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ABSTRACT
In recent years significant focus has been given to the study of Radial basis functions (RBF), especially 
in their use on solving partial differential equations (PDE). RBF have an impressive capability of inter-
polating scattered data, even when this data presents localized discontinuities. However, for infinitely 
smooth RBF such as the Multiquadrics, inverse Multiquadrics, and Gaussian, the shape parameter must 
be chosen properly to obtain accurate approximations while avoiding ill-conditioning of the interpolat-
ing matrices. The optimum shape parameter can vary significantly depending on the field, particularly 
in locations of steep gradients, shocks, or discontinuities. Typically, the shape parameter is chosen to be 
high value to render flatter RBF therefore yielding a high condition number for the ensuing interpola-
tion matrix. However, this optimization strategy fails for problems that present steep gradients, shocks 
or discontinuities. Instead, in such cases, the optimal interpolation occurs when the shape parameter 
is chosen to be low in order to render steeper RBF therefore yielding low condition number for the 
interpolation matrix. The focus of this work is to demonstrate the use of RBF interpolation to capture 
the behaviour of steep gradients and shocks by implementing a blending scheme that combines high 
and low shape parameters. A formulation of the RBF blending interpolation scheme along with test-
ing and validation through its implementation in the solution of the Burger’s linear advection equation 
and compressible Euler equations using a Localized RBF Collocation Meshless Method (LRC-MM) is 
presented in this paper.
Keywords: compressible flow, meshless, multiquadrics, radial basis function, RBF, shock.

1 INTRODUCTION
The governing equations found in science and engineering involve partial differential equa-
tions (PDE) which can be difficult to solve and most require numerical methods. Solutions 
to PDE exist for linear and simple geometry problems, but in engineering coupled, non-lin-
ear PDE with complex geometry are often encountered and must be solved numerically. 
These complexities can be seen with the Navier-Stokes equations. Current numerical meth-
ods make use of the Finite Difference Methods (FDM), Finite Element Method (FEM) and 
more commonly in CFD the Finite Volume Method (FVM). These mesh based methods are 
well developed numerical techniques and are the methods used today for solving PDEs 
[1–10]. Mesh based methods require a mesh, grid, or connectivity to be defined within the 
domain so the governing PDEs can be discretized and solved. The mesh or connectivity 
between nodes must be predetermined before attempting a solution. The mesh quality can 
cause issues with convergence as well. Developing a high quality mesh having both the 
resolution to capture the physics of the problem while also minimizing the number of cells, 
and thus minimizing computational time, can be an exhausting iterative process. For very 
complex problems, one could conclude this task to be impossible and must seek simplifying 
assumptions or accept the solution. Automated mesh generators have been developed to 
alleviate the process required to produce a good quality mesh in very little time. However, 
automated mesh generators do not necessarily guarantee a good mesh and are far from being 
fully automated. The user is required to estimate sizes, generate the mesh and inquire if the 
mesh has met an acceptable criterion possibly having to re-mesh if it is unacceptable.
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Meshless methods have been an area of research and development in recent years. These 
techniques originate from spectral methods based on Legendre or Chebyshev polynomial, 
which require uniform point distribution [8–10]. However, the meshless methods using 
radial basis functions (RBF) can be used on non-uniform distributions of points. The RBFs 
are based on the Euclidean distance and RBF such as the Hardy multiquadrics and inverse 
Hardy multiquadrics are depend on the shape parameter, c. RBF meshless methods depend 
on local or global interpolation on irregular spatial distribution of points and not connec-
tivity of points providing a solution to the complexity of mesh generation. The absence of 
the connection between points is how meshless methods facilitate the solution process, 
without the need to develop a mesh only requiring only a point cloud and boundary nodes 
to solve.

Many meshless methods exist, but the focus of this work involves methods using radial 
basis (RBF) interpolation. Interpolation using RBF has shown to provide spectral accuracy, 
but while using the Hardy multiquadrics and inverse multiquadrics, the accuracy is dependent 
on the shape parameter, c. The shape parameter is either found by numerical experimentation 
or is arbitrarily chosen to determine the best value. It is often found that a higher valued shape 
parameter causing the interpolation matrix to become close to ill-conditioned gives the best 
accuracy [1, 2]. The issue of the ill-conditioning does not allow for global interpolation as 
solutions are not accurate, but researchers have found that locally interpolating using RBF 
methods resolves these issues [2, 4, 7, 8, 10].

The shape parameter being a large value causing the condition number of the interpolation 
matrix to be large allows for convergence for smooth functions [1, 10]. The shape parameter 
value needed is usually arbitrarily chosen to be large throughout the solution [2]. This is not 
the case in the presence of steep gradient or highly convective flows. Oscillations of the solu-
tion tend to manifest using the approach of large shape parameter RBF interpolation. It 
happens to be that a low shape parameter value causing the conditioning of the interpolation 
matrix to be low tends to provide better accuracy for functions with steep gradients. So if one 
must solve regions where the field is smooth while steep gradients or discontinuities can exist 
downstream, the RBF interpolation must be blended between high and low shape parameter 
values.

This work discusses the RBF interpolation of smooth and steep gradient functions demon-
strating how the shape parameter can change the accuracy. The blended RBF interpolation 
formulation is described showing the approach taken to sense steep gradients then change the 
shape parameter from a high value to low based on the curvature of the field. Finally, how 
well the interpolation is capable of capturing the discontinuity is presented by showing exam-
ples of solutions to the inviscid Burgers equation, 2-D linear advection equation and the 2-D 
compressible Euler equations.

2 RBF INTERPOLATION OVERVIEW
Interpolation using a RBF is implemented by assuming the function is equal to the summa-
tion described by

 f x y x y
j

N

j j, ,( ) = ( )
=

∑
1

a c  (1)

where a j  are the coefficients, c j x y( , ) is the expansion function and N  is the number of col-
location points. The coefficients are determined through a collocation process of the function 
f x y( , ) at the collocation points, f x yi i( , ) for i N= …1 . 
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 f x y x yi i
j

N

j j i i, ,( ) = ( )
=

∑
1

a c  (2)

A system of equations can be formed and the equations can be presented in matrix form as

 f C{ } = [ ]{ }a  (3)

where [ ]C  is of the form 
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The coefficients, a j , are then found by solving the linear system of equations by 

 a{ } = [ ] { }−
C f

1
 (5)

The function or field variable can now be solved by

 f x y x y
T

, ,( ) = ( ){ } { }c a  (6)

 f x y x y C f
T

, ,( ) = ( ){ } [ ] { }−c 1
 (7)

Similarly, the derivative of the function can be found by 
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The expansion functions, c j x y( ), , are chosen to be a RBF. Many RBFs exist, but for the 
scope of this paper only the Hardy Multiquadrics and the Inverse Multiquadrics are consid-
ered. Example of these functions are

Hardy Multiquadrics RBF: χ j jx y r x y c, ,( ) = ( ) +





2 2  (10)

Inverse Multiquadrics RBF: χ j

j

x y
r x y c

,
,

( ) =

( ) +





1
2 2

 (11)

These RBFs are dependent on the shape parameter, c , which has a significant effect on the 
behaviour of the approximation of the function and its derivatives. This shape parameter is 
typically chosen to be a large value so that the matrix [ ]C  is of high conditioning. In the 
following sections, it is shown this methodology fails for problems with steep gradients, 
highly convective flows, and when shocks are encountered.
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3 RBF INTERPOLATION OF SMOOTH AND DISCONTINUOUS FUNCTIONS
As mentioned before, the shape parameter, c, is chosen to cause the interpolation matrix 
approach a high condition number, almost to the edge of ill-conditioning. This approach is 
the appropriate method for smooth functions, but this is not the case for regions of highly 
convective flows, steep gradients, or discontinuities. Actually, a shape parameter value pro-
viding lower conditioning of the interpolation matrix provides better results for steep 
gradients. This result is further described in this section. The shape parameter is varied using 
values of c = 0.1, c = 0.5, and c = 1.0 for the RBF reproduction of the test function 
f x x x( ) = −( )





−tan 1
0ω . The value of ω  is varied to change the gradient of the test func-

tion. The RBF interpolation does very well at reproducing the smooth test function of ω =1, 
but a higher shape parameter causing a high conditioning number for the interpolation matrix 
provides much lower L2-norm errors [12]. The errors for the smooth function interpolation 
are shown in Table 1. Next, the RBF interpolation is tested on the test function with ω =10 
and is shown in Figure 2.

Figure 1: Interpolation of smooth function.

Table 1: L2 Norms for Smooth Function RBF Interpolation.

c f (x) f'(x) f''(x)

0.1 2.52e-4 0.0016 3.46e-4
0.5 3.20e-6 1.64e-5 5.71e-6
1.0 1.41e-8 4.41e-8 1.45e-8
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4 BLENDED RBF INTERPOLATION SCHEME
To take advantage of the RBF interpolation when encountering both smooth and steep gradi-
ents in the field, the RBF interpolation scheme must have the capability to blend between 
high and low values shape parameter. The shape parameter, c, could be adjusted during the 
computation but a relationship for, c, is difficult to determine requiring time consuming 
numerical experimentation. A blended approach allows the user to set the shape parameter 
values for smooth and steep gradient interpolation and blend between the two interpolations 
as needed. We first assume the function f x yc ( ),  is in between the function f x ya ( ),  and 
f x yb ( , ) so that,

 
f x y f f fc a b a,( ) = + −( )f

 (12)

Figure 2: Interpolation of function with steep gradient.

Table 2: L2 Norm for function with Steep Gradient RBF Interpolation.

c f (x) f'(x) f''(x)

0.1 0.0021 0.0069 0.0526
0.5 0.0017 0.0167 0.0480
1.0 0.0060 0.2369 0.0810
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where fa  in this case in the smooth function interpolation and fb  the steep gradient interpolation.

 f x y x ya
j

N

a aj j
, ,( ) = ( )

=
∑

1

a c  (13)

 f x y x yb
j

N

b bj j
, ,( ) = ( )

=
∑

1

a c  (14)

Defining two RBF with high and low valued shape parameters ca and cb. The Hardy Multi-
quadrics RBF is used as an example, 

 ca j j aj
x y x x y y c,( ) = −( ) + −( ) +

2 2 2  (15)

 cb j j bj
x y x x y y c,( ) = −( ) + −( ) +

2 2 2  (16)

By introducing discrete points at locations x i, the functions can be evaluated as

 f x y x ya i i
j

N

a a i ij j
, ,( ) = ( )

=
∑

1

a c  (17)

 f x y x yb i i
j

N

b b i ij j
, ,( ) = ( )

=
∑

1

a c  (18)

Next, the weights aa j  and ab j  must be determined. Equations (12) and (13) are used to form a 
system of equations using the scattered data of f x yi i,( ).
 ca a f { } = { }a  (19)

 cb b f { } = { }a  (20)

Inverting the interpolation matrices Ψa 
 and Ψb 

 and solving for the weighting coefficients

 aa a f{ } =   { }−c 1
 (21)

 ab b f{ } =   { }−c 1
 (22)

Substituting equations (21) and (22) into (12) we have the blended expression.
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or in matrix form
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The same blending scheme described in this section can be used to approximate the deriva-
tives as well and applied to solving a PDE. A sample point distribution with an influence 
topology including the data center and locations for derivative interpolation is shown in 
Fig. 3. The Localized RBF Collocation Meshless Method (LRC-MM) is used with the blend-
ing scheme to solve the inviscid Burgers’ equation, 2-D linear advection equation, and the 
2-D compressible Euler’s equation to demonstrate the RBF blending scheme.

5 ONE DIMENSIONAL INVISCID BURGERS EQUATION
The solution of the 1-D inviscid Burgers equation is computed using the LRC-MM blended 
approach. This example illustrates the blended interpolation concept applied to the solution 
of a PDE with a shock or discontinuity. The governing equation and the initial condition are 
given below in eqn (26) while the plot of the solution evolution from 0 to 1 second is shown 
in Fig. 4.

 
∂ ( )

∂

+

∂ ( )

∂

=

u x t

t
u

u x t

x

, ,
0  (26)

u x for x, .0 1 0 2( ) = <

u x for x, .0 0 0 2( ) = ≥

u t0 1,( ) =

Figure 3: Topology for LRC-MM.
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Figure 4: Results for the 1-D Burgers Equation using the blended LRC-MM.
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6 TWO-DIMENSIONAL LINEAR ADVECTION EQUATION
The solution of the 2-D linear advection equation is computed using the LRC-MM blended 
approach. This example illustrates the blended interpolation concept applied to the solution 
of a highly convective PDE. The governing equation, the initial and boundary conditions are 
given below in eqn (27). A contour plot of the velocity magnitude is shown in Fig. 5 where it 
is clearly observed how the solution becomes unstable without the blending of shape param-
eters.
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Figure 5:  Constant shape parameter (Left) and blended shape parameter (Right) for diagonal 
wave problem.

7 COMPRESSIBLE EULER EQUATIONS
The compressible Euler equations are also solved using the LRC-MM blended approach. The 
compressible Euler equation is a non-linear hyperbolic PDE where discontinuities or shock 
waves can potentially manifest in the solution. The governing equations are shown below in 
eqn (28).
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A flux vector splitting method is used to split the flux vectors into positive and negative com-
ponents to upwind the equations. The split flux vector derivatives are interpolated either 
slightly upstream depending on the direction the up-winding needs to occur determined by 
the eigenvalues of the system.
A supersonic channel flow problem is chosen as an example to illustrate the solution of the 
compressible Euler equations using the blended LRC-MM scheme. The geometry and point 
distribution are shown in Fig. 6. The inlet Mach number is 3, inlet pressure is 100 kPa and 
inlet temperature is 300 K. The specific heat ratio is 1.4 and the gas constant is 287.05 J/kg K. 
The geometry of the problem is L1 = 10 cm, L2 = 20 cm, L3 = 30 cm and H1 = 20 cm with a 
deflection angle of 10° [12]. A steady state solution is obtained by marching through the 
domain using local time stepping. The contour plot of the Mach number of the LRC-MM 
solution is shown below in Fig. 7 as it compares with a Finite Differences Method (FDM) 
solution on a much more resolved point distribution.

The advantage of LRC-MM lies in its spectral convergence capabilities allowing high 
accurate interpolations in coarse distributions of scattered data points. In this case, the FDM 
solution shown in Figure 7 was generated in a 140 × 100 (14,000) node distribution, while the 
LRC-MM solution was generated in less than 1,000 data points. The goal for the future will 
be to use an adaptive refinement algorithm with the blended LRC-MM to automatically add 
points where steep gradients or discontinuities exist.

If a constant shape parameter, which yields high condition number, were to be used, the 
solution would become oscillatory and eventually unstable. This is shown in the Figure 8 
where oscillations can be seen appearing near the ramp wall. This example demonstrates 
further the importance of blending the shape parameter for problems with steep gradients or 
discontinuities.

Figure 6: Problem domain and point distribution for blended LRC-MM.
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8 CONCLUSION
The blended RBF interpolation approach coupled with the LRC-MM can solve hyperbolic 
PDEs. The blended RBF interpolation takes advantage of the low shape parameter and low 
conditioning when shocks are encountered allowing the computation to remain stable while 
effectively capturing the shock. When the solution is smooth, the blended RBF approach 
allows for high condition to be used to increase the order of the solution. The examples pre-
sented illustrate this notion by successfully solving the inviscid Burgers equation, 
two-dimensional linear advection and the compressible Euler equations.
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