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ABSTRACT
Bike sharing systems are fundamental sources of data for creating applications of monitoring the city 
and guiding the user’s choice for bike usage. Although many related works analyse the generated data 
by these urban bike systems with the scope of finding bike usage patterns, the variety of the cities and 
the lack of impact factors require further deeper investigations. We propose a simple, but efficient 
mathematical approach based on a Markovian model to predict the bike distribution for an urban shar-
ing bike system considering the weather and event impacts. The model is applied for data collected 
from the New York city bike system. The main findings are relevant for the urban applications and are 
summarized as follows: (a) the model results substantially address the city’s characteristics, i.e., for the 
New York city, in terms of weather, only the temperature influences the bike usage, while regarding the 
events, the impact is insignificant, (b) the hourly bike distribution is predicted 1 day-ahead that is of 
particular interest to the city manager and (c) to the user who is able to know 1 day in advance the prob-
ability of finding an available bike or a free parking space at a specific station. Further city comparison 
analysis in terms of traffic, vehicle utilization and population density is provided for future purposes. 
Finding the precise station’s capacity is a forthcoming feature of the proposed model. 
Keywords: data applications, mathematical modelling, urban bike distribution

1 INTRODUCTION
The mobility in the cities constantly changes once with the digitalization and the appearance 
of sustainable actions promoted by the United Nations goals [1]. Among the main modali-
ties of transportation, bike utilization is gaining very much attraction mainly because of the 
simplicity and easiness of travelling in crowded cities as well as the economic impact for the 
users. Many city councils have already approved the installation of small to large bike shar-
ing systems and they incentive people to use the bike as a mean of transportation instead of 
cars primarily because of the traffic jam and the CO

2
 emission reduction. Data generated by 

the bike systems is of particular interest to both the city managers and the users for a large 
range of urban applications. Part of these applications is related to traffic and CO

2
 reduction, 

as well as optimizing public services and several business models. Understanding the user 
behaviour within the city is equally vital for the city. Progressively cities make available 
their bike data and, thus, more research works have been publishing their results and the first 
insights. In particular, we select some of the works related to the bike sharing system data 
analysis. Basically, the literature review contains various models with respect to the bike 
prediction or the demand analysis, as shown in Table 1. The previous works aim to find the 
demand prediction (including the check-in and check-out) and consider the bike data from 
several cities. Moreover, the main impact factors are related to time and weather and very few 
consider the event impact.
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Since most of the works are limited to the demand prediction and the impacts, there is room 
for improvements and new metrics analysis. Thus, our main contributions are enumerated as 
follows:

• Bike distribution: reveals the city hourly bike distribution, considering also the weather 
and events impact, i.e., sport games, concerts. The bike distribution is predicted for 1 
day-ahead using a simple Markovian approach. This metric is mainly attractive to the city 
managers.

• Probability to find at least one bike available in a specific station: creates generally advan-
tages for the users that aim to find a bike available at the bike parking station. Also, prob-
ability to find free space in a station is as well needed for the users in order to not spend 
too much time looking around for a park space.

• City comparison: provides insights on city features to consider for the prediction bike 
model.

The rest of the work is organized as follows. Section 2 provides the input data analysis and 
Section 3 presents the model description, while Section 4 the numerical results. The city 
comparison analysis is provided in Section 5 and the work concludes with Section 6.

Table 1: Literature review.

Work Objectives Model Factors City

[2] Demand analysis Quantification (O-D 
pairs)

Traffic, trip, 
slopes

Coimbra

[3] Predict bike availabil-
ity in stations

Queuing theoretical 
time-inhomogeneous 
Markovian model

Time Paris

[4] Demand (check-in/out) 
prediction in stations 
and neighbourhoods

Log-log regression 
model

Taxi usage, 
weather, spatial 
variable

New York

[5] Demand (check-in/out) 
prediction in stations

Graph convolutional 
neural network

Time, day, 
location

New York

[6] Demand (check-in/out) 
prediction in stations

Decision tree ran-
dom forest Adaboost

Weather, time 
location, day, 
week

Seattle

[7] Demand (check-in/out) 
prediction in stations

Random forest, 
pruning

Time, bike avail-
ability, weather, 
location, events

Hanghzou

[8] Demand (check-in/out) 
prediction in stations 
in clusters

Weighted cor-
relation network, 
Monte Carlo, label 
propagation

Time, weather, 
social events, 
traffic, user

New York, 
Washington

[9] Trip prediction Regression models User, location, 
time, trip

Chicago
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2 URBAN DATA SETS
The data collected for the analysis can be divided in (a) bike data, (b) weather data and (c) 
event data. All data sets are collected from 1st of January, 2017 until 31st of July, 2018. The 
details for each data set is provided in the following.

2.1 Bike Data

The bike data set has been downloaded from Citi Bike [10]. The bike system in New York 
city covers the areas of Manhattan, Brooklyn and Jersey City. The consistency of data is 
not always accurate as it seems that some fails in the system may cause interruption of data 
record. 

The data available for the analysis is given by the transitions between two stations. The 
data format is recorded as the trip duration, the start and end time, the start and end station, 
i.e., identification and location, the bike identification, and the user gender and age. Hence, 
we can process the number of bikes, and stations per day. Fig. 1 shows the number of bikes 
and stations used and the average trip duration during the mentioned period. The bike system 
increases significantly from 2017 in terms of number of stations and bikes. Curiously, the 
average trip duration is around 2 h during the cold day and more than 2.5 h during the warm 
days, most probably because people keep the bike close while having stops.

We observe some patterns in the bike data usage. For instance, the top ten common 
routes, i.e., most used stations for check-in and check-out, are calculated during the peri-
ods of morning, afternoon and night. The periods of morning, afternoon, nights mean the 

Figure 1:  Bike data collected from January 2017 until July 2018. (a) Number of bikes used; 
(b) Number of stations used; (c) Average trip duration (h).

(a) (b)

(c)
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following time intervals: morning between 04:00  am and 12:00  pm, afternoon between 
12:00 pm and 08:00 pm, and night between 08:00 pm and 04:00 am. The location of the 
most common stations is shown in Fig. 2, where during morning the most frequented sta-
tions are used between 245 and 332 times, in the afternoon between 482 and 826 times 
with the same check-in and check-out stations, while during the night between 85 and 169 
times. One station located in the south of Central Park, named Central Park S & 6 Ave, 
is common for all periods. This analysis reveals the most common transitions between 
Manhattan and Brooklyn during morning and night and between Manhattan stations and 
Governors Island during afternoon.  

2.2 Weather

The weather data is based on the online service provider named Weather Underground [11]. 
We consider two metrics for the bike usage pattern, i.e., the daily cumulative trip duration and 
the daily number of bikes used per day. We analyse the dependence between these two vari-
ables in a daily basis manner. The correlation and R-squared results are shown in Table 2 and 
the match between the weather conditions versus the trip duration and bike usage in Fig. 3. 
As it can be seen, the temperature is a key factor for the bike usage pattern choice, while the 
rain and the wind have a weak relationship with the bike usage and trip duration for the New 
York city.

Figure 2:  Top ten common routes during morning, afternoon, night (green points = check-in, 
red points = check-out). (a) Morning; (b) Afternoon; (c) Night.

(a) (b) (c)

Table 2:  Correlation coefficient/R-squared between the duration of trips/number of 
bikes and the weather implications.

Data Temperature Precipitation Wind

Trip duration 0.79/0.63 −0.13/0.016 −0.16/0.025
Number of bikes 0.77/0.6 −0.19/0.038 −0.16/0.025
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2.3 Events

To better understand the impact of the events in bike usage system, we focus on the events 
that occur in Madison Square Garden since the arena capacity is significant, i.e., around of 
20,000 seats. Along the analysed period, from January 2017 until July 2018, we collect 88 
concerts, 64 basketball games and 72 ice hockey games which represents more than 200 days 
out of 577 total number of days for the selected period [12–14]. The bike stations evaluated 
are the ones closest to the Madison Square Garden, as Fig. 4 shows, namely 8 Ave & W 33 

Figure 3: Weather impact for data collected from January 2017 until July 2018. 

Figure 4: Stations closest to the Madison Square Garden.
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St, 8 Ave & W 31 St, W 31 St & 7 Ave and W 33 St & 7 Ave. Around 70% of the events 
started between 07:00 pm and 08:00 pm and the number of attendances was around 19,000 
for the basketball games and more than 13,000 for the concerts. For the ice hockey games the 
attendance is not available, but the arena has a capacity of 18,006. Fig. 5 shows the average 
bike available in these stations during a normal day and an event day. As it can be seen, since 
New York is an uninterrupted city with various events every day, the event impact in this area 
is not significant.

3 MODEL DESCRIPTION
At the heart of our model, a Markovian approach is applied where the representation is 
provided in Fig. 6. In the left image, we show the map with part of the bike sharing system 
in New York. The bike stations have fixed geographic location and the bikes are moving 
between the stations. This representation was the criterion for the Markov model exemplified 
in right figure, where the states are represented by the stations and the transitions between 

(a) (b)

Figure 5:  Normal day vs. Event day of the bikes available in Madison Square Garden.  
(a) Normal day; (b) Event day.

Figure 6:  Markov model description. (a) Part of the Citi bike system; (b) Part of Markov 
Model.

(a) (b)
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the states are described by the bike transitions between the stations. Here, for instance, we 
pick three bike stations, i.e., ID 2006, ID 3119, ID 72, and represent part of the bike transi-
tions between them and the rest of the stations from the system. In the following we describe 
in detail the Markov model and the insights on the complexity of the proposed model.

3.1 States

The states are defined by the identification of the bike stations, as represented in Fig. 6, e.g., 
Station i and Station j, where the number of states varies as defined by i,j = {0,..,S}, with S 
meaning the total number of stations. Thus, the number of states is given by the number of 
bike stations.

3.2 Probability

Two probabilities are available for each state. P
i,j
 means the probability to transit from Sta-

tion i to Station j, while the P
i,i
 represents the probability to transit in the same state, where 

i,j = {0,..,S}.

3.3 Transitions

The probability to transit from Station i to Station j is given by

    Pi j

Ni j

Ni
,

,
,=  (1)

where N
i,j
 represents the number of bikes that transits from Station i to Station j and 

N Ni i jj
S= ∑ = ,0  represents the total number of bikes that transits from Station i to any other 

stations, with i = {0,..,S}. In particular, if i = j then P
i,j
 = 1 means that no bike transits from 

the bike Station i to the other stations and P
i,i
 = 0 means no bike exists at the bike Station i. 

Thus, one row from the transition matrix translates to the probability of one station to transit 
to the rest of the bike stations from the system. The size of the transition matrix is dictated by 
the number of bike stations.

3.4 Prediction Model

The mathematical model previously described performs the transition matrix which is hourly 
calculated given the bike data set, i.e., for each hour a transition matrix is valid. All transitions 
between two stations are counted. Since  1 day-ahead is predicted, 24 transition matrices are 
performed.

The following steps are considered for the prediction model:

• Calculate the initial bike distribution for the desired starting hour, as summarized in 
Algorithm 1. The initial distribution is performed starting from the initial hour and look-
ing backward at the transitions from the past data sets. The bikes are identified for each 
transition and, depending on the trip duration between each two stations, counted to the 
corresponded bike stations. The algorithm stops when all the available bikes are allocated 
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to the stations. Using sampling distribution, the initial bike distribution is calculated for 
the initial hour. 

• Calculate iteratively the bike distribution among the stations using the sampling distribu-
tion for the rest of the hours, as summarized in Algorithm 2.

• The weather impact is reflected in the transition of the bikes. Only temperature data is con-
sidered for the model since it is the parameter that mostly influences the bike usage. In 
particular, we assume that the temperature affects equally all the New York regions, e.g., the 
bike stations. Linear regression is calculated between the trip duration and the future temper-
ature for the predicted day. We consider the differences in probability variation between the 
future temperature and the average one. This variation is then multiplied to the bikes distribu-
tion. Future temperatures higher than the maximum temperature or lower than the minimum 
temperature are limited by the maximum and minimum temperatures, respectively.

• Even though the events have insignificant impact for the New York bike model, the events 
can be introduced by considering the ratio of the bike usage during an event day to the bike 
usage during a normal day.

Algorithm 1 Initial bike distribution: bike distribution
Data: bike data set, number of bikes, initial hour, initial hourly transition matrix, station IDs, 
station capacity
Result: initial bike distribution
for each transition starting from initial hour and going backward in data set do
   if check if all bikes allocated then
     leave the loop
   end if
   if check if start transition time < initial hour then
      bikes at stations: count bikes on start station
   else 
      bikes at stations: count bikes on end station
   end if
end for
initial bike distribution: sample distribution (stations IDs and capacity, bikes at stations, tran-
sition matrix for initial hour)

Algorithm 2 Prediction model: bike distribution
Data: hourly transition matrices, station IDs, station capacity, initial bike distribution
Result: bike distribution
initial bike distribution
for each hour (starting from the initial distribution) do
   bike distribution: sample distribution (stations IDs and capacity, bike distribution in previ-
ous hour, hourly transition matrix)
end for

3.5 Computational Complexity

The complexity for the proposed model depends on the number of states of the model, which 
is given by the number of bike stations, and the number of transition matrices. Although the 
New York bike system is extensive, the number of bike stations reaches in 2018 almost 800 
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stations, which in turn means a reasonable size for the transition matrix. We compute hourly 
the transition matrices, which translates to 24 transition matrices. Alternatively, for simplicity 
and instead of hourly transition matrices, the transition matrices can be computed for defined 
periods of time, as follows. 

• Define the three transition matrices which correspond to three periods of the day; morn-
ing between 04:00 am and 12:00 pm (P

morning
), afternoon between 12:00 pm and 20:00 pm 

(P
afternoon

), night between 20:00 pm and 04:00 am (P
night

). Each of these periods has an equal 
length.

• Calculate the probability matrix between each two consecutive periods, i.e., between 
morning and afternoon is P

ma
, between afternoon and night is P

an
, and so forth. Given the 

probability matrix P
morning

 and P
afternoon

, the probability matrix between the periods morning 
and afternoon is 

   P P w P wma morning morning afternoon afternoon= + ,  (2)

 where w
morning

 and w
afternoon

 are weights calculated depending on the time period iteration, i.e., 
more close to starting morning period, then w

morning
 is close to 1 and w

afternoon
 is close to 0, 

more close to starting afternoon period, then w
morning

 is close to 0 and w
afternoon

 is close to 1.

    w wmorning afternoon= −1  (3)

    
wafternoon

K

Tk

T=
=∑ 1 , (4)

 where k is an integer between 1 ≤ k ≤ T and T is the duration of the period defined, i.e., 
morning, afternoon, night. For instance, for a period of 8 h for morning, afternoon, night, 
the pair (w

morning
, w

afternoon
) is composed of {(0.875,0.125), (0.75,0.25), (0.625,0.375), 

(0.5,0.5), (0.375,0.625), (0.25,0.75), (0.125,0.875), (0,1)}. The same reasoning applies for 
the probabilities between the other periods.

This possibility allows to have only 3 transition matrices instead of 24, but with a higher 
resolution on the transition between the states of the model.

4 NUMERICAL RESULTS
Given the historical data, the prediction model is performed for 1 day-ahead starting at 
01:00 am on 1st of July 2018. The results are divided in two separated categories, the ones 
for the city manager and the ones for the user. The validation of the results is provided at the 
end of the section.

4.1 City Manager

The question we want to answer here is how is the hourly distribution of the bikes in the city 
tomorrow? The answer is shown in Fig. 7 with the predicted distribution at three selected 
hours, i.e., 08:00 am, 12:00 pm and 08:00 pm. At 08:00 am most bikes are distributed in 
Manhattan downtown, but at 12:00 pm the bikes are dissipating around Central Park and 
the margin sides between Manhattan and Brooklyn, whereas at 08:00 pm a larger Brooklyn 
area is covered by bikes. Given the predicted distribution, a variety of offline and online data 
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applications are triggered to further analysis. For instance, the distribution can be further 
applied to predict the traffic jam and air quality for particular regions. Eventually, based 
on the bike usage pattern, new areas can be covered by bike stations or the capacity of the 
installed stations can be accordingly changed during the day. Finding the right capacity for 
the excessively demand stations is also a possible feature of the model.

4.2 User

The question we want to answer is what is the probability of having bike available at a spe-
cific station? The answer is given by the ratio of the final distribution of the specific station to 
the capacity of the station. The confidence interval is calculated using the standard deviation 
among 100 repetitions. The results are shown in Fig. 8 for two mostly used stations, i.e., sta-
tion 2006 in the Central park and station 3119 in Brooklyn. 

On the contrary, the probability of having free-space for parking at a specific station is 
given by reversing the results for the probability of bike available. This metric is essential to 
be available on the user mobile application for consulting at any moment.

4.3 Validation

For the validation of the results, we look at the predicted and real values among all the 
 stations for each hour. The initial distribution of bikes in the system dictates the number of 
bikes used in the model. However, the initial number of bikes is estimated from the data 
provided by [10] using the following reasoning: for each transition between start and end 
station, if the trip duration is less than the average trip duration calculated for the consid-
ered period, then the bike is considered to be parked at the start station and otherwise at 
the end station, as presented by Algorithm 1. We use the Root Mean Square Error (RMSE). 
which is given by

   
RMSE YY

TS ij ijj

S

i

T
= −( )== ∑∑1 2

11
 ,

 

(5)

Figure 7:  Bike distribution for 1st of July 2018. (a) Bike distribution at 08:00 am; (b) Bike 
distribution at 12:00 pm; (c) Bike distribution at 08:00 pm.

(a) (b) (c)
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where Y ij
  and Yij are the predicted and real values, S is the number of stations, and T repre-

sents the time period, which is 24 hours.
The numerical value of RMSE calculated following the reasoning above is 1.34 which 

indicates a reasonable value for the model proposed.

5 CITY COMPARISON
New York city is a different city from many others, mainly because of the high traffic conditions 
and various social events. Although the bike system covers completely the Manhattan area, the 
bike usage is significant high everyday disregarding the events that occur, as shown previously. 
The mobility in the city is also dictated by the other means of transportation as well as the popula-
tion number. Hence, we collect data from [15,16] for 2018. The normalized values for each city 
are computed with regard to New York city findings, e.g., the ratio of the values from each cat-
egory to the New York city value for the same category. By comparison with other cities in terms 
of traffic index, vehicle and bike use, and population density, we find out in Fig. 9 of few interest-
ing properties about New York city (abbreviated as NYC): it is similar to New Orleans in terms of 
traffic, to Barcelona for car use, to Jakarta for bike use and population density. The bike usage in 
Munich is 4.5 times higher than in New York city, while in Amsterdam is almost 6.5 times higher, 
hence, each city has its own patterns. But the other city’s characteristics, e.g., traffic and popula-
tion density factors, could be as well be considered for more accurate models.

Figure 8:  Probability of bike available for 1st of July 2018. (a) Station 3119 in Brooklyn; (b) 
Station 2006 in Central Park.

(a) (b)

Figure 9: City comparison.
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6 CONCLUSION
We proposed a simple, but efficient mathematical model to predict the bike distribution for an 
urban sharing bike system considering the weather and event impact. The model results are 
directly dependent on the city’s characteristics. We observed for the New York city that only 
the temperature influences the bike usage pattern and the events have an insignificant impact. 
But this might not be the case for the other cities as we revealed that other properties char-
acterize the city. The main insights are in particular fundamental for the city manager who 
needs to monitor the city and to design a more precise bike system for the city, e.g., capac-
ity versus location of the stations and the user who wants to efficiently use the bike sharing 
system. Creating a complete city’s characteristic model is part of our future work.
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