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ABSTRACT
Effects of circulation on the evolution of vortex tubes and the associated response of near-wall flows in 
the shear of laminar boundary-layer flows are investigated using a model proposed by Hon and Walker 
(Hon, T.L. & Walker, J.D.A, Computers & Fluids, 20(3), pp. 343–358, 1991). Direct numerical simula-
tions with freestream Mach number of 0.5 are conducted. Firstly, the dynamics of single hairpin vortex 
is investigated. Numerous secondary hairpin vortices, much more than previously reported, which 
are regularly aligned in the streamwise direction are allowed to be newly generated according to the 
shear-layer instability of the legs of an initial hairpin vortex. Small-scale turbulence is then produced 
when the circulation is sufficiently large. Secondly, a straight vortex tube model is investigated. Sinu-
ous deformation of a shear layer, which leads to the generation of discrete hairpin vortices, becomes 
obvious especially near the upper region of the vortex tube. In order to quantify the initial instability 
triggering the generation of the secondary hairpin vortices, quasi-linear stability analysis is conducted. 
While only one unstable mode appears when the circulation is small, two modes, that is, off-wall mode 
and near-wall mode, appear when the circulation is large. The cases of circulation where the two modes 
appear correspond to those of circulation where the production of small-scale turbulence is observed in 
the simulations of the single hairpin vortex.
Keywords: boundary layer, direct numerical simulation, hairpin vortex, laminar-turbulent transition, 
stability, turbulence, vortex tube.

1 INTRODUCTION
A hairpin vortex is considered as the basic building block of turbulence near a solid wall [1]. 
Since the work of Theodorsen [2], there have been many studies on hairpin/horseshoe vorti-
ces. Formation of the hairpin vortices has been discussed in many literatures [3–8]. Among 
previous studies is that of Moin et al. [9] who studied the deformation of a hairpin-shaped 
vortex filament under self-induction and in the presence of shear numerically using the Biot-
Savart law, showed a mechanism for the generation of ring vortices in turbulent shear flows. 
Acarlar and Smith [10] visualized the dynamics of hairpin vortices in the downstream wake 
of a hemispheric obstacle. Hon and Walker [11] developed a numerical method based on 
the Lagrangian vortex method that allows the accurate computation of the trajectory of a 
three-dimensional vortex having a small core radius. Using this method, they showed that 
a two-dimensional vortex containing a small three-dimensional disturbances distorts into 
a complex shape with subsidiary hairpin vortices forming outboard of the original hairpin 
vortex. Singer et al. [12] studied the formation and growth of a hairpin vortex in a flat-plate 
boundary layer and its later development into a young turbulent spot. Initial hairpin vortex 
was triggered by fluid injection through a slit in the wall. They reported the development of 
multiple hairpin vortex heads between stretched legs, the formation of new vortices beneath 
the streamwise-elongated vortex legs and the formation of a travelling region of highly dis-
turbed flow with an arrowhead shape similar to that of a turbulent spot. Zhou et al. [13,14] 
studied, by direct numerical simulation (DNS), the evolution of a symmetric pair of quasi-
streamwise vortical structures extracted from the two-point correlation tensor of turbulent 
channel flow data by a linear stochastic estimation procedure. They observed that sufficiently 
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strong hairpin vortices generate a hierarchy of secondary hairpin vortices, and the mechanism 
of their creation closely resembles the formation of the primary hairpin vortex. Liu et al. 
[15] conducted a compressible DNS for non-linear stages of laminar-turbulent transition. 
They discussed the coherent vortex structure appearing in the late stages of transition and 
the mechanism of the formation of single vortex ring, multiple vortex rings, and small length 
scale. At the inflow, they assumed two-dimensional waves and a pair of oblique waves in 
addition to the laminar boundary layer profile to reproduce transition of K-regime. Duguet 
et al. [16] investigated the region of phase space separating transitional from relaminariz-
ing trajectories regarding the Blasius boundary layer, and a quasi-cyclic mechanism for the 
generation of hairpin vortex offspring. Cohen et al. [17] proposed a model consisting of 
minimal flow elements that can produce packets of hairpins. The three components of the 
model are simple shear, a counter-rotating vortex pairs having finite streamwise vorticity 
magnitude and a two-dimensional wavy (in the streamwise direction) spanwise vortex sheet. 
Eitel-Amor et al. [18] studied the characteristics of hairpin vortices in turbulent boundary 
layers by parallel and spatially developing simulations. They found that secondary hairpins 
are only created shortly after initialization, with all rotational structures decaying for later 
times. They also reported that the regeneration process is rather short-lived and may not 
sustain once a turbulent background is developed. Sabatino et al. [19] studied experimentally 
hairpin vortex formation in a laminar boundary layer by fluid injection through a narrow 
slot. They discussed hairpin vortex head, legs and secondary hairpin vortex focusing on its 
circulation strength. Although there are many studies on hairpin vortices, effects of changing 
quantities associated with the hairpin vortices on its stability and near-wall dynamics have 
not been necessarily investigated systematically. In this regard, the hairpin model proposed 
by Hon and Walker [11] is particularly interesting because it has degrees of freedom for the 
circulation, size, the angle-to-wall and the core radius of a hairpin vortex, and will directly 
enable such systematic investigations. However, the model has not been studied in detail 
within the framework of DNS. So, in this study, by DNS, the evolution of vortex tubes in the 
shear of background laminar boundary-layer flows and its response of near-wall flows using 
the single hairpin vortex model proposed by Hon and Walker [11] and a straight vortex tube 
which corresponds to the leg portion of the model is investigated. We focus on the effects 
of circulation. In Section 2, the present computational methods are described. In Section 3, 
DNS of the single hairpin vortex and straight vortex tube are conducted. By using the results 
of the straight vortex tube, quasi-linear stability analysis is conducted to quantify the initial 
instability triggering the generation of the secondary hairpin vortices. In Section 4, conclu-
sions for this study are drawn.

2 COMPUTATIONAL DETAILS
Freestream Mach number is 0.5 and streamwise Reynolds number at the inlet is 5.34 × 105. 
At the initial time t = 0, a single hairpin vortex or a straight vortex tube of finite length is 
embedded in a laminar boundary layer. The vortex axes of the legs of the hairpin vortex and 
the straight vortex tube are inclined to the x(streamwise) axis and its angle is 4°. Computa-
tion is impulsively started from the initial condition. Three kinds of circulation magnitudes 
are considered in this study. The circulations of the vortex Γ/(2p) non-dimensionalized 
by freestream velocity and the displacement thickness δin

* at the inlet, denoted as Γ*, is 
chosen as 6.24, 12.4 and 24.9. Velocity fields induced by the vortex tubes are generated 
by the algorithm of Hon and Walker [11] explained by the eqns (1)–(3). The algorithm is 
a modification of the Moore’s algorithm [20], which is reported to exhibit strong numeri-
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cal instability for small value of a core radius a. At an arbitrary location in space X0, the 
velocity field u due to a vortex is basically described by the Biot–Savart Law. Contour C 
is a curve defining a vortex tube, and Γ is circulation about the vortex core, and uext is a 
background velocity field.
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The initial vortex configuration used in the case of the single hairpin vortex is of the form

 X i j j k( ) ( cos sin )exp( )s A s s= + − + +a a b 2  (4)

Here, i j k, ,  are unit vectors corresponding to the streamwise (x), normal (y) and spanwise 
(z) directions, respectively. Equation (4) represents a two-dimensional vortex located a unit 
distance from the wall with a three-dimensional distortion which is symmetrical about s = 0. 
In addition, A represents the amplitude of the distortion and α is the angle that the plane of 
the distortion makes with the wall. β is a (large) number determining the effective spanwise 
width of the initial distortion. The initial configuration used in the case of the straight vortex 
tube is
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Here, A is 24δin
*. (xc, yc, zc) is the root position of the vortex tube. xc is 30δin

* downstream 
of the inlet and yc = 0.4δin

*. ϕ is an angle of inclination to the wall and ϕ = 4°. The values of 
A and ϕ are determined by conducting the same simulation on transition as [15] separately. 
The governing equations are the unsteady three-dimensional compressible Navier–Stokes 
equations. To close the system the perfect gas law is assumed. The equations are solved by 
the sixth-order finite-difference method. Time-accurate solutions to the governing equations 
are obtained by the third-order Runge-Kutta scheme. The details of the present numerical 
method are shown in [21].
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Regarding the boundary condition, inflow velocity and temperature profiles are speci-
fied and pressure is extrapolated from the interior at the inlet. The inflow profile is obtained 
by solving the boundary layer equation [22]. At the outflow and upper boundaries, non-
reflecting boundary conditions with the mean static pressure p∞ = 101,325 Pa are imposed. 
At the wall, non-slip, isothermal wall condition T∞ = 273.15 K is imposed. Periodicity is 
imposed in the spanwise direction. Computational domains are a rectangular domain with 
dimensions 124.9δin, 16.4δin and 22.0δin in the x, y and z directions, respectively, for the 
simulations of the single hairpin vortex, and a rectangular domain with half spanwise size is 
used for the simulations of the straight vortex tube with Γ* = 6.24 and 12.4. Large domain 
size is basically used in the spanwise direction to reduce discontinuities in generated veloc-
ity fields due to circulation of the initial vortex tubes. Two kinds of mesh are used in this 
study. The number of mesh points is basically 301 × 210 × 128 in the x(streamwise), y(wall-
normal) and z(spanwise) directions, respectively. The half domain mesh has the number 
of mesh points 301 × 210 × 64. The accuracy of the computation of the straight vortex 
tube with Γ* = 12.4 is confirmed by a simulation with finer mesh with 601 × 417 × 128  
points.

Spanwise averaged grid resolutions Δx+, Δy+
min and Δz+ are 10.8, 0.362 and 4.49, respec-

tively, and locally maximum grid resolutions are 18.1, 0.61 and 7.6, respectively.

3 RESULTS AND DISCUSSION
Firstly, the dynamics of a single hairpin vortex and associated response of near-wall flows 

are investigated using a model proposed by Hon and Walker [11]. Figures 1–3 shows time 
sequence of the vortex deformation and the dynamic response of the boundary layer for 
Γ* = 6.24–24.9. Vortices are visualized by the iso-surfaces of the second invariance of the 
velocity gradient tensor. The colour shows a velocity component in the x direction divided 
by a sound speed. When Γ* = 6.24, that is, the circulation is small, hairpin vortices aligned 
in the streamwise direction are generated bridging over the hairpin legs. However, because 
the circulation is weak, the generation of the hairpin vortices does not connect to the clear 
appearance of turbulent regions near the wall. When Γ* = 12.4, that is, the circulation is 
medium, aligned hairpin vortices over the hairpin legs and turbulent regions consisting of 
hairpin vortices are generated. In  earlier published literatures [1, 3, 7, 17], only a few sec-
ondary hairpin vortices are observed. Especially at t* = 174, numerous secondary hairpin 
vortices, much more than previously reported, which are regularly aligned in the stream-
wise direction, are allowed to be newly generated according to the shear-layer instability 
of the legs of an initial hairpin vortex. Compared with the case of Γ* = 6.24, streamwise 
distance between the hairpin vortices becomes shorter, and small-scale turbulence is then 
produced. When Γ* = 24.9, that is, the circulation is large, quasi-streamwise vortices appear 
near the upstream root of the legs. Generation of small-scale turbulence is much more 
accelerated compared with the case of Γ* = 12.4. Although hairpin vortices appear mainly 
between the legs around t* = 174, the region of hairpin vortices becomes  broader in the 
spanwise direction. In addition to the central region sandwiched between the two legs, hair-
pin vortices are generated near the root of the two legs. Near the tail of the turbulent spot, 
the region of hairpin vortices is divided into two regions corresponding to the hairpin legs  
at t* = 87–174.

Secondly, the straight vortex tube model is investigated [23]. In order to analyse vorticity 
dynamics, the following vorticity equation [24] are considered. 



478 K. Matsuura, Int. J. Comp. Meth. and Exp. Meas., Vol. 4, No. 4 (2016)

Figure 1:  Time sequence of the deformation of the single hairpin vortex and the dynamic 
response of the boundary layer. The colour shows a streamwise velocity divided by 
a sound speed, that is., Mach number. (b) Γ* = 12.4 (c) Γ* = 24.9
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Figure 2:  Vector plot of increment of vorticity vector and instantaneous vortical structures 
at t* = 21.8 and 87 as a result of the simulation of the straight vortex tube with  
Γ* = 12.4.

Figure 3:  Mean velocity profiles used for the linear stability analysis extracted when t* = 
21.78 (a) and absolute value, real part and imaginary part of eigenfunctions of 
streamwise velocity of mode-u (off-wall mode) and mode-l (near-wall mode) (b)
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Here, Ω is the instantaneous vorticity vector, V is the velocity vector, ν is the kinematic vis-
cosity, ρ is the density, t is time and S is the strain rate tensor, · is the product obtained by 
contraction upon the derivative coordinate. Figure 2 shows increment vectors of the vorticity 
vector and the instantaneous vortical structures at t* = 21.8 and 87 as a result of the simula-
tion of the straight vortex tube with Γ* = 12.4. Sinuous deformation of a shear layer, which 
leads to the generation of discrete hairpin vortices, appears especially near the upper region 
of the vortex tube.

From the previous simulations of a hairpin vortex, secondary hairpin vortices over the 
hairpin legs are trigged by the sinuous deformation near the upper edge of the two legs, that 
is, shear layers created above the two quasi-streamwise vortices. In order to quantify its initial 
instability, linear stability analysis is conducted using the velocity profiles. Temporal stabil-
ity analysis assuming disturbances of exp[ ( )]i x z tα β ω+ −  was conducted. After searching 
for candidate unstable mode by a global method, a local method with the Newton iteration 
is used. The procedure is described in [25]. The accuracy of the programme developed is 
successfully validated against the first 5 modes (phase velocity) of the compressible stability 
equations in the incompressible limit (M = 10−6) shown in [25]. The present stability analysis 
is not necessarily strict in investigating the stability of the vortex tube in the shear. Although 
the vortex tube is neither parallel to the wall nor uniform in the spanwise direction, the pres-
ent analysis assumes parallelism and spanwise uniformity of mean flows. In this regard, the 
present analysis employs a quasi-parallel approach by using boundary-layer profiles at mul-
tiple streamwise positions to cope with such non-parallel flow. In addition, characteristics of 
two-dimensionality, that is, events in the x-y plane, are strong regarding the initial instability. 
Therefore, assuming the spanwise uniformity is reasonable.

Mean flows used in the stability analysis are extracted from instantaneous flow fields. 
 Figure 3a shows the boundary layer profiles obtained at dx = 11.7 and 30.4 around the cen-
tre of the vortex tube in the spanwise direction when t* = 21.75 for Γ* = 6.24–24.9. Here, 
dx≡x-xc. These locations correspond to those closer to the root and tip, respectively, of the 
vortex tube from its streamwise centre while preventing peculiarity arising from the ends of 
the vortex tube of finite length. Profile deformation by the vortex tube is generated near the 
middle of the boundary layer at dx = 11.7 and near the edge inside the boundary layer at dx 
= 30.4. While a small step is introduced in the profile when Γ* = 6.24, large deformation of 
the magnitude about 0.17u∞ is introduced when Γ* = 24.9. When Γ* = 6.24 and 12.4, there 
are one and two unstable modes, respectively. The two modes correspond to disturbances that 
amplify in the lower and upper shear layers, and are denoted as “near-wall mode (mode-l)” 
and “off-wall mode (mode-u)”, respectively. The cases of circulation where the two modes 
appear correspond to those where the production of small-scale turbulence is observed in the 
simulations of the single hairpin vortex mentioned in Figs 1and 3b shows the absolute value, 
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real part and imaginary part of eigenfunctions of streamwise velocity of mode-u and mode-l. 
Figure 4 shows the distribution of eigenvalues of the unstable modes along the variation of 
the streamwise wavenumber α for Γ* = 6.24 and 12.4 at t* = 21.75 β is assumed to be zero.. 
In the case of Γ* = 6.24, only “mode-u” is observed and amplification at dx = 11.7 is larger 
than that at dx = 30.4. As found in Fig. 4b, mode-u is more amplified compared with mode-l 
at dx = 11.7 when Γ* = 12.4, while at dx = 30.4, mode-l is more amplified. Comparing the 
locations of dx = 11.7 and dx = 30.4, amplification of disturbances at dx = 11.7, which is near 
the root of the vortex tube/upstream, is larger than that at dx = 30.4, which is near the head 
of the vortex tube/downstream. While mode-u amplifies more than mode-l near the upstream 
side of the vortex tube, mode-l amplifies more near the downstream side of the vortex tube. 
Thus, the exchange of dominant modes is observed.

Although the formation of the hairpin vortex appears to fall into non-linear stability theory 
which is different from the present linear stability analysis, the result of the present analy-
sis is compatible with the generation of the secondary hairpin vortices mentioned above. 
Consistent with the present result shown in Fig. 4b where ωi at dx = 30.4 is less than ωi at  
dx = 11.7, downstream hairpin vortices are smaller than upstream vortices observed in Fig. 1. 
Although not shown here, maximum amplification takes place when α = 1.8 for mode-u and 
α = 2.2 for mode-l at dx = 11.7. This corresponds to the wavelengths λ = 3.5δin and 2.10δin, 
respectively. The distance between hairpin vortices appearing in DNS for the corresponding 
case is around 4.16δin when t* = 108.75. A distance of even 2.92δin appears in DNS when t* 
= 152.25. Therefore, the present analysis predicts the distance between hairpin vortices and 
disturbances triggering hairpin vortices successfully.

4 CONCLUSIONS
Effects of circulation on the evolution of vortex tubes and the associated response of near-
wall flows in the shear of laminar boundary-layer flows are investigated by DNS using a 
model proposed by Hon and Walker. Firstly, dynamics of a single hairpin vortex is inves-
tigated. Numerous secondary hairpin vortices, much more than previously reported, which 
are regularly aligned in the streamwise direction and bridging over the legs, are allowed to 
be newly generated according to the shear-layer instability of the legs of an initial hairpin 
vortex. When the circulation is sufficiently large, small-scale turbulence is then produced. 

Figure 4:  Distribution of eigenvalues of unstable modes along the variation of α for Γ = 6.24 
and 12.4 β is assumed to be zero.
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Secondly, a straight vortex tube model is investigated. Sinuous deformation of a shear layer, 
which leads to the generation of discrete hairpin vortices, becomes obvious especially near 
the upper region of the vortex tube. As a result of the quasi-linear stability analysis, it is 
found that while only one unstable mode appears when the circulation is small, two modes, 
that,  off-wall mode and near-wall mode, appear when the circulation is large. The cases of 
circulation where the two modes appear correspond to those where the production of small-
scale turbulence is observed in the simulations of the single hairpin vortex. Between the 
neighbourhoods of the tip and head of the straight vortex tube, the exchange of dominant 
modes is observed.
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