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ABSTRACT
The vibration behaviour of ships is noticeably influenced by the surrounding water, which represents 
a fluid of high density. In this case, the feedback of the fluid pressure onto the structure cannot be 
neglected and a strong coupling scheme between the fluid domain and the structural domain is neces-
sary. In this work, fast boundary element methods (BEMs) are used to model the semi-infinite fluid 
domain with the free water surface. Two approaches are compared: A symmetric mixed formula-
tion is applied where a part of the water surface is discretized. The second approach is a formulation 
with a special half-space fundamental solution, which allows the exact representation of the Dirichlet 
boundary condition on the free water surface without its discretization. Furthermore, the influence of 
the compressibility of the water is investigated by comparing the solutions of the Helmholtz and the 
Laplace equation. The ship itself is modeled with the finite element method (FEM). A binary interface 
to the commercial finite element package ANSYS is used to import the mass matrix and the stiffness 
matrix. The coupled problems are formulated using Schur complements. To solve the resulting sys-
tem of equations, a combination of a direct solver for the finite element matrix and a preconditioned 
GMRES for the overall Schur complement is chosen. The applicability of the approach is demonstrated 
using a realistic model problem.
Keywords: Burton–Miller method, fast multipole method, fluid-structure interaction, half-space BEM, 
mixed BEM for acoustic domain.

1  INTRODUCTION
Fluid–structure interaction deals with the mutual influence of an acoustic and a structural 
domain. If air is assumed as acoustic fluid, the influence of the surrounding fluid on the 
vibration behaviour of the structure can usually be neglected. In contrast, this is typically not 
the case if the fluid is water. Due to its high density, the feedback of the acoustic pressure 
onto the structure has to be taken into account [1]. As a consequence fully coupled simula-
tion schemes have to be applied, which are computationally more expensive, since a 
structural problem and an acoustic problem have to be solved simultaneously. For geomet-
rically simple structures, analytical solutions exist [2]. Typically, the structure of engineering 
problems are more complex so that numerical schemes have to be used. The finite element 
method (FEM) is usually applied for the structural part [3]. For exterior acoustic fluid 
domains, the application of the boundary element method (BEM) is advantageous, since the 
Sommerfeld radiation condition is automatically fulfiled [4]. There are fast methods to over-
come the drawback of the fully populated matrices like the fast multipole method (FMM) 
[5, 6] and H-matrices [7]. With these fast methods it is possible to solve large-scale prob-
lems in acoustics with some thousand degrees of freedom [8, 9]. If ship-like structures are 
considered, the water surface has to be incorporated. One possibility is to apply a mixed 
formulation, [10] where only a finite part of the water surface in the vicinity of the ship is 
discretized. Alternatively, a half-space fundamental solution can be applied, which exactly 
fulfils the boundary condition on the water surface [11]. In this case, only the ship-hull 
needs to be discretized. There are various formulations for the coupling of the FEM and 
BEM [8, 12, 13]. Recently, fast BEM approaches were coupled with the FEM [8, 14], allow-
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ing the simulation of large-scale coupled problems. This paper starts with the governing 
equations of the coupled problem and presents two different formulations for the BEM. 
After this, the FMM is introduced to accelerate the computations. A FEM representation for 
the structural part is discussed and a strong coupling scheme is presented. The different 
approaches are used to examine a realistic model problem. At the end the influence of the 
compressibility is investigated by comparing the results of the Helmholtz equation with the 
ones of the Laplace equation.

2  GOVERNING EQUATIONS OF THE COUPLED PROBLEM
In the following, the governing equations for the fluid–structure interaction problem are pre-
sented for the time harmonic case with the behaviour e−iwt. The wavenumber is denoted by 
w = 2pf, where f is the excitation frequency. The structural domain FS (cf. Fig. 1) is assumed 
be linear elastic with the Lam´e constants l and m. The material is homogeneous with the 
structural density rS. The corresponding elastodynamic problem for the displacements u is 
given by 

	 w Q u u x u x xs s
2 30(x) ( ) ( ) ( )+ + + = ∈Ω ⊂m l m∆ grad div for � 	 (1)

	 T u x t for xs s( ) ,= ∈G 	 (2)

and by an additional transmission condition which is introduced later by eqn (6). The Lapla-
cian is denoted by D and T represents the traction operator. The structure is excited by the 
prescribed tractions tS. The acoustic pressure p in the fluid domain a is either described by the 
time harmonic Helmholtz equation in case of a compressible fluid or by the Laplace equation 
in case of an incompressible fluid.

Since the latter case is obtained by setting the speed of sound cf → ∞, the derivations are 
only done for the more general case of the Helmholtz equation. In this paper, a partly 
immersed structure is investigated where the free fluid surface GH is modelled by a Dirichlet 
boundary condition. The acoustic boundary value problem has the form

	 Dp x k p x for x a( ) ( ) ,+ = ∈Ω
2 0 	 (3)

Figure 1: � The coupled problem consists of a structural domain s and an acoustic domain Fa. 
The two domains are in contact to each other on the fluid-structure interface GI. 
The water surface GH is modeled with zero pressure boundary conditions.
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and an additional transmission condition, which is presented later by eqn (7). The circular 
wavenumber is denoted by k = w/c. Equation (5) is called Sommerfeld radiation condition, 
which ensures an outgoing wave within the exterior acoustic domain [15]. Since a fluid with 
a high density is used, the feedback of the pressure onto the structure is not negligible. There-
fore, a strong coupling scheme has to be applied, which is represented by the two transmission 
conditions:

	 Tu x t x p x n xf x I( ) ( ) ( ) ,= = - ∈for Γ 	 (6)

	 q x
p x

n
Q u x n x

x
f x I( ) :

( )
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= ∈w2 for Γ 	 (7)

where the acoustic flux q is introduced. In the next two sections, the mixed BEM formulation 
and the half-space BEM approach are outlined.

3  MIXED BEM FORMULATION FOR THE ACOUSTIC DOMAIN
One possibility to model the acoustic problem of partly immersed structures is to discretize 
the water surface in the vicinity close to the structure. On the boundary GH, the Dirichlet data 
vanish, i.e. p = 0 holds. Starting point are the boundary integral and the hypersingular bound-
ary integral equation [7]

	 1

2
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	 {	 {

	 (K′q)(x)	 -(Dp)(x)

which are valid for a general smooth boundary G. The single layer potential is denoted by V, 
K and K′ are the double layer potential and its adjoint and D is the hypersingular operator. 
The free-space fundamental solution is denoted by

	 P x y
e

x y

ik x y

( , ) .=
−

−

4p
	 (10)

The pressure and flux are decomposed in a prescribed part and an unknown part 

	 p x p x p x q x q x q x( ) ( ) ( ), ( ) ( ) ( )= + = +� � � 	 (11)
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Plugging eqn (11) into eqn (8) and weighting with constant functions nq on GH yields
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Hq x
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where the subscript of the inner operator – H or I – represents the corresponding domain GH 
and GI. The same procedure is done on GI for the hypersingular boundary integral eqn (9) 
using linear functions np for weighting
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Introducing a triangulation with piecewise linear shape functions for p and constant ones 
for q yields the system of equations
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	 {	 {

	 KBE
m

	 -CBE
m

where the boundary condition = 0 has already been taken into account. Since not the whole 
infinity water surface can be discretized, it is desirable to have a formulation where the 
boundary condition on the water surface is included automatically. This can be achieved 
using a half-space fundamental solution as outlined in the next section.

4  HALF-SPACE BEM FORMULATION FOR THE ACOUSTIC DOMAIN
As pointed out in [16], the fluid domain, which is bounded by the flat water surface, can be 
seen as semi-infinite half-space. For such a problem, the use of the special half-space funda-
mental solution

	 P x y
e

x y

e

x y

ik x y ik x y

*( , ) =
−

−
−

− −1

4

1

4p p

�

�
	 (15)

is advantageous, where x is mirrored on the half-space plane to obtain. If P*(x,y) is plugged 
into eqns (8) and (9) it can be shown, that the integrals over the water surface vanish exactly. 
Thus, the boundary integral eqns (8) and (9) are applicable in the same way but this time 
P*(x,y) is used instead of P(x,y) and only GI has to be considered [16]. To obtain a Galerkin 
formulation, both boundary integral equations are weighted with linear functions n. Again a 
triangulation with piecewise linear shape functions for p and constant ones for q are applied, 
leading to
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where the matrices correspond to the operators introduced in eqns (8) and (9), but this 
time with the fundamental solution P*(x,y). For exterior acoustic problems, spurious 
modes may occur. There are several possibilities to overcome this phenomenon. A widely 
applied strategy is to use a linear combination of the boundary integral eqn (16) with a 
coupling constant a
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a a a′ ′ , 	 (17)

which is known as the Burton-Miller approach. A parameter a = −i/k turns out to be stable 
and advantageous concerning the condition number. On possibility to implement the half-
space fundamental solution is to mirror the elements and nodes at the water plane and call the 
standard integration routines for a combination of y with the non-mirrored point x and a 
second time for y with the mirrored point x~. The result of the second integration simply has 
to be subtracted from the first one and inserted into the global matrices. Besides the addi-
tional memory consumption for storing the mirrored elements and nodes, no further increase 
of the storage requirements occur, since the size of KBE

h  and CBE
h  is not altered. However, for 

classical BE methods, these matrices are still fully populated. In order to overcome this draw-
back, the FMM is applied. The mirror-technique turns out to be advantageous for the FMM 
implementation, since the standard expansion can be applied.

5  FAST MULTIPOLE IMPLEMENTATION
For the introduced operators, one typically has to evaluate potentials of the type

	 F( ) ,x
e

x y
qb

ik x y

b aa
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b a
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-

-

=

∑
1

	 (18)

where qa denotes the source strengths of A sources. Standard BE methods typically consider 
the interaction of every combination of a load point with a field point. In contrast to this, the 
multipole algorithm sets up a clustering and sums up the contribution of all sources qa in the 
centre za of a cluster (see Fig. 2).

At the next step, this so-called far-field signature is translated to the centre zb of the other 
clusters and from there finally distributed to xb. From a mathematical point of view, the sep-
aration of the distance |xb − ya| in the fundamental solution succeeds by using the diagonal 
form of the multipole expansion [5]

	
e

x y

ik
l i h k D e P

ik x y

b a

l

l
l

ik d d s
l

S

b a

a b

−

=

∞
+( )⋅

−
= + ( )∑ ∫4

2 1
0

1

2p
( ) (( ) ss D ds⋅

∧
) , 	 (19)

with the Hankel functions hl and the Legendre polynomials Pl. The vectors which are local to 
the clusters are denoted by da and db (see Fig. 2), whereas D is defined by the centres of two 
interacting clusters. The unit distance vector is defined by D̂ = D/|D|. The integral over the 
unit sphere S2 is approximated by Gauss point quadrature using discrete values of the far-
field directions s [5]. Since one cannot compute an infinite sum, the series has to be truncated. 
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In this case the integration over the unit sphere S2 and the summation can be interchanged. 
Introducing the translation operator

	 M s D l i h k D P s DL
l

l
l

L

l, ( ) ( ),( )
( ) = + ( ) ⋅

=

∑ 2 1 1

0

∧

	 (20)

The original potential eqn (18) can now be expressed in the form

	 Φ( ) ( , ) .x
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L
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The choice of L in eqn (20), which is called the expansion length, has a significant influ-
ence on the accuracy and the performance of the multipole algorithm. Proper choice helps to 
circumvent divergence of the series and will be discussed later in this section. The sum on the 
right hand of eqn (21) is called the far-field signature F(s). It is local to the cluster with the 
sources qa, since only the vector da appears. In contrast to this, the translation operator ML 
only depends on the vector D between two clusters’ centres. Thus, if a regular cluster grid is 
used, the translation operators can be reused. Translating the far-field signature to another 
cluster using a translation operator forms the so-called near-field signature. The solution is 
finally recovered by an exponential function of db and an integration over the unit sphere. 
Since the multipole expansion is only valid for well separated load and field points, one has 
to split up the clusters into a near-field and far-field. All clusters which fulfil the condition

	 D c
d

d<

2
	 (22)

form the near-field. Here, d denotes the cluster diameter and cd is a constant. The arising 
near-field is represented by a sparse matrix. It has to be evaluated by classical BEM. All other 
clusters are in the far-field and form the so-called interaction list. To obtain an optimal effi-
ciency, a hierarchical multilevel cluster tree is used. It is set up by consecutive bisectioning 
such that a mother cluster is divided into two son clusters on the next level. The procedure 

Figure 2: � Clustering and splitting up of the vector between load point and field point into 
three parts for the symmetric formulation left (left) and the half-space formulation 
with geometrical mirroring (right).
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starts with the root cluster, which is the smallest parallelepiped containing all elements of the 
model. The division is stopped if a specified number of elements per cluster is reached. These 
final clusters, which do not have any sons, are called leaf clusters. The interaction list of every 
cluster is formed by those clusters, which are in the near-field of the mother cluster but not in 
its own near-field. Obviously, the far-field signature has to be translated to the interaction lists 
on different levels. Since the cluster diameters are different on every level, the expansion 
length L has to be adapted to every level, too. Typically the well-established semi-empirical 
rule

	 L kd kd c kdl l e l( ) log= + +( )p 	 (23)

is used to estimate the number of series terms on level ℓ of the cluster tree [17]. The parame-
ter ce has to be chosen by the user and determines the desired accuracy. In order to maintain 
the accuracy of the multipole expansion when the cluster diameter increases on the next level, 
an interpolation and filtering strategy has to be applied. It is advantageous to use a fast Fou-
rier transform for this purpose. This is because new far-field directions have to be added, 
which is only possible for the original form of the multipole expansion [6, 8]. The resulting 
FMM has a quasi linear complexity of order (N log2N) as outlined in [8]. The evaluation of 
the matrix-vector product for the symmetric formulation with the FMM algorithm is similar 
for all operators, which are needed for the coupling formulations. Only slight modifications 
are necessary in order to take into account the different test and shape functions. The general 
procedure can be summarized with the following steps:

1.	 Compute the near-field part by a sparse matrix–vector multiplication.
2.	 Evaluate the far-field signature F(s) for every leaf cluster.
3.	 Translate the far-field signature to all interaction cluster by means of the translation 

operators (eqn 20) and sum it up as the near-field signature N(s).
4.	 Shift the far-field signature to the mother cluster and repeat step 3 until the interaction 

list is empty.
5.	 Go the opposite direction and shift the near-field signature N(s) to the son clusters until 

the leaf clusters are reached.
6.	 Recover the solution by integration over the unit sphere.

In case of the half-space problem, modifications are necessary for the near-field and the far-
field [16]. The near-field also has to include the interaction to mirrored-clusters, which fulfil the 
near-field condition with a non-mirrored cluster. The multipole cycle is similar to the one of the 
symmetric formulation, however in step 3, the far-field signatures F(s) also have to be translated 
to the mirrored clusters as depicted in Fig. 2 (right). In step 5, the shifting procedure also has to 
be done for the mirrored clusters. In step 6, the solution additionally needs to be recovered for 
the mirrored clusters and subtracted from the solution of the corresponding non-mirrored clus-
ters. For a discussion of the computation time, the interesting reader is referred to [16].

6  COUPLED APPROACH
The structural problem given by eqns (1) and (2) is discretized using the FEM resulting in a 
system of linear equations 

	 − − +( ) = +w w2 M i D K u f fs s s s f , 	 (24)

	 {	
	 KFE
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where Ms and Ks denote the mass matrix and the stiffness matrix, respectively. In this paper, 
stiffness proportional damping is considered with the damping matrix

	 D k Ks = d s , 	 (25)

where kd denotes a damping parameter. Vector fS incorporates the tractions tS due to the driv-
ing forces. The finite element package ANSYS is utilized to set up the matrices MS, KS and 
the right hand side vector fS. They are imported into the research code by a binary interface. 
The data exchange only needs to be done once for a given model, since Ms and Ks are fre-
quency independent. Typically, shell elements with six degrees of freedom are applied for 
thin structures. The vector ff is defined by the first transmission condition eqn (6). The nodal 
forces are computed from the fluid pressure by

	 f C p C C N n N dsf FE
k

u
k

p x

Tk

= − = −∫FE FEwhere is asssembled from T . 	 (26)

The matrix with the structural shape functions is denoted by Nu and the one with the fluid 
shape functions by Np. According to the second transmission condition eqn (7), the acoustic 
flux q on each boundary element tm is computed from the structural displacements of the 
adjacent nodes k by

	
q T u q Q u nq m k

m

k m

= = ⋅
∈
∑where each row is given by

1

3
2

fw ,
	 (27)

and rf denotes the density of the fluid. To obtain the coupled system of eqn (26) is plugged 
into eqns (24) and (27) into eqns (14) or (17) yielding
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





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

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s

0
, 	 (28)

In case of the mixed formulation, KBE
m  and CBE

m  are used and x = (,)T, where is the unknown 
pressure on the ship-hull and is the unknown flux of the elements on GH. For the half-space 
formulation, and are used and x = p denotes the pressure on the ship hull. The coupled system 
(28) is rearranged using the Schur complement S

	 k C T K C x C T K fq qBE BE FE FE BE FE-( ) = -
- -1 1 	 (29)

and a GMRES is applied to solve for x. In each iteration step, must be applied to a vector. 
This is efficiently done using a LDLT factorization, which only has to be computed once and 
can be reused in each iteration step. For the mixed formulation, a scaling of the different 
blocks of is performed. As preconditioner, an ILU factorization of the near-field matrix of is 
applied.

7  NUMERICAL RESULTS
In this section, the proposed fast BE–FE coupling schemes are compared for the container 
vessel depicted in Fig. 3 (left top). The model consists of 16,547 nodes and 35,836 structural 
degrees of freedom. The number of boundary elements on the ship hull is 2,858 and 1,343 
nodes are in contact with the water. Water with the density rf = 1,000 kg/m3 and the speed of 
sound cf = 1,483.2 m/s is assumed as acoustic fluid. The structure is excited by 691 forces 
caused by the pressure fluctuations of the ship propeller. For the mixed approach, a rectangu-
lar area of the water surface is meshed as shown for the rear half (cf. Fig. 3 left bottom). The 
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minimal distance dw between the ship hull and the edge of the discretized water surface is 
chosen from the set {2.5 m, 5 m, 10 m, 20 m, 40 m and 80 m}. For the smallest water area 
with dw = 2.5 m, 639 nodes are located on the water surface which increases to 11,799 nodes 
in case of the largest model. Before the simulations of the coupled approaches are presented, 
the BE part of the mixed formulation is compared with the half-space formulation concerning 
the accuracy and efficiency.

7.1  Accuracy of the fluid part

To examine the accuracy of the fluid part, an analytical field is created using 90 monopole 
sources. Half of them are located within the ship hull as decpicted in Fig. 3 (left bottom). To 
fulfil the Dirichlet boundary condition on the water surface, the monopole sources are mir-
rored and the strength multiplied by minus one. For this field, both the pressure and flux are 
known for a given point and normal direction. Hence, the analytical flux is used as boundary 
condition and the corresponding pressures p or at the nodes on GI are computed using eqns 
(17) or (14). Since the analytical pressure pmono is known, the Dirichlet error

	 e
p p

pD
L

L

=

- mono

mono

2

2

	 (30)

can be defined. In case of the mixed approach is used instead of p. First, the influence of the 
multipole parameters cd and ce as defined by eqns (22) and (23) is investigated for the half-
space formulation. As reference solution, the classical implementation without FMM is 
utilised. The corresponding Dirichlet errors are depicted in Fig. 3. For small frequencies and 
small expansion lengths, one observes a larger Dirichlet error. The error can be reduced by 
increasing the expansion length. A parameter ce = 5 turned out to give a small error, if the 
expansion length is computed by eqn (23) using a fixed frequency of 18 Hz for all frequencies 
f ≤ 18 Hz. For this choice, hardly any difference between the error of the classical implemen-
tation and the fast multipole implementation is observable any more. For this reason, this 
parameter set is chosen for all following simulations. The Dirichlet errors are also computed 
for the mixed approach. The discretized water area is varied as mentioned above. The half-
space solution is exact in the sense, that the Dirichlet boundary condition on the water surface 

Figure 3: � Discretized model of the investigated container-vessel (left top). The wet boundary 
elements are highlighted in dark gray. For the mixed formulation a part of the 
water surface is discretized as shown for the rear half. Light spots indicate the 
position of the used monopole sources (left bottom). Dirichlet error eD for the half-
space formulation and different multipole parameters (right).
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is incorporated in an exact way and can therefore be seen as the achievable solution. Figure 4 
shows the Dirichlet errors within a frequency range from 3 Hz to 100 Hz. All errors of the 
mixed formulation are larger than the half-space solution. For dw = 2.5 m, the errors reach 
almost 8% in the region around 20 Hz. The error curves of the mixed approach are wavy in 
contrast to the half-space formulation. This may lead to misinterpretation especially at 95 Hz 
where one observes an artificial resonance. If the discretized water area is enlarged, the errors 
tend to decrease. But this is not generally the case. For instance at a frequency f = 55 Hz, the 
error is almost independent of the discretized water area and approximately twice as large as 
for the half-space formulation. The same holds for the resonance effect at 95 Hz, which 
occurs even for the largest water area. Hence, one concludes, that the half-space formulation 
is superior to the mixed formulation concerning the accuracy. When using simulation tools 
for real life applications, also the efficiency is of major interest. Therefore, the computational 
times and the memory consumptions are discussed in the following. For all simulations a 
Intel Xeon 5160 CPU with 16GB RAM is used. The computational times for the models with 
the different water areas are depicted in Fig. 5 (left). The half-space approach does not need 
to discretize the water surface. Hence, the corresponding computational times are indicated 
by dashed horizontal lines in the same colour. For small water areas with dw ≤ 10 m, the 
mixed formulation is slightly faster concerning the set-up time of the near-field. However, the 
solution time for the half-space formulation is always smaller compared to the mixed 
approach. For this reason, the total simulation time including the reading of the model file 
and writing of the results files is always smaller for the half-space formulation. Thus one 
concludes, that the half-space formulation is also superior to the mixed formulation in terms 

Figure 4: � Container-Vessel: The Dirichlet error is visualized for different frequencies. The 
discretized water area of the mixed formulation is varied between 2.5 m and 80 m. 
The half-space result is plotted as comparison.
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of the computational time. Besides the computational time also the memory consumption is 
compared. The results are visualized in Fig. 5 (right). Obviously, the near-field of the mixed 
formulation always requires more memory than the one of the half-space approach. Due to 
the mirrored mesh, the memory consumption for storing the model information is slightly 
larger for the half-space formulation compared to the mixed approach with small water areas. 
Due to the increasing number of elements for the larger water areas, the situation changes for 
water areas with dw ≥ 10 m. The same holds for the memory consumption of the translation 
operators and near-field signatures. One concludes, that the overall memory consumption is 
smaller for the half-space formulation if not the smallest water area is chosen which yields 
inaccurate results. So far, only the fluid part was investigated. In the next subsection, the 
coupled results are presented.

7.2  Coupled simulations

To compare the coupled simulation results, the velocity at node A (cf. Fig. 3) is investigated. 
Figure 6 (left) depicts the results for the mixed formulation and the half-space approach. 
In  case of the mixed formulation, the water area is discretized using dw = 10 m. Both 

Figure 5: � Computation time (left) and memory consumption (right) for the mixed formulation 
and different water areas with varying number of unknowns N. The corresponding 
values of the half-space formulation are indicated by dashed horizontal lines of the 
same colour.

Figure 6: � Velocity for the mixed and half-space (hs) formulation for the Helmholtz equation 
(left). Comparison of the velocity results for the Laplace and Helmholtz equation 
in case of the coupled half-space formulation (right).
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implementations use the FMM with the parameters mentioned above. The two graphs show 
hardly any differences. Only a slight deviation is observed at about 24 Hz. To show the cor-
rectness of the results, also the half-space formulation with classical implementation is 
plotted and shows a good agreement compared to the FMM version. To demonstrate the 
necessity of a fully coupled scheme, also the pure structural solution is plotted, which 
neglects the feedback of the acoustic pressure. Obviously, there is a significant difference 
and one concludes that the forces due to the acoustic pressure have to be taken into account. 
So far, only the Helmholtz equation has been considered. It includes the so-called hydro-
mass effect and also the sound radiation into the water. The frequency dependent Helmholtz 
equation can be replaced by the frequency independent Laplace equation, if only the hydro-
mass effect is of significance and the water is assumed to be incompressible. To examine the 
influence of the compressibility, the velocity results at node A are shown in Fig. 6 (right). In 
the low frequency regime, the results of the Laplace equation and the Helmholtz equation 
are identical. For this reason, it is also possible to apply the Helmholtz equation and only 
perform one integration at a fixed frequency of 3 Hz. For higher frequencies, the results of 
this fixed Helmholtz approach are equivalent to the Laplace equation. However, above 
12 Hz one observes slight differences between the Laplace and the Helmholtz equation. For 
higher frequencies, one expects an increasing influence. However, the structural discretiza-
tion of the used model is not sufficient for this frequency regime. Hence, such test could not 
be performed with this model.

8  CONCLUSIONS
When dealing with ship vibrations, the influence of the surrounding water on the structure 
has to be considered. In this work, two BEMs in combination with a strong coupling scheme 
are compared. To overcome the restrictions caused by the fully populated matrices of classi-
cal BEMs, the FMM is applied. A mixed approach, where a part of the water surface is 
discretized is compared with a half-space approach, where a discretization of only the ship 
hull is sufficient. The latter one turns out to be superior in accuracy, computation time and 
memory consumption. Additionally, the influence of the compressibility of the water is inves-
tigated by comparing the results for the Laplace equation and the Helmholtz equation. One 
observes almost identical results in the low frequency regime. For higher frequencies, slight 
differences are visible.
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