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ABSTRACT
The main objective of the economic dispatch problem in a power system is to minimize the total ther-
mal fuel cost of the committed generators while satisfying the various system equality and inequality 
operational constraints. This research developed a new optimization algorithm, named the filter feeding 
allogenic engineering algorithm, for use in solving the economic dispatch problem. This meta-heuristic 
algorithm has been inspired by the filter feeding and motile behaviour of allogenic engineers. The newly 
developed algorithm was formulated using the Matlab software environment, and its performance was 
tested using the IEEE 39-Bus, 10-Generator system. A comparative analysis was also conducted with 
the Ant lion optimization heuristic algorithm, and the obtained results indicate that the filter feeding 
allogenic engineering algorithm yields superior performance.
Keywords: allogenic engineering, constraints, economic dispatch, heuristic and optimization.

1 INTRODUCTION
Thermal, nuclear, variable renewables and hydropower are the major sources of electric power 
generation. Power system operational economics is very important for thermal generators as 
the variable costs are much higher when compared to the other types of generation. Fuel cost 
accounts for the bulk of the operational cost of a power system. The goal for power system 
operators, therefore, is to minimize the fuel and other associated costs. This, in essence, is the 
economic dispatch (ED) problem. It is the process of allocating generation among the com-
mitted generation units while satisfying the applicable constraints and minimizing the energy 
requirements. It is for this reason that research into optimal economic dispatch solution con-
tinues to attract a lot of research attention as the sector unbundling and competition take shape 
across the world. This is in tandem with concurrent research on how to manage and curtail the 
burgeoning electricity demand in order to minimize harmful emissions [1–4].

Several constraints have to be taken into account during the ED problem formulation. 
These include, but not limited to, the types of generating units, transmission constraints,  
system reliability assessment, operating limits of each machine, permissible running time for 
each machine, machine ramp rate, variable generator operating costs, cost of environmental 
compliance, machine start-up cost, must run units (for voltage support), spinning reserve 
requirement, base load and renewable energy technologies in use among other constraints.  
A key constraint is due to the incorporation of large-scale renewables and how to ensure 
power system reliability is maintained due to the intermittent nature of renewables [5–6].

A number of optimization methods are used to solve the economic dispatch problem in a 
power system. They are broadly grouped into three, namely the classical, heuristic and hybrid 
optimization methods.

The classical methods include, but not limited to, the gradient method [7], calculus method, 
Lagrange relaxation method, Hessian-based method, Newton-based method, interior point 
method, geometric programming method, dynamic programming method, integer program-
ming method, stochastic programming method, multi-objective programming method, 
quadratic programming method, power search algorithm [8], general algebraic, probable 
loads variation [9] and the linear as well as nonlinear programming methods [10]. These 
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methods have convergence challenges occasioned by the nonlinear nature of the problem and 
have to deal with many variable constraints besides having a high computational time. They 
have no guarantee of achieving a global optimum because they start from a single point 
instead of a population, and thus, most times converge to a local optimum.

The heuristic methods give better results due to their robust nature. They are designed to 
search for the best possible solution with a very high degree of computational efficiency. They 
include, but not limited to, the ant colony search algorithm [11], genetic algorithm [12], par-
ticle swarm optimization [13], cuckoo search, theory of games [14], Vikor method [15], flower 
pollination algorithm [16], exchange market algorithm [17], harmony search [18], across 
neighbourhood [19], whale optimization [20], kinetic gas molecule optimization [21], immune 
log-normal evolutionary programming algorithm [22] and social spider algorithm [23].

Hybrid methods seek to take advantage of specific strengths of each of the individual methods. 
Examples include chaotic particle swarm optimization and sequential quadratic programming, 
differential evolution and genetic algorithm, hybrid krill heard algorithm and bee algorithm and 
tabu search, particle swarm optimization algorithm based on the Pareto criterion and fuzzy logic 
[24], hybrid of firefly and Bat algorithms [25], firefly and the levy flights algorithm [26], an hybrid 
of ant colony optimization–artificial bee colony–harmony search [27], hybrid Grey Wolf optimi-
zation [28] and a combination of continuous grasp algorithm and differential evolution [29].

There has been continuous and sustained effort to develop new heuristic optimization 
methods inspired by the behaviour of natural organism and plants, natural occurrences and 
various laws of science. Good recent examples include immune algorithm [30], lightning 
flash algorithm [31] teaching-learning-based optimization algorithm [32], symbiotic organ-
ism search algorithm [33], enhanced firework algorithm [34], modified differential evolution 
[35], adaptive charged system search algorithm [36], distributed auction optimization algo-
rithm [37], water cycle algorithm [38] and mine blast algorithm [39]. Development of new 
hybrid methods such as the immune evolutionary programming has also grown [40].

From the foregoing analysis, it is evident that the development of new improved nature-in-
spired meta-heuristic and hybrid optimization methods will continue to grow in the 
foreseeable future as power systems become more complex. It is for this reason that this 
research sought to develop a new method of optimization named the filter feeding allogenic 
engineering (FFAE) algorithm whose results were compared with the ant lion algorithm 
(ALO). The algorithm is inspired by the filter feeding and the environmental stimuli motile 
behaviour of allogenic engineers.

The rest of this article is organized as follows: Section 2 gives the mathematical formula-
tion for the economic dispatch problem, while section 3 details the developed algorithm. 
Section 4 presents the numerical simulations, results and discussions. Finally, section 5 gives 
the conclusion of the work and presents areas for improvement.

2 FORMULATION OF THE ECONOMIC DISPATCH PROBLEM
The static total cost of production F for the 39-Bus, 10-Generator IEEE test system is given 
as follows:

 F C P
i

i i=

=

∑
1

9

 (1)

where CiPi is the cost of production for the ith generator which can be modelled using the 
quadratic function:

 C P aP bP ci i i i= + +
2  (2)
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where a, b and c are the ith generator cost coefficients.
The objective, therefore, is to minimize eqn (1) subject to the following equality and ine-

quality constraints:

 P P Pi i imin max( ) ( )
≤ ≤  (3)

 P P Pgenerated loss demand= +  (4)

The system losses are expressed as follows:
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where gk is the conductance of the kth line; Vi and δi are the voltage magnitude and angle of 
bus i, respectively; Vj and δj are the voltage magnitude and angle of bus j, respectively; Bij, 
B0i and B00 are the elements of the transmission loss coefficient matrix B; and l is the number 
of lines in the system [40].

The proposed optimization algorithms are employed to solve models given by Eqs. (1)–(5) 
in order to obtain the values of generator output, system incremental fuel cost and the power 
loss for the given load demand.

3 DEVELOPED ALGORITHMS

3.1 Filter feeding allogenic engineering algorithm

Filter feeding allogenic engineering is rooted in oceanography and is inspired by the feeding 
and motile behaviour of allogenic engineers (part of ecosystem engineers), such as herring 
clams, sponges, baleen whale, krill and ameboid protozoa. Ecosystem engineers affect the 
availability of resources to other organisms either from a direct result of the structure that 
they create (autogenic engineers) or by the modulation of biotic and abiotic forces caused by 
their structure and biological activity (allogenic engineers). Allogenic engineers remove large 
quantities of suspended material from the water by filter feeding as they move around largely 
due to stimuli caused by food nutrients within their environment. They affect the availability 
of resources to other organisms by the modulation of biotic and abiotic forces through their 
body structure and biological activity. They are able to interfere with abiotic factors such as 
water residence time, hydrodynamic conditions and availability of light by water filtration, 
thus providing a residential habitat for other marine species [41].

As a result of the response to various stimuli, actively moving away or towards the envi-
ronmental stimuli, the allogenic engineers act as environmental monitors, e.g. if something in 
the water goes bad, they are the first to show the effects. This is the inspiration used to 
develop this optimization method. The power network environment will be scanned in real 
time for set parameters so as to determine the global optimal solution for the minimal fuel 
cost and losses in the same way the allogenic engineers respond to real time stimuli in the 
water environment [42–44].

The equation below shows the time rate of change of a given nutrient-main stimuli for 
allogenic engineers’ movement in sea water:
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where cm is the concentration of a given nutrient in sea water; N is the total number of con-
stituents (dependent variables); cmo is the most influential chemical in the given water 
ecosystem, e.g. nitrogen; t is the time; km is the net production rate of the given nutrient-mi-
nus natural decay, respiration and sinking processes; kmn is the rate coefficients for uptake of 
cm by other constituents cn; and kh is the reciprocal of the hydrodynamic residence time.

The above equation takes care of a large number of coefficients, the majority of which are 
a function of cn, light, temperature and turbidity. It can be reduced to the prey-predator equa-
tions written as follows:

 
dP
dt
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where P is a given nutrient concentration; B is the filter feeders population; kp is the given 
nutrient growth rate; kb is the filter feeders mortality rate; F is the specific filtration rate for a 
given filter feeder; h is the water depth; α is the conversion coefficient of the most influential 
chemical component, e.g. nitrogen to the given type of nutrient; β1 is the (filter feeders) feed-
ing efficiency; and β2 is the filter feeders nutrient conversion coefficient.

Equation (7) shows that the time rate of increase of a given nutrient equals the most influ-
ential chemical conversion efficiency minus the rate of removal through filter feeding. The 
iterative determination of α, β1, β2, kp and kb is used to solve for P and B. The highest nutrient 
concentration (P) will act as the stimuli to attract the largest number of filter feeders (B) 
which will be our optimal solution equivalent to given generator outputs and power losses 
obtained by solving eqn (5) [44].

The particular load data and generators with set power output constraints will be equated 
to given parameters that affect the nutrient(s) concentration in the sea water. This is the stim-
ulus that normally results in the movement of a majority of allogenic engineer species towards 
the direction with the highest nutrient concentration in the sea. The optimization will begin 
with a number of initial solution guesses, and after a few iterations, Kalman filtration will be 
applied to zero in on the most probable solutions which will be iterated to the end. The filtra-
tion process will be used to predict which of the initial guesses has higher chances of 
convergence by way of walking the entire probability distribution of each after a few itera-
tions. This enables mathematical distinction between phenomena and noumena by way of a 
complete statistical characterization of the estimation problem at hand [45].

3.2 Ant lion optimization algorithm

This is a population-based algorithm that is inspired by the hunting behaviour of ant lions. It 
mimics the ant lion’s five hunting steps namely, random ant (prey) walks, traps building, 
entrapment of ants in the said traps, catching prey and finally re-building the traps [46–48].

The ant lions dig cone-shaped traps and hide at the bottom as they wait for their prey to trip 
and fall into the trap that normally has sharp edges. Once the prey (other ants and insects) has 



 M. Ariel Mutegi & N. Nnamdi, Int. J. of Energy Prod. & Mgmt., Vol. 6, No. 2 (2021)  117

no escape route, the ant lions simply attack, kill and eat their hunt after which they improve the 
trap for the next hunt. Often, the prey tries to escape and the ant lions throw soil at the trap’s 
sharp edges to ensure that the prey slides back to the deepest end of the trap. The hunters  
further employ delay tactics to increase the prey’s level of malnutrition as well as digging the 
traps while facing away from the moon surface for maximum darkness. Given that ants move 
at random in search of food, a random walk is normally chosen to model ants’ movement. 
During optimization, these random ant walks are normalized so as to keep them moving within 
a given search space. The ant lion pits are modelled by a mathematical equation with given 
boundary conditions. To increase the chances of fitter ant lions catching prey, their hunting 
ability is modelled using a roulette wheel operator so as to select the finest and fittest ant lions.

The random ant walk is modelled as follows:

 X t cumsum r k cumsum r k cumsum r kT( ) = ( ) −( ) ( ) − … ( ) −(0 2 1 2 1 2 1
1 2

, , ( , ., ))





 (9)

where T and k represent the maximum and step number of iterations, respectively, and  
cumsum is the total sum.

A random function r(t) is defined as follows:
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where rand is a random number generated with uniform distribution function within the 
range 0–1. The random ant walks are normalized so as to keep them within a defined range 
using the equation:
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where ah and dh are the minimum and maximum values of the random ant walks of variables 
hth;    and     are the minimum and maximum value of hth variables at the kth iteration.  
The mathematical model of the ant lion’s hyperspherical pit is given by

 c Antlion ch
k

j
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where is the antlion’s jth position at iteration kth.
When the ant falls into the trap, the ant lion throws sand towards the door so as to force it 

to the deepest end of the hole. This reduction of the ant’s walk hyper-sphere is modelled as 
follows:
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where w is a constant speed on the current iteration number.
Killing the hunt and improving the trap again for the next catch is modelled as follows:
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The elitism of the ant lion is determined using the roulette wheel modelled as follows:
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 are the random choices of the ant lion using the roulette wheel and around 

the elite at the kth iteration, respectively.

4 NUMERICAL SIMULATIONS, RESULTS AND DISCUSSION

4.1 Methodology

The 39-Bus IEEE test system was used to test the developed algorithm on the economic  
dispatch problem. The single line diagram of the system is shown in Fig. 1.

The generator data used had an operational constraint of 10%–90% of the rated value as 
per Table 1.

The total connected load varies from 100 MW to a maximum of 4993 MW as shown in 
Table 2.

Figure 1: The IEEE 10-Generators, 39-Bus test system.
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Rated (MW) Min (MW) Max (MW) $/h

Gen10 250 25 225 525

Gen3 650 65 585 460

Gen4 632 63 568.8 455

Gen5 508 50 457.2 510

Gen6 650 65 585 420

Gen7 560 56 504 475

Gen8 540 54 486 490

Gen9 830 83 747 440

Gen1 1000 100 900 415

Total 5620 561 5058

Bus Type

                 Load

MW MVar

3 PQ 322 2.4

4 PQ 500 184

7 PQ 233.8 84

8 PQ 522 176

12 PQ 7.5 88

15 PQ 320 153

16 PQ 329 32.3

18 PQ 158 30

20 PQ 628 103

21 PQ 274 115

23 PQ 247.5 84.6

24 PQ 308.6 −92

25 PQ 224 47.2

26 PQ 139 17

27 PQ 281 75.5

28 PQ 206 27.6

29 PQ 283.5 26.9

31 PQ 9.2 4.6

Total 4993.1 1159.1

Table 1: IEEE 39-Bus generator data.

Table 2: IEEE 39-Bus connected load data.
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The new algorithm was developed using Matlab’s optimization toolbox [49]. The  
algorithm’s flow chart is given in Fig. 2.

The general ant lion algorithm [47] was customized for the economic dispatch as shown in Fig.3.

4.2 Results

Tables 3 and 4 show the results of the economic dispatch solution using both the ant lion 
optimization and the proposed filter feeding optimal placement techniques for 1000 iterations 
in each case.

Figure 2: The FFAE optimization algorithm flow chart.
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The results are further illustrated in Figs. 4 and 5.
From eqn (5), for the 39-Bus IEEE test system, the average overall system incremental fuel 

cost, taking into account the transmission losses, was computed as 21.54 $/MWh, i.e. on 
average, it costs 21.54 dollars to increase the system power output by 1 MW. Table 5 presents 
a comparison of results obtained from both algorithms.

Figure 3: The ALO algorithm flow chart.
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Demand 
(MW) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Gen10 25 65 80 95 110 120 130 155 225

Gen3 70 120 185 240 330 405 450 510 560 585

Gen4 85 130 190 235 325 365 425 495 550 565

Gen5 50 80 115 125 165 210 252 315 455

Gen6 110 175 255 325 365 435 483 520 555 585

Gen7 85 125 165 235 285 365 420 470 500

Gen8 60 85 115 145 170 265 345 410 486

Gen9 95 140 205 283 355 435 490 580 640 745

Gen1 139 215 310 440 525 630 690 745 845 870

Total  
generation 
(MW)

516.89 1032.92 1548.52 2065.11 2584.95 3105.05 3626.44 4155.23 4678.15 5203.11

Total 
losses 
(MW)

16.22 32.45 48.75 65.01 84.63 105.96 126.78 155.99 178.98 203.92

% Losses 3.138 3.14158 3.14817 3.14802 3.27395 3.41251 3.49599 3.75406 3.82587 3.91919

Demand 
(MW) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Gen10 25 65 80 95 110 120 130 155 219

Gen3 65 150 200 240 330 416 450 510 570 585

Gen4 85 130 190 235 325 365 425 495 550 565

Gen5 50 80 115 125 165 210 255 355 455

Gen6 110 195 305 325 365 435 485 520 555 585

Gen7 85 125 165 235 285 365 420 470 500

Gen8 60 85 115 145 170 265 345 425 486

Gen9 95 140 205 285 355 435 490 605 640 745

Gen1 140 215 350 440 525 630 696 745 845 870
Total  
generation 
(MW)

515.35 1032.41 1548.26 2065.82 2584.34 3105.76 3626.92 4156.22 4678.65 5203.11

Total 
losses 
(MW)

15.64 32.32 48.62 65.12 84.55 105.62 126.57 156.11 178.98 203.21

% Losses 3.0348 3.1305 3.1403 3.1522 3.2716 3.4007 3.4897 3.7560 3.8254 3.9055

Tables 3: ALO economic dispatch solution results.

Table 4: FFAE economic dispatch solution results.
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Figure 4: Generator output-load curves from the FFAE optimizer.

Figure 5: Generator output-load curves from the ALO optimizer.
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                        FFAE ACO

Demand

(MW)

Total  
generation 
(MW)

Total 
losses

(MW) % Losses

Total 
generation 
(MW)

Total losses

(MW)
% 
Losses

500 515.35 15.64 3.03483 516.89 16.22 3.13800

1000 1032.41 32.32 3.13054 1032.92 32.45 3.14158

1500 1548.26 48.62 3.1403 1548.52 48.75 3.14817

2000 2065.82 65.12 3.15226 2065.11 65.01 3.14802

2500 2584.34 84.55 3.27163 2584.95 84.63 3.27395

3000 3105.76 105.62 3.40078 3105.05 105.96 3.41251

3500 3626.92 126.57 3.48974 3626.44 126.78 3.49599

4000 4156.22 156.11 3.75606 4155.23 155.99 3.75406

4500 4678.65 178.98 3.82546 4678.15 178.98 3.82587

5000 5203.11 203.21 3.90555 5203.11 203.92 3.91919

4.3 Discussion

The new optimization method gave better results as compared to the tried and tested ant lion 
optimization technique as shown by the results in Tables 3 and 4. The total losses ranged from 
3.138% to 3.919% and from 3.035% to 3.906% of the total generated power for the ALO and 
FFAE optimization techniques, respectively. The new optimization method was able to  
successfully solve the economic dispatch problem under variable load demand as it happens 
in practical power systems and with a reasonable computation error. The authors believe that 
the algorithm is poised to perform even much better with time due to the continuous improve-
ment in the formulation of the oceanic predator-prey equations.

The input-output curve of a generator is modelled by the quadratic function given by eqn 
(2), assuming that the incremental cost curves of each unit are monotonically increasing lin-
ear functions. The above curves in Figs. 4 and 5 are approximately quadratic for all practical 
purposes, thus a good solution for the economic dispatch problem is represented by eqn (2).

Making the problem more multi-objective by adding more constraints such as system reli-
ability assessment, emissions and spinning reserve will make the curve more quadratic, but 
the trade-off during the solution of the same gets more delicate and complicated.

The FFAE method took more computation time owing to the long process of solving for 
the predator-prey eqns (10) and (11) both of which have five unknown parameters.

The authors believe that Kalman filtration will form a good approach in handling interac-
tive multi-objective economic dispatch problems going forward due to the very sensitive 
level of balancing required for the various competing aspects.

Emerging factors such as the emergence of virtual power plants, block chain’s peer-to-peer 
electricity trade, prosumers, the internet of things and battery storage will all have to be con-
sidered part of the system and operational constraints.

Tables 5: Comparison of FFAE and ALO economic dispatch solution results.
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5 CONCLUSION
Accurate solution of the economic dispatch problem remains a critical cog in the technical 
and financial sustainability of the power utility business. This goes hand in hand with other 
major concerns such as the harmful emissions. As more power utilities and countries adopt 
the horizontal business models, minimization of operational costs will become even more 
important. Competition in the generation segment will mean companies have to operate at the 
lowest possible costs as profit margins will inevitably continue to tumble.

It is for this reason that research of more heuristic and hybrid optimization methods for 
economic dispatch solution will continue to attract a lot of research attention.

The growth of competition occasioned by complete liberalization of the energy sector, 
deeper penetration of renewable energy sources and the expansion of emerging technologies 
such as the hydrogen resource will make research into this area even more attractive. The 
ever-evolving energy matrix will continue to make research in this area even more attractive. 
A good example is the growth of battery storage vis-à-vis the increasing definition of the 
same as generation will form part of evolving operational constraints that need to be taken 
into account going forward.

For future research work, there is a need to incorporate a generation planning component 
vis-à-vis the load centres in the generator cost function F in eqn (1). This is because poor 
generation planning directly imparts on the cost of delivery of the power in terms of losses 
and more cost incurred in system stability even if there is enough generation capacity.

The new method can be improved through further refining of the predator-prey equations 
as marine biologists continue to study and understand the ecosystem engineers better.
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