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ABSTRACT
The Young–Laplace equation describes the stress balance between the interfacial tension and the gravi-
tational body force. Its modified form can be applied to model the dynamics of the interface of the 
two-phase flow. It is analytically difficult to solve the Young–Laplace equation due to its strong non-
linearity, in the form of the surface curvature and the implicit body force on the interface. This work 
aims to numerically solve the Young–Laplace equation with a finite-volume method (FVM) and an 
overlapped grid. The overlapped grid allocates the variable and its derivative together at every grid 
point, and is compared with the traditional staggered grid. The proposed overlapped grid can achieve 
fourth-order numerical accuracy, which is higher than the second-order accuracy of the staggered grid. 
Also, the overlapped grid, with full states defined at every grid point, offers convenience to the imple-
mentation of the boundary condition as well as the coupling of multi-physics.
Keywords: finite-volume method, overlapped grid, young–laplace equation

1 INTRODUCTION
Two immiscible fluids form the interface [1, 2]. The shape of the interface is influenced by 
the interfacial tension and the pressure difference [3, 4]. The interfacial tension aims to min-
imize the surface area and the surface energy [5]. The effect of the interfacial tension becomes 
more significant in a small length scale, measured by the Bond number (Bo) or the surface/
volume ratio [6], and the interface science is one of the key topics in fields such as microe-
lectromechanical systems (MEMS) [7] and microfluidics [8].

Different from solid boundaries, the fluid interface is free to deform, and its shape function 
is particularly important as a boundary condition to be determined. The interface shape or the 
surface curvature is coupled with the surrounding physical processes, such as flow convec-
tion, gravity, electric field, elasticity and so on. In [9], Weber and Shandas simulated the 
microbubble formation as well as the two-phase flow with the interface tracking method. 
Dadvand et al. [9] demonstrated a numerical analysis of the drop-on-demand problem con-
trolled by spark with the boundary element analysis, assuming small surface/volume ratio. 
Lim et al. [10] numerically solved the cone-jet formation under the electric field with both 
the front tracking and the finite-volume method (FVM). Multiple equilibria were derived by 
Taroni and Vella [7] for a elastocapillary system by the lubrication theory. The finite element 
method was adopted by Sprittles and Shikhmurzaev [11, 12] to model the dynamic wetting 
flows and the dynamic contact angle. Moreover, the surface tension can lead to hydrody-
namic instability [13, 14].

The Young–Laplace equation is one of the simplest models [15, 16] to describe the static 
surface shape governed by the gravitational body force and the restorative interfacial tension. 
One popular application is the axisymmetric drop shape analysis (ADSA) [17, 18]. Basically, 
ADSA compares and fits the drop shape with the numerical solutions of the Young–Laplace 
equation to obtain the interfacial tension and the contact angle of the liquid. This technique 
aided by the modern photographic technique is faster and more efficient than other traditional 
methods. Nevertheless, researchers are investigating methods for developing a robust and 
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efficient numerical algorithem to solve the Young–Laplace equation. A finite-element-based 
algorithm was proposed by Dingle et al. [19]. In [20], Gille et al. compared four different 
numerical schemes. Also, Danov et al. [21] worked on the sixth-order Taylor method with the 
emphasis on the accuracy, stability and computational time.

In the current work, we propose the overlapped grid to improve the FVM modelling accu-
racy of the Young–Laplace equation by two orders compared with the staggered grid [22, 23]. 
For each grid point of the overlapped grid, there are two unknown variables allocated, h and 
′h ; for the staggered grid, only one unknown variable, either h or ′h , is allocated. Literally, 

we overlap one more layer of grids on top of the staggered grid. Thus, the nonlinear source 
term can be better approximated with reduced Taylor series truncation error by the heavily 
packed unknown variables [24]. Consequently, smaller effort (e.g. programming and compu-
tation) leads to higher accuracy of the overlapped grid, O x∆ 4

( ), than that of the staggered 
grid, O ∆x2( ).

This paper is constructed as per the following sections. In Section 2, the FVM discretiza-
tion of the Young–Laplace equation is formulated and analyzed, with respect to both the 
‘traditional’ staggered grid and the proposed overlapped grid. Section 3 demonstrates and 
discusses the numerical solutions. The two FVM solutions are verified with one published 
solution [4], and we further investigate the performance of the overlapped grid, with the stag-
gered grid as a beanchmark. Finally, the concluding remarks are addressed in Section 4.

2 MATHEMATICAL MODELLING

2.1 Physical model

The Young–Laplace equation governs the capillary rise of the air–liquid interface along the 
flat plates. We consider the steady-state shape function, h h x= ( ), between the two vertical 
parallel infinite-wide plates with the separation distance of w, as is schematically shown in 
Fig. 1 [4]. On the 2-dimensional (2D) cross-sectional plane, the Young–Laplace equation can 
be expressed in the partial-differential-equation (PDE) form as,

 ρ σ θgh d ds x w= ∈  
/ , , ,0  (1)

where ρ , g and σ  are the fluid density (kg/m3), the gravitational acceleration (m/s2) and the 
interfacial tension (J/m2), respectively. h is the rising height, s is the length and θ  is the angle 
(θ π π∈ − 

/ , /2 2 ) of the surface, respectively. ρgh measures the net pressure applied on the 
surface due to the gravitational body force, while σ θd ds/  measures the net interfacial tension 
due to the curvature along the surface.

Figure 1: Schematic of the 2D free-surface capillary rise between two vertical parallel plates.
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The Boundary condition is in the form of the contact angles, θ0  and θ1, of the fluid on the 
two rigid plates,

 θ θ π θ π θ0 2 20 1( ) = − ( ) = −/ / .and w  (2) 

Also, we can derive the following geometrical relationships,

 tan / sin / cos / / .θ θ θ= = = = = +′ ′dh dx h dh ds dx ds h, , and 1 1 2  (3)

Dimensionless variables are obtained with the normalization rules,

 h h w s s w x x w* / * / * / .= = =, , and  (4)

And, the Young–Laplace equation can be reformed into,

 Πs qh d ds x* / *, * , ,= ∈[ ]0 1  (5)

where Π
σ

ρ σ= gw2 /  is the dimensionless parameter, so-called Bo.

2.2 Finite-volume method

Equation (5) is an elliptic PDE with two boundary conditions in eqn  (2). We apply the FVM 
to solve this nonlinear boundary-value problem. Take the line integral of eqn  (5), along one 
finite surface from s1

* to s s s2 1
* * *
= + ∆ , assuming unit width into the paper, as is shown in Fig. 

2,
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where the source term comes from the net perpendicular pressure on the finite surface, while 
the flux term comes from the unbalanced interfacial tension across the finite surface.

Substitute d ds h x* *’
= +1 2  and θ = arctanh*’ into the above equation,

Π Π
σ σ

x

x

x

x

h h x h h h
1

2

1

2

1 12
2 1

*

*

*

*

* *’ * *’ *’ *

∫ ∫+ − −( ) = +d arctan arctan hh x
h h

h h
*’ *

*’ *’

*’ *’
,2 2 1

2 11
0d arctan−

−

+











 =  (7)

Figure 2:  One finite surface with the geometry specified and unit width into the paper. The 
gray dashed curve represents the exact free surface, while the finite surface is the 
fragmental approximation of the exact solution. The interfacial tensions on the two 
ends have the same magnitude but different orientations, θ1 and θ2 . Also, the 
pressure is applied on the finite surface.



14 Z. Zhang & L. Wang, Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 1 (2018)

where the source term is f x h hs
* * *’

( ) = +1 2 , and the flux term is f x hf
* *’

( ) = arctan . Thus, 
the Young–Laplace equation is nonlinear for the source term and the flux term, both of which 
depend on the unknown shape function, h h x* * *

= ( ).
Numerically, we can further discretize eqn  (7) into an algebric equation, by approximating 

the integral term with the unknown variables defined in the finite surface. Such approxima-
tion varies with different grid layouts. In this work, we detail two grid layouts, the “traditional” 
staggered grid and the proposed overlapped grid, as are shown in Fig. 3. Their main differ-
ence lies with the arrangement of the unknown variables and the algebraic equations. The 
staggered grid allocates the unknown variables, either h or ′h , one by one along the free 
surface, while the overlapped grid allocates both h and ′h  onto every grid point. Thus, the 
nonlinear source terms are approximated differently for the two grid layouts, which leads to 
different features of the numerical solutions. Note that the grid points are uniformly spaced 
in x* ,∈  

0 1  for both layouts in this work.

2.3 Staggered grid

As is shown in Fig. 3b, the staggered grid allocates every grid point with one unknown vari-
able, either h or ′h . For ease of presentation, we name the finite surfaces by their centered 
unknown variables, such as the h-centered finite surface and the ′h -centered finite surface, 
respectively. The number of grids, denoted as Nstag, is counted by the number of h-centered 
finite surfaces. Thus, the total number of unknowns is 2 1Nstag +( ), and the grid size is 
∆x Nstag

* /= 1 .
The discretized governing equation is applied to the h-centered finite surface, while the 

second-order Taylor-expansion equation is applied to the complete ′h -centered finite surface. 
Moreover, the boundary condition is applied to the two ′h  unknowns at the two ends. In total, 
we can derive 2 1Nstag +( ) independent algebraic equations.

2.3.1 h-centered finite surface
Each h-centered finite surface is associated with three unknown variables, hp

*, h1
′*  and h2

′* , 
where the subscript ‘p’ indicates the middle point between Point 1 and Point 2. By applying 
the central differencing scheme, we can approximate hp

′*  as,

Figure 3:  Two grid layouts. (a) The overlapped grid with Nover = 8; (b) the staggered grid with 
Nstag = 4. Each circle stands for a grid point, where the unknown variables (h or ′h  
or both) are defined. ‘G.E.’ stands for the discretized governing equation, while 
‘T.E.’ stands for the Taylor-expansion equation.



 Z. Zhang & L. Wang, Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 1 (2018) 15

 h h h O xp
* * * *( ) .′ = + ( )′ + ′

1 2
22 ∆  (8) 

We use the value at the grid center to approximate the integral term in eqn  (7), 
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Substitute eqns (8) and (9) into eqn  (7), and we can derive the discretized governing equation 
for the h-centered finite surface,
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which involves the three unknown variables, hp
*, h1

′*  and h2
′* , and has the modelling error of 

O x∆ *2
( ).

2.3.2 ′h -centered finite surface
Each ′h -centered finite surface is associated with three unknown variables, hp

′* , h1
* and h2

*. 
Their relationships are derived from the second-order Taylor expansion,
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By subtracting the above two equations, we can derive the Taylor-expansion equation for the 
′h -centered finite surface,

 h h h x O x h h h xp p
*’ * * * * *’ * * */ / ,= −( ) − ( ) − −( ) =2 1

2
2 1 0∆ ∆ ∆, or  (12)

which involves the three unknown variables, hp
*’, h1

* and h2
*, and has the modelling error of 

O x∆ *2
( ).

2.4 Overlapped grid

As is shown in Fig. 3a, the overlapped grid allocates both unknown variables, h and ′h , to 
each grid point. We regard a grid consisting of three grid points as a complete finite surface, 
which is referred to as the three-point finite surface. Also, at the two ends of the free surface, 
there are two finite surfaces consisting of four grid points, and they are referred to as the four-
point finite surface. The number of grids, denoted as Nover , is counted by the number of grid 
points minus one. Thus, the total number of unknowns is 2 2Nover +( ), and the grid size for 
the three-point finite surface is ∆x Nover

* /= 2 .
The discretized governing equation is applied to the three-point finite surface as well as the 

four-point finite surface, while the fourth-order Taylor-expansion equation is applied to the 
three-point finite surface. Moreover, the boundary condition is applied to the two ′h  unknown 
variables at the two ends. In total, we can derive 2 2Nover +( ) independent algebraic equa-
tions.
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2.4.1 Three-point finite surface
Each three-point finite surface is associated with six unknown variables, hp

*, hp
*’, h1

*, h1
*’, h2

* and h2
*’.  

Their relationships are derived from the fourth-order Taylor expansion,
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By eliminating hp
*’’, hp

* 3( ) and hp
* 4( ) from the above four equations, we can derive the Taylor-ex-

pansion equation for the three-point finite surface,

 h h h x h x h x O xp
′

= − − −( ) + ( )
* * * * *’ * *’ * */ ,6 6 42 1 1 2

4
∆ ∆ ∆ ∆  

 or / / ,*’ *’ *’ * * *h h h h h xp1 2 2 14 6 0+ +( ) − −( ) =∆  (14)

which involves the five unknown variables, hp
*’, h1

*, h1
*’, h2

* and h2
*’, and has the modelling 

error of O x∆ *4
( ).

Futhermore, the integral term in eqn  (7) can be approximated by applying Simpson’s rule 
with the three equally spaced grid points along the finite surface,
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Substitute eqn  (15) into eqn  (7), and we can derive the discretized governing equation for 
the three-point finite surface,
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which involves the six unknown variables, hp
*, hp

*’, h1
*, h1

*’, h2
* and h2

*’, and has the modelling 
error of O x∆ *4

( ).

2.4.2 Four-point finite surface
The four-point finite surfaces are at the two ends of the overlapped grid, with a grid size of 
3 2∆x* / . They are associated with eight unknown variables, h1

*, h1
*’, h p1

* , h p1
*’, hp2

*  hp2
*’ , h2

* and h2
*’,  

where the subscripts ‘1p’ and p2’ indicate the equally spaced points between Point 1 and 
Point 2, from left to right, respectively. Thus, the integral term in eqn  (7) can be approxi-
mated by applying the Simpson’s 3/8 rule with the four grid points,
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Substitute eqn  (17) into eqn  (7), and we can derive the discretized governing equation for 
the four-point finite surface,
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which involves the eight unknown variables, *h1 , h1
*’, h p1

* , h p1
*’, hp2

*  hp2
*’ , h2

* and h2
*’, and has the 

modelling error of O x∆ *4
( ).

2.5 Summary

For the two grid layouts, we derive different discretized algebraic equations, as summarized 
in Table 1. From Table 1, we observe that the overlapped grid can achieve higher order of 
accuracy, O x( )*

∆
4 , than that of the staggered grid, O x( )*

∆
2 . Thus, presumably, we expect a 

better numerical performance with the overlapped grid.
We implement the FVM algorithm with MATLAB code, and adopt the Newton’s method 

to iteratively find the converged solution. Also, we take advantage of the embedded mathe-
matic library of MATLAB, such as the arctan() function and the 64-bit Central Processing 
Unit (CPU, i.e. a machine limit of 2 2204 10 16. ×

− ), to approximate the Jacobian derivative 

Table 1: Fact sheet of the two grid layouts.

Overlapped Grid Staggered Grid

Number of Grids Nover Nstag

Number of Unknowns 2 2Nover + 2 1Nstag +

∆x* 2 / Nover 1 / Nstag

Number of Boundary Conditions 2 2

Governing Equation 
(Stress Balance)

Algebraic 
 Equation

Eqn (16), for 
three-point finite 
surface

Eqn (18), for 
four-point finite 
surface

Eqn (10)

Number Nover −1 2 Nstag

Modelling error O x∆ *4
( ) O x∆ *4

( ) O x∆ *2
( )

Taylor-expansion 
Equation

Algebraic 
 Equation

Eqn (14), for 
three-point finite 
surface

Eqn (12)

Number Nover −1 Nstag −1
Modelling error O x∆ *4

( ) O x∆ *2
( )
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matrix with a step size of 10−8 for each unknown variable. In this regard, the Parallel Com-
puting Toolbox can accelerate the approximation of the Jacobian derivative matrix. The 
convergence criteria of the iterative solver is 10−13 for each algebraic equation. Generally, the 
computation completes within 6 iterations and the computational time is not a concern in the 
current study.

3 RESULTS AND DISCUSSION

3.1 Verification with benchmark problem

There is a recently published numerical solution [4] of the Young–Laplace equation by using 
iterated deferred corrections. The physical parameters are: ρ = 1000 kg/m3, g = 9.8 m/s2, 
σ = 72.2mJ/m2  and θ θ0 1= = °14 . And, the dimensionless governing parameter is 
Π

σ
= ×1 36 105 2. w . In this case, the two contact angles at the two plates are identical, and the 

free surface is symmetric about its midpoint.
In Fig. 4, we compare the three sets of numerical solutions by the midpoint height, the 

contact height and the mean height, with respect to the separation distance, w. The grid num-
bers for both FVM solutions are 80. Good agreement can be observed, which verifies the 
MATLAB solvers developed from the FVM algorithms. Note that the contact height (on the 
left end) is not directly defined for the staggered grid, as is shown in Fig. 3, and it is approx-
imated by h h h xcontact near contact

* * *’ * /= − ∆ 2, where hnear
*  represents the height at the neighboring 

grid point.

3.2 Comparison between two layouts

In this subsection, we compare the performance of the two grid layouts. The physical param-
eters are: ρ = 1000 kg/m3, g = 9.8m/s2, σ = 72.2mJ/m2 , w = 5mm  (i.e. Π

σ
= 3 40. ) and 

θ θ0 1 28= = °. The grid numbers are doubled from 10 to 10240 (11 settings in total).

Figure 5 visualizes the numerical solutions from both grid layouts with 10 grids, 20 grids 
and 40 grids. It is observed that both grid layouts converge to the same solution.

Figure 4:  Comparison of the numerical solutions, with the published solution [4] by midpoint 
height, contact height and mean height. The grid numbers for both FVM solutions 
are 80. “O” stands for the overlapped grid, while “S” stands for the staggered grid.
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Furthermore, Fig. 6 compares modelling errors of the two grid layouts, with respect to the 
total length of the free surface and h* and h*’ at three points. For the overlapped grid, the total 
length is defined as,

 L x x h h O x
i

N

i i i i

over
* * * * * * ,= −( ) + −( ) + ( )

=

+ +∑
1

1

2

1

2 2
∆  (19)

where xi
* is the location associated with hi

*. And, for the staggered grid, the total length is 
defined as,

 L x x h h
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h h
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i i i i N
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st
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2

1
2
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1 1

∆

aag
O x

+( ) + ( )1
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From Fig. 6a, it is observed that both grid layouts lead to the same converged total length of 
the free surface.

Moreover, since the grid number, N , is doubled consecutively, the Richardson extrapola-
tion is applied to improve the modelling accuracy by exploiting the obtained numerical 
solutions. Then, based on the Richardson results, we define the modelling error as,

 log error log10 10 1( ) = − X XR/ , (21)

where X  denotes the numerical solution and XR denotes the corresponding 10th–order 
Richardson result. Thus, Fig. 6b–6d visualize those modelling errors for the total length, h* 
and h*’ at three points.

From Fig. 6b, it is observed that both grid layouts can produce the total length with 
the modelling error in the order of O x∆ *2

( ). But, the overlapped grid has slightly bet-
ter accuracy than the staggered grid, especially for log10 2N( ) >  or N >100. And, 
Fig. 6c and d visualize the modelling error of h* at x* , . .= 0 0 2 0 4and  and h*’ at 
x* . .= 0 2 0 4and . It is observed that the overlapped grid outperforms the staggered 
grid in terms of the modelling error by two orders for sufficient N , as is expected in  
Section 2.5.

Figure 5:  Numerical solutions with θ θ0 1 28= = °, Π
σ
= 3 40. , and N = 10 20 40, ,or . (a) h*;  

(b) h*’.



20 Z. Zhang & L. Wang, Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 1 (2018)

By overlapping one more layer of grids on the staggered grid, the overlapped grid heavily 
packs more unknown variables for the finite surface. As a result, the overlapped grid demon-
strates two major advantages:

1. the nonlinear source term is approximated with a higher order of accuracy, while the 
fourth order Taylor-expansion equation also has higher order of accuracy. Thus, as ana-
lyzed in Section 2.5, the overlapped grid can achieve a higher order of accuracy, O x∆ *4

( ),  
than the staggered grid, O x∆ *2

( ) for a sufficient grid number. Note that a similar order 
of accuracy can be achieved by adopting the quadratic interpolation [24] or even higher-
order schemes [21] for the staggered grid, which potentionally suffers from the numeri-
cal wiggling and calls for artificial diffusion fragment [22].

2. Due to the multi-variables defined at one grid point, the effort is minimized to implement 
various boundary conditions, such as the Dirichlet boundary condition, the Neumann 
boundary condition or the Robin boundary condition. Also, the full states defined at 
one grid point offers convenience to multi-physics problems, where the free surface is 
coupled with other physical processes or between two fluid phases.

4 CONCLUDING REMARKS
In the current work, we propose and demonstrate an FVM with the overlapped grid to numer-
ically solve the Young–Laplace equation and achieve a higher order of accuracy, O x∆ 4

( ), 

Figure 6:  Numerical solutions with θ θ0 1 28= = °, Π
σ
= 3 40. , against different grid numbers. 

(a) total length of the free surface; (b) modelling errors of the total length; (c) 
modelling errors of h* at x*

= 0, 0.2, and 0.4; (d) modelling errors of h*’ at 
x*
= 0.2 and 0.4.
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compared with the “traditional” staggered grid, O x∆ 2
( ). Mainly, the improved accuracy 

results from the heavily packed unknown variables and the better approximation of the non-
linear source term. Also, the multi-variables defined at each grid point offer convenience to 
the implementation of the boundary conditions and the coupling with multi-physics, espe-
cially for two-phase flow problems.
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