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ABSTRACT
We present a two-dimensional computational study of a shock interaction with a particle-seeded curtain 
where particles initially comprise 4% by volume, and the rest is air. If the initial depth of the curtain in 
the streamwise direction is variable, numerical results predict vortex formation in both the gas phase 
and the dispersed phase after the shock-curtain interaction. The phenomenon is distinct from baro-
clinic (Richtmyer–Meshkov) instability observed on gaseous density interfaces and is caused by the 
changes in the particle phase number density distribution and related interphase velocity changes.
Keywords: baroclinicity, CFD, particle-laden flow, Richtmyer–Meshkov instability, WENO-Z

1  INTRODUCTION
Hydrodynamic instabilities at the interface of two materials of different densities are a critical 
issue in high energy density physics (HEDP). The Rayleigh–Taylor instability (RTI) occurs 
when a fluid accelerates another fluid of high density [1,2]. The RTI is ubiquitous in HEDP 
phenomena, such as high Mach number shocks and jets, radiative blast waves and radioac-
tively driven molecular clouds, gamma-ray bursts and accreting black holes. Due to the 
importance in physics mentioned above, there have been many studies related to RTI from 
both physical and numerical simulation points of view in the literature.

It was shown [3] that when two immiscible fluids of different densities are accelerated in a 
direction perpendicular to their interface, this interface is stable or unstable according to 
whether the acceleration is directed from the heavier to the lighter fluid or vice versa. The 
case with gravity (with acceleration g pointing vertically downwards) is equivalent to the two 
fluids being accelerated vertically upwards with the same acceleration g.

A wide variety of fluid motions can be generated following the interaction of a shock wave 
with an interface separating two fluids of different properties. Any perturbation initially pres-
ent on the interface will, in most cases, be amplified following the refraction of the shock. 
This class of problems is generally referred to as the Richtmyer–Meshkov instability (RMI). 
The basic mechanism for the amplification of perturbations at the interface is baroclinic vor-
ticity generation resulting from misalignment of the pressure gradient of the shock and the 
local density gradient across the interface. The growth of perturbations soon enters into a 
nonlinear regime with the appearance of bubbles of light fluid rising into heavy fluid and 
spikes of heavy fluid falling into the light fluid. As the interface between the two fluids 
becomes more distorted, secondary instabilities, such as the Kelvin–Helmholtz shearing 
instability, develop, and a region of turbulence and mixing (usually referred to as mixing 
zone) ultimately forms.

The first analytical study on impulsive acceleration of an interface by a shock wave was 
performed by Markstein [4], who investigated the interaction of a shock wave with a density 
interface (flame front). His analytical result was the same as Taylor’s result for constant 
acceleration [2]. But the first real treatment of the impulsive acceleration of the interface by 
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a shock wave was given by Richtmyer [3]. He studied the growth of a sinusoidally perturbed 
interface in the linear regime following the shock wave impingement. In developing his 
impulsive model, he assumed that the shock wave is not strong enough to cause perturbation 
velocities comparable to the speed of sound. Ten years later, Meshkov [5] confirmed Richt-
myer’s prediction experimentally.

In studies of RMI an interface between two species with different density is usually con-
sidered. In detonations and explosion, a discrete phase of particles (also called dispersed 
phase) is often a part of the physical setting. In dispersed phase flows, particles that are mate-
rially not connected to each other form a separate phase. These include gas-particle and 
liquid-particle flows in which the particles constitute the dispersed phase. Few studies report 
on the instabilities that occur on the interface of a curtain of particles interacting with a shock. 
Balakrishnan et al. [6] investigate the flow field subsequent to the detonation of a spherical 
charge of TNT with an ambient distribution of dilute aluminum particles. Jacobs et al. [7] 
have studied the interaction between blast waves and clouds of particles.

In this paper, we study the interaction between a moving, normal shock and a perturbed 
curtain of particles. We show that the curtain exhibits instabilities that are very similar to RMI 
and RTI, however, as earlier research [8, 9] indicates, these instabilities are non-baroclinic, 
but rather driven by interphase velocities and changes in number density in the particle phase. 
Here and further on, ‘interphase velocity’ refers to a velocity difference between the gaseous 
and particle phases.

In the next section, we present the physical and numerical model. We then discuss the 
qualitative features of a shock interaction with a sinusoidal perturbed curtain of particles. The 
growth rates are compared with RMI theory in the next section. Conclusions are reserved for 
the last section.

2  GOVERNING EQUATIONS AND NUMERICAL MODEL
We model the particle-laden flow with the particle-source-in-cell (PSIC) method [10]. The 
conservation equations are solved for the carrier flow in the Eulerian frame, while particles 
are traced in the Lagrangian frame. In the following, we shall denote the subscript p for the 
particle variables and f for the gas variables at the particle position.

2.1  Gas Phase

The governing equations for the carrier flow are the inviscid two-dimensional Euler equations 
in Cartesian coordinates given by:
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The equation of state closes the system
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Here M U RTref ref= / γ  is a reference Mach number determined with the reference velocity 
Uref and reference temperature Tref. The source term 



S  accounts for the effect of the particles 
on the carrier gas and will be discussed in more detail below.

2.2  Dispersed Phase

The particle phase is solved by tracking the so-called point particles individually using equa-
tions for an empirically corrected Stokes flow around a spherical particle. The kinematic 
equation describing the particle position xp is given by

	
dx

dt p



= u 	 (5)

The particle acceleration is governed by Newton’s second law forced by the drag on the par-
ticle. With particles assumed spherical, we take the drag as a combination of the Stokes drag 
with corrections for high Reynolds and Mach number and the pressure drag leading to the 
following equations governing the particle velocity:
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Here, 
u f  is the velocity of the gas at the particle position and ρp is the particle density. The 

first term on the right hand side describes the particle acceleration resulting from the velocity 
difference between the particle and the carrier gas flow. f1 is an empirical correction factor 
[11] that yields an accurate determination within 10% of measured particle acceleration for 
higher relative particle Reynolds numbers up to Rf = 10,000 and relative particle Mach num-
bers up to Mf Tf f= =| | .
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The second term is the particle acceleration induced by the pressure gradient in the carrier 
flow at the particle position. The particle time constant is τ ρp p pRd=

2 18/ , where dp is the 
particle diameter. This time constant is a measure for the reaction time of the particle to the 
changes in the carrier gas. R= UL/υ is the Reynolds number of the carrier gas flow, where L 
is the reference length and is the dynamic viscosity. Because R is large, we do not model 
viscous effects in the governing Euler equations for the gas flow. The particle temperature is 
mostly affected by convection. From the first law of thermodynamics and Fourier law for heat 
transfer, the equation for temperature is derived as
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where Pr = 1.4 is the Prandtl number, taken at its typical value for air in this paper. Nu = 2 + 
√RfPr

0.33 is the Nusselt number corrected for high Reynolds number.
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2.3  Source term S

Each particle generates momentum and energy that affect the carrier flow. The volume aver-
aged summation of all these contributions gives a continuum source contribution on the 
momentum and energy equation in eqn 1 as
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where 
 

K x y K x y V( , ) (| |)= − /  is a normalized distribution function that distributes the influ-
ence of each particle onto the carrier flow. Wm and We are weight functions describing the 
momentum and energy contribution of one particle and are
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mp is the mass of one spherical particle, which can be derived from Tp and ρp. Np is the total 
number of particles in a finite volume V.

2.4  Numerical Model

The Langrangian algorithm traces each particle’s position, velocity and temperature over 
time. The carrier phase properties such as velocities and temperature required at each parti-
cle’s position are obtained via interpolation from the grid points that surround the particle to 
the position of the particle. To account for the back-way coupling effect of particles on the 
carrier phase, the momentum and energy of the particle phase forcing is averaged and cou-
pled to the carrier phase equations through a source term. Crowe et al. [10] first proposed this 
Particle-Source-in-Cell (PSIC) model for gas-droplet flows. The PSIC method is a parti-
cle-mesh type algorithm where the carrier phase is resolved in a static mesh, while the particle 
dynamics are traced along their path in the Lagrangian frame.

Here we use the high-resolution PSIC algorithm developed by Jacobs and Don and 
described in [7]. The Jacobs algorithm is a high-order, Eulerian–Lagrangian algorithm based 
on the weighted essentially non-oscillatory (WENO) finite difference method on a structured 
grid for the computation of the gas phase. Higher-order ENO interpolation between the 
Eulerian gas PDEs and the Lagrangian particle ODES ensure that the high-order nature of the 
WENO scheme is preserved in the EL-WENO method. The high-order resolution scheme 
captures shocks sharply without diffusing essential interactions between shocks, turbulence 
and particles.

3  PROBLEM SETUP
We simulate the interaction of a perturbed curtain with a 4% volume fraction loading of 
135,000 particles with a moving planar shock as schematically summarized in Fig. 1. The 
particle response time and density are τ p = ×1 7845 103.  and ρp = 1200, respectively.
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Particles are initially evenly distributed in a perturbed curtain stretching a width of 0.2941 
(in x-direction) and a height of 0.2 (in y-direction) with 150 x 900 particles. The function of 
the initial perturbation follows a cosine profile allocating the particles uniformly. The x and y 
locations of each particle are assigned as follows:
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Here xp and yp are the position of the particle in x and y directions, respectively, xo is the initial 

location of the curtain, δ x
a
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=  is the distance between particles in x-direction, where a 

is the width of the curtain and npart-x is the number of particles in x-direction, δ y
b
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the distance between particles in y-direction where b is the height of the curtain and npart-y is 
the number of particles in y-direction. The variable k is a counter for each row of particles 
ranging from 1 to npart-x while j is a counter for each column of particles ranging from 1 to 
nparty. wo is the initial amplitude of the curtain. Tcloud is the wavelength of the perturbation. 

δ y
b
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=  also identifies the coordinate of a particle row in y direction.

For simulation of the gas phase we use a fifth-order WENO scheme with a mesh of 800 by 
200 uniformly spaced grid points in the x and y directions, respectively.

The computational domain spans an area of –0.5 to 6.5 in the x-direction, which enables 
the tracing of relevant instabilities in the carrier and dispersed phase. The computational 
domain’s height ranges from –0.1 to 0.1 in the y-direction. A uniform inflow boundary con-
dition is specified at x = –0.15 and a periodic boundary condition is specified on the spanwise 
boundaries of the domain. The right boundary of the domain specifies outflow boundary 
conditions, as shown in Fig. 2. For calculation of the viscous forcing on the particles the 
Reynolds number is set to Rf = 9.6503 • 105. The shock Mach number is M = 2.8.

Figure 1: Schematic of the initial condition of a planar normal shock interaction with a 
perturbed curtain of particles.
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Tables 1 and 2 summarize the parameters and initial conditions of the particle and carrier-
phase respectively. The initial configuration of the simulation is depicted in Fig. 3 that shows 
the initial density of the carrier and the initial position of the particles in the cloud. Through-
out this paper the color coding of the particles (Fig. 3) is used to identify the initial location 
of columns of particles in the curtain.

Figure 2: Boundary conditions include periodic boundaries in spanwise directions and inflow/
outflow boundary conditions. A uniform mesh with 800 x 200 points is used with a 
fifth order WENO finite difference scheme.

Table 1: Summary of the parameters and initial condition of the particle phase.

Name Symbol Value

Particle Response Time Tp 1.7845 • 103

Density of the particles rp 1200

Reynolds Number Rf 9.6503 • 105

Cloud Width A 0.298

Cloud Height B 0.2

Volume fraction V 0.04

Initial Cloud amplitude ωo 0.1

Period Tcloud 1.0

Start location of the cloud xo 0.0

Particle distance in x-direction δxp 1.96066 • 10-3

Particle distance in y-direction δyp 2.222 • 10-4

Table 2: Summary of the parameters and initial condition of the carrier phase.

Fluid 1 Value Fluid 2 Value

u1 8.824 u2 0
υ1 0 υ2 0
ρ1 3.66 ρ2 1
E1 33.0775 E2 2.5
M1 2.78 M2 0
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4  PARTICLE CURTAIN INSTABILITIES
While there are no baroclinic effects in the dispersed phase, the growth of the initial pertur-
bation in the curtain’s geometry is very similar to that of a baroclinically driven instability. 
The mechanism is of course very different and we will show is closely connected to changes 
in the local number density of the dispersed phase and related changes in the interphase 
velocity between the particles and the fluid. If the number density is higher, the carrier gas 
flow is decelerated by the denser particle phase. A lowered carrier phase velocity reduces the 
forcing of the particle motion by the gas phase and hence leads to a reduction in the particle 
phase velocity.

When the shock interacts with the (left) farthest upstream particles at an early time of 
t  =  1.1, the middle part of the curtain is compressed, as observed in the number density 
Φ = −∑ ( ( )),K x xp ti

N p  contours in Fig. 4. The middle part of the curtain remains more 

Figure 3: Contours of the initial density field and color-coded particle curtain location.

Figure 4: Density contours with color code particle locations (top), particle phase’s number 
density Φ, contours (middle) and particle phase’s averaged velocity, Ũ, contours 
(bottom) at t = 1.1.
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compressed as compared to the side parts throughout the flow development (e.g. at t = 2.2 and 
t = 3.3 in Figs. 5 and 6, respectively) because of this earlier interaction with the accelerated 
flow behind the shock. The resulting lower particle phase velocity in streamwise direction,  

u  = 
1

Φ
( ( )) ,, ,K x x up i p ii

Np −∑  in the center as compared to the sides (Fig. 4) leads to growth 

of the initial perturbation.
The difference in velocity magnitude in the middle and the side creates a vortex pair in the 

gas phase as observed by the vorticity, Ω = ∂
∂

− ∂
∂

v

x

u

y
 contours in Fig. 7. The vortex pair trans-

ports particles from the sides to the middle at the downstream location of the curtain. The 
positive particle velocity in y-direction, �

�
v and corresponding symmetric negative velocity on 

the bottom (Fig. 8), leads to an increase in the number density along the centerline (Fig. 6).
In the upstream part of the curtain the �

�
v  velocity is positive and negative on the top and 

bottom half of the domain, respectively. Particles are hence transported towards the outer 
boundaries of the domain. Because we have specified a periodic boundary condition in span-
wise direction, the particles that leave the domain through the bottom boundary enter through 

Figure 5: Particle phase number density F contours at t=2.2.

Figure 6: Zoomed-in particle phase number density Φ contours at t=3.3. The highlighted 
circle shows particles that originate from the bottom boundary and enter through 
the top boundary via the periodic boundary condition.

Figure 7: Vorticity contours in the gas phase at t = 2.2.
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the top boundary and vice versa at later times (t > 3), as highlighted in Fig. 6. The number 
density trends are directly connected to the structures in the velocity contours in Fig. 9. We 
observe that the centerline velocity is lower in areas where the particle number density is 
high. The periodic particle streaks at the sides of the domain redirect the flow and create a 
visible change in the velocity at those locations.

5  GROWTH OF INSTABILITY
By assuming a potential flow, one can perform analysis of the acceleration driven normal 
instability between two fluids of different densities. Richtmyer [12] found that the growth of 
the perturbed interface is linear according to

	
d

dt
k u A o

ω
ω= [ ]  	 (13)

where ωo  is the initial amplitude, [u] = u̇p /dt is the initial change in the velocity of the inter-

face imparted by the shock wave, A =
−

+

ρ ρ

ρ ρ

2 1

1 2

 is the Atwood number and k =
2π

λ

 is the wave 

number of the initial perturbation.
The amplitude ω grows with the time. Both light-heavy (A > 0) and heavy-light (A < 0) 

cases are unstable. For A = 0 and A >0 the initial amplitude is monotonically increasing. For 
A <0, the amplitude is initially zero, then reverses sign and grows according to equation 13.

Richtmyer linearized the compressible computations using finite difference techniques and 
accounted for an initial compression of the interface using post-shock values A and u pro-
posed by Richtmyer was

	
d

dt
k u A

ω
ω= ′ ′[ ] 0 	 (14)

Figure 8: Particle phase velocity, V, contours at t = 2.2.

Figure 9: Particle phase velocity, V, contours at t = 3.3.
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To apply Richtmyer’s formulas to a particle-laden flow, we determine the post-shock Atwood 
number based on density of the mixture, pmix, as

	 ′ =
−

+

A mix

mix

ρ ρ

ρ ρ

1

1

 	 (15)

The mixture density is determined as

	 ρmix=ρpV+ ρ1(1–V)	  (16)

where the volume concentration of the particles is V=0.04 and p1 is the density of the gas 
before the shock wave.

Using the computations of the shock-curtain interaction, we compare the computational 
growth rate against this theoretical growth rate for three different values of particle density, 
ρpart=1200, 2400 and 8800. Note that if the density of the particle is changed, then the parti-
cle’s diameter changes also according to

	 dp
p

f p

=

18τ

ρRe
 	 (17)

where dp is the diameter of the particle. t
p
 is the particle response time and Rf is the Reynolds 

Number around the particle. For a fixed number of particles the volume concentration reduces 
with an increased particle density and a reduced particle diameter. In Table 3, we summarize 
the parameters for the three cases considered.

In Fig. 10, growth of the amplitude of the curtain’s perturbation is plotted in time. All cases 
show an initial compression of the curtain followed by a linear growth. The compression of 
is smallest for pp = 1200 and increases with increasing particle density as predicted by 
theory.

The growth rates for the three cases compare remarkably well with theory, considering that 
the instability in the particle phase is non-baroclinic. The growth rates are m=0.3828, 0.3357 
and 0.2991 for pp=1200, 2400 and 8800, respectively. Comparison of these growth rates 

(Table 3) to the theoretical growth rates of 
d

dt

ω
 =0.4527, 0.3766 and 0.2381, respectively, 

shows that the theory and computation are within at most 15% The deviation is a largest for 
the lowest particle density that was considered here.

Table 3: Parameters and results of a parametric study of the effect of particle densities of 
pp=1200, 2400 and 8800 on the growth rate, dw/dt, of a shock acceleration driven 
instability.

pp 1200 2400 8800

V 0.04 0.0282 0.0147
ρ1 3.66 3.66 3.66
ρmix 51.5136 65.7 133.52
A 0.86733 0.8961 0.9464
[u] 0.1658 0.1338 0.08

d

dt

ω 0.4527 0.3766 0.2381
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6  CONCLUSIONS AND FUTURE DEVELOPMENTS
A study is conducted on the growth of a perturbation in a curtain of particles when a planar 
shock moves through it. Two-dimensional computations show that the perturbation of the 
particle curtain grows much like a baroclinically driven instability in a gas phase. However, 
the growth mechanism is different: because of an increased particle number density at the 
farthest upstream part of the perturbation, an interphase velocity difference develops in span-
wise direction. This in turn yields a spanwise velocity difference in the particle phase that 
drives the growth of the perturbation.

An important finding is that the growth rate of this instability initially follows the theoret-
ically linear baroclinic growth. In a parametric study on the effect of the particle density, we 
found an agreement between the theoretical equation and the simulation within 15%. This 
observation is also consistent with recent experimental results [9].

Our current efforts focus on a parametric study with different dependencies to further 
explore instability growth in the particle phase. We are also working on an experiment based 
on this simulation. We expect to find similarities, not only in the behavior of the instability, 
but also in the growth rate.
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