 

Figure 1:  Deflection oscillations of a thin homogeneous plate under impact loading: 
(a) without damping, (b) with damping.
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Figure 2: Deflection oscillations of a thin FGM plate under impact loading.

Figure 3:  Deflection oscillations of thin and thick FGM plates under impact loading with 
consideration of damping and using TSDPT.
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Figure 4:  Deflection oscillations of thin and thick homogeneous and FGM plates under 
impact loading with consideration of damping and using TSDPT.
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can be seen in both the frequency and amplitude of oscillations obtained by particular theo-
ries. The deflections oscillate around the centre of oscillations with negligible damping and 
with unilateral bonding due to applied load. The centre of oscillations corresponds to the 
static value of deflection of the plate subjected to the static load q∗

=( )x 1. The negligible 
damping demonstrates the stability of the numerical solutions adjusted by a proper selection 
of the time step. The underestimation of the size of time step leads to divergent solutions, 
while overestimation yields non-physical damping of oscillations of the plate without consid-
eration of damping. Note that the solutions with damping are stable for much longer time 
intervals than those without damping. Nevertheless the differences between the results by 
particular theories are increasing with increasing the time instant of observation even in the 
case of thin plate.

The differences in both the frequencies and amplitudes for results by three mentioned the-
ories are more expressive in the case FGM thin plates (see Fig. 2).

Figure 3 illustrates several differences between the responses of the thin and thick homo-
geneous plates on the Heaviside impact load. Since the bending stiffness of the thick plate is 
higher than that of the thin plate, the frequency as well as the damping are higher too. Fur-
thermore, the central value of oscillations (i.e. the value w t∗

→ ∞( , )x ) as well as the first 
amplitude are higher for the thick plate than for the thin plate. This can be explained by the 
fact that we have used the same dimensionless load q t H t∗

=( , ) ( )x  for both plates and the 
actual load is proportional to h4 as mentioned above.

Figure 5:  Deflection oscillations of thin homogeneous and FGM plates under impact pulse 
loading with consideration of damping and using KLT.
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Oscillations of the midpoint of the thin and thick homogeneous as well as FGM plates are 
shown in Fig. 4, where we have used three different levels of power-law gradation of the 
Young modulus.

The higher frequency and stronger damping are observed again for the thick plates than for 
the thin plates. Moreover, the frequency and damping are increasing, while the central values 
of oscillations are decreasing with increasing the level of gradation of Young’s modulus in 
FGM plates because of increasing the bending stiffness.

Finally, Fig. 5 shows the oscillations of the mid-point deflections of thin plates under 
impact pulse load.

5 CONCLUSIONS
Transient elastodynamic problems for FGM plates are studied within three plate bending 
theories (KLT, FSDPT and TSDPT). The main result is the discovery of coupling between the 
bending and in-plane deformation modes in FGM plates with transversally graded material 
coefficients, such as the Young modulus and mass density.

An efficient numerical implementation has been proposed and developed for numerical 
solution of initial-boundary value problems for the considered multifield problems.

The great attention is paid to the numerical study of coupling effects in FGM plates sub-
jected to transversal Heaviside impact loading and/or Heaviside pulse loading. The achieved 
numerical results are thoroughly discussed and interpreted.
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