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Abstract
Air pollution is a major environmental cause of morbidity and mortality worldwide, representing a top 
public health objective, especially in areas interested by the presence of anthropic emissions sources. 
Correctly assessing how pollutant emissions influence the air quality is, therefore, crucial for the design 
and/or implementation of effective measures from the public health perspectives. The impact of local 
emission sources on air quality is strongly modulated by meteorological conditions, which can mask 
the real trends in the observed pollutant concentrations. However, the confounding effect of meteorol-
ogy in air quality time series can be accounted for by techniques of meteorological normalisation. In 
this study, the performances of a meteorological normalisation technique based on machine learning 
(ML) algorithms were investigated. To these purposes, two ML models (gradient boosted regression 
(GBM) and random forest (RF)) were developed and subsequently used to calculate meteorologically 
normalised trends of nitrogen oxide (NO

x
) concentrations time series. Both models were trained on 

daily averaged data of NO
x
 concentrations and meteorological parameters, as well as on temporal vari-

ables; data were acquired, over the 2013–2019 period, in a rural area affected by anthropic sources of 
air pollutants. Results obtained show that both models are able to explain more than 70% of the vari-
ance in the NO

x
 observed concentrations and that the meteorological normalization technique based 

on both algorithms represent a robust method to account for the confounding effect of meteorology in 
air quality time series. Moreover, the GBM/RF ML models allowed to analyse the dependence of the 
observed concentrations on each explanatory variables used in the models, shedding light on the role 
of local meteorological processes in the observed pollutant concentrations. This knowledge can help in 
defining air pollution control strategies that are increasingly effective in preventing and/or mitigating 
health damage associated with exposure to atmospheric pollution.
Keywords: air pollution, boosted regression trees, machine learning, meteorology, random forest, trend 
analysis.

1 INTRODUCTION
Air pollution is a major risk factor to human health. According to the World Health Organiza-
tion (WHO), ambient air pollution causes more than 4 million premature deaths every year 
worldwide, and more than 90% of the population lives in areas exceeding the WHO guide-
line limits [1]. Furthermore, air pollution is one of the major factors contributing to climate 
change, especially in terms of global warming; at the same time, climate change can perturb 
the long-range transport, chemical processing and local meteorology that influence air pollu-
tion [2]. In the European context, Italy presents several criticalities in terms of high-polluted 
areas [3]; moreover, due to its geographical position at the centre of the Mediterranean area, 
it is also a ‘hot spot’ for climate change because of the intense photochemical activity, the 
crossing of air masses of different origin and the strong anthropogenic pressure [4].

To manage the air quality issues, the environmental or health decision makers need reliable 
estimates of pollutant concentration levels and related trends as input for decisions. The quan-
titative assessment of the real trend of pollutant concentrations is complicated by the vari-
ability of air pollution due to variations in local and synoptic meteorological conditions and 
seasonal effects, as well as the non-linear responses between emissions and concentrations 
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of air pollutants strongly affected by meteorology over multiple scales in time and space 
[5]. Therefore, to avoid that weather effects mask the actual trends in the observed pollut-
ant concentrations, the confounding effect of meteorology in air quality time series must be 
accounted for. Once the weather effects have been removed, further statistical evaluations 
can be carried out in the resulting air quality time series, obtaining more robust estimation of 
pollutant trends or more reliable air quality predictions.

The process of accounting for changes in meteorology over time in an air quality time 
series, which is referred as ‘meteorological normalization’, can be carried out through several 
statistical techniques [6]. An emerging approach to meteorological normalization is based on 
machine-learning (ML) algorithms [7]. It mainly consists of a two-stage process reducing 
air quality time series variability with statistical modelling: first, an ML model, linking air 
quality and weather data, at a location of interest is used to predict pollutant concentrations 
as a function of meteorological parameters [8]. Second, if the model explains an adequate 
amount of variance in the predicted air quality variable, it can be used under a range of mete-
orological conditions, with the associate average referred to as meteorological–normalized 
time series [9]. 

Among the most popular ML algorithms, those based on decision trees methods, such as 
gradient boosting regression (GBM) [10] and random forest (RF) [11], are extensively used 
in the air quality field [12], [13]. Both these algorithms use a set of independent variables 
(explanatory or predictors variables) and an ensemble of decision trees to make predictions 
of a variable of interest (target/dependent variable). GBM/RF models are characterized by 
strong predictive performances and remarkable capability of insights on the relationships 
between variables. Their increasingly widespread use is due to their ability to model non-
linear relationships, to manage qualitative and quantitative variables, to remain robust despite 
missing data and outliers, to reduce overfitting and to require a limited number of user-defined 
parameters for model fitting/selection purposes. Furthermore, thanks to the interpretability 
of the GBM/RF models, it is possible to provide the functional relationships between each 
predictors and the dependent variable, improving model understanding and trustworthiness.

The aim of this study is to explore the performances of both GBM/RF algorithms as a basis 
of a meteorological normalization technique by assessing the global accuracy metrics, as well 
as the interactions between the target and the explanatory variables selected for the models 
development. Moreover, trend analysis of the normalized air quality time series is also per-
formed to quantitatively assess the changes in the ambient air pollution.

To these purposes, two GBM/RF models were built, validated and subsequently applied 
to calculate meteorologically normalized air quality time series. Both models were trained 
on daily averaged data of NO

x
 and meteorological parameters as well as on time variables; 

data were acquired, over the 2013–2019 period, in a semi-rural area affected by anthropic 
sources of air pollutants. A comparison between GBM and RF models was made on the basis 
of several statistical indicators [14]. Trend analysis was carried out on the normalized NO

x
 

concentrations using the Theil–Sen regression technique [15]. Finally, the abilities of both 
models in ranking, visualizing and predicting the relationship between NO

x
 concentrations 

and its driving factors were analysed and graphically illustrated. 
The paper is structured as follows: Section 2 describes the study area, the data used and the 

main steps adopted for the meteorological normalization procedure based on the GBM and 
RF models. A comparison between GBM and RF models’ predictive performances, as well 
as the results obtained with the meteorological normalization procedure and the subsequent 
trend analysis, are presented in Section 3. It also includes a description of the outputs of the 
GBM and RF models. Finally, Section 4 summarizes the main findings of this work. 



          Roberta Valentina Gagliardi & Claudio Andenna, Int. J. Environ. Impacts, Vol. 4, No. 4 (2021)� 377

2  MATERIALS AND METHODS

2.1 S tudy area

The study area is the Agri Valley, located in the South-West part of the Basilicata Region 
(Southern Italy) (Fig. 1). Moreover, the site location is at the centre of the Mediterranean 
area, one of the most responsive regions to climate change.

Starting from the early 1990s, the largest on-shore western European reservoir of crude oil 
and gas in a populated area and an oil pre-treatment plant (identified as Centro Olio Val d’Agri 
– hereafter COVA) are operating in the valley [16]. The COVA plant determines emissions of 
gases and particulates, which can affect the air quality and potentially pose health risks for the 
population living in the area. Continuous concentration measurements of regulated pollutants 
and of several pollutants specifically related to oil/gas extraction activities are provided by 
an air quality control network, consisting of five monitoring stations. At the stations are also 
measured the following meteorological parameters: temperature (T), atmospheric pressure (P), 
relative humidity (RH), solar radiation (SR), wind direction (wd) and wind speed (ws). The 
Environmental Protection Agency of the Basilicata Region (ARPAB), managing the network, 
validates and makes public these data. More details about the methods and the instrumentation 
used for the measurements can be found elsewhere [17]. For the purpose of this work, data 
were obtained from the monitoring station closest to the COVA plant, named Viggiano (VZI, 
40°18’50’’N, 15°54’16’’E, 603 m a.s.l.), categorized as an industrial station in a rural area. It is 
located at about 350 m from the industrial site and about 1000 m from a national road (SS598) 
characterized by a moderate volume of traffic produced by cars and heavy vehicles.

Figure 1: �Map of the area: the VZI monitoring site, the COVA plant and the wind rose based 
on hourly data at the VZI station over the study period (2013–2019).
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2.2 D ata preparedness

The meteorological normalization procedure was applied at the NO
x
 concentrations time 

series, which are key air pollutants also playing an important role in tropospheric chemistry 
as precursors of tropospheric ozone and secondary aerosols [18]. Being predominantly emit-
ted during fuel combustion, such as by vehicle engines, industry processes and domestic 
heating, NO

x
 can be considered as an indicator of the anthropic emissive sources existing in 

the examined area, which mainly consist in the conveyed emissions produced by the COVA 
plant and in the local traffic sources. Therefore, to form the whole data set used for the GBM/
RF models development, hourly data of NO

x
 concentrations together with the meteorological 

variables P, RH, T, ws and wd were downloaded from the official website of ARPAB [19] and 
combined together. Overall, a data set consisting of more than 59000 observations covering 
the 2013–2019 period was set up. The time series of all predictors considered respected the 
required 75% proportion of valid data. The daily average of data was used as input to the 
model; this time resolution balances the need to preserve the pattern of data at a temporal 
scale consistent with the examined phenomena and the need to reduce the noisy data and 
the computational resource demand. Subsequently, a range of other variables was added to 
the ML models development. These are the day of the week (weekday), the Julian day, i.e., 
number of days of 1 January (Jday) and the date Unix (trend), i.e., the number of seconds 
since 1 January 1970; they can be interpreted as proxy for local traffic sources or to account 
for seasonal and long-term variability, respectively. The day of the week was a categori-
cal variable, while all others were numeric; moreover, all variables were used within their 
response scale. All data loading, processing, statistical analysis and modelling were accom-
plished in the R software environment (version 4.1.0; Foundation for Statistical Computing, 
Vienna, Austria) and its packages.

3  Methodological approach
The methodological approach adopted in the present study consists of the following main 
steps. First, GBM/RF models were developed, and their performances were estimated and 
compared. Second, the meteorological normalization was carried out on the predicted NO

x
 

concentrations by each model, and the relevant trend analysis was subsequently performed. 
Finally, the interpretability of the models was evaluated to ensure their plausibility and reli-
ability.

3.1 GB M/RF models development

Theoretical insights of both GBM and RF models’ development are beyond the scope of 
the present paper and can be found in [10] and [11], respectively. Here, it intends to recall 
only those concepts that are necessary for the understanding of what will be discussed later. 
Both GBM and RF are ensemble models that have been developed to optimize predictive 
performance by training multiple ‘weak learners’ and merging their results to build a ‘strong 
learner’. GBM is a step-wise, additive-type model that sequentially fits new tree-based 
models. Each fitted model at every step attempts to compensate for the shortcomings of the 
previous fitted models. The final model aggregates the results from each step and a strong 
learner is achieved. RF generates a large number of individual models in a parallel way. In 
the training procedure, each tree is built based on a random subset of the original data (with 
replacement). In addition, a randomly selected subset of predictors is chosen for each built 
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tree, and the RF predictions are the averaged output of all aggregations. To build both GBM/
RF models, the whole observed dataset was randomly partitioned into a training dataset (80% 
of the observations) and a testing dataset (20% of the observations) used for model perfor-
mance evaluation. The best model for each of the two ML techniques was obtained by tuning 
the relative hyper-parameters. For the GBM model, this process was carried out using the 
gbm R package [20] on a grid of possible values, while the tuneRanger R package [21] was 
used for RF model tuning. In both cases, the best combination of hyper-parameters, based 
on R2 metric, was chosen to build the optimal models on the training dataset. For GBM, the 
best combination was: learning rate = 0.005, tree complexity = 5, bag fraction = 0.5; number 
of trees = 5,450. For RF: number of variables sampled to determine each split = 4, minimum 
number of terminal nodes = 2; number of trees = 1000. 

Prediction performances of both models were evaluated by comparing predicted and 
observed NO

x
 concentration values using a range of statistical indicators. The coefficient of 

determination (R2), the index of agreement (IoA), the mean bias error (MBE), the mean abso-
lute error (MAE) and the root mean square error (RMSE) are used in this work. The relevant 
equations are provided in Appendix A. High accuracy (R2 and IoA close to 1) and minimal 
errors (MBE, MAE and RMSE close to 0) are the desired performances for an optimal pre-
diction model. 

3.2  Meteorological normalization procedure and trend analysis

The procedure adopted for the meteorological normalization has been proposed in [22], 
which modified that originally proposed in [7] and consists in normalizing the NO

x
 con-

centrations with the GBM/RF model, resampling the meteorological explanatory variables 
from the whole study period. In this way, the normalization process preserves the emission 
changes in the normalized concentrations. For both models, this process was repeated 300 
times after all the predictions were aggregated using the arithmetic mean to obtain the mete-
orological normalized concentration. The benefit of this approach is that the trend calculated 
in this way will more closely relate to emission changes rather than changes due to meteoro-
logical effects. The meteorological normalization of GBM model was conducted using the 
deweather R package [23] modified to use the optimized hyper-parameters values, with the 
underlying gbm R package; for the RF model, the meteorological normalization was carried 
out using the rmweather R package [7], with the underlying ranger R package. 

Once normalized, the NO
x
 concentrations time series were object of further statistical anal-

ysis. The Theil–Sen regression technique was used to calculate the direction of a trend in the 
normalized concentrations over time. The Theil–Sen method assesses the median slope of all 
possible slopes that may occur between the data points. It is regarded as more suitable than 
the linear-regression method, as it gives more accurate confidence intervals with non-normal 
distributed data and it is not affected as much by outliers. All the regression parameters, 
among which is the p-value for the slope, are estimated through bootstrap resampling. In our 
calculations, the trends were based on monthly averages, and they were adjusted for seasonal 
variations, as these can have a significant effect on monthly data. 

3.3 GB M/RF models interpretability

Among the undoubted advantages of the decision tree ML models are several tools allowing 
to interpret the GBM/RF models, enhancing their understanding and trustworthiness. These 
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As shown in Fig. 2, the NO
x
-normalized trends from both models agree very well with each 

other, R2 =0.91, confirming the substantial similarity in the predictive ability.

4.3  Meteorological normalization and trend analysis

The observed daily concentrations of NO
x
 were compared with the normalized concentra-

tions predicted with both GBM and RF models (Fig. 3). The meteorological normalized 
signal highlights the trends of the NO

x
 concentrations with respect to the observed data. It 

is worth noting a relevant decrease around February–March 2016 that is consistent with the 
reduced emissive activity of the COVA plant due to a general plant shutdown for judicial 
investigations to which the plant was subjected, approximately from end of March to early 
August 2016, and to the consequent lower traffic regime around the plant. 

Trend analysis of the normalized NO
x
 concentrations, performed with the Theil–Sen 

method, shows a statistically significant decreasing pattern: −0.66 [−1.17, −0.34] µg m3 year1 
in GBM and −0.62 [−0.99, −0.37] µg m3 year1 in RF model, respectively, where the square 
bracket represents the 95% confidence intervals. This is in line with the general decreasing 
trend of nitrogen oxides registered over the whole national territory. The observed data give 
about the same trend (−0.66 [−1.13, −0.27] µg m3 year1) probably supporting the hypothesis 

Table 2: �S tatistical indicators of the GBM and RF models performances for the test-
ing data set. Legend: R2 = coefficient of determination, MBE = mean bias error, 
MAE = mean absolute error, RMSE = root men square error and IoA = index of 
agreement.

NO
x

R2 MBE [µg/m3] MAE [µg/m3] RMSE [µg/m3] IoA

GBM 0.76 −0.45 3.72 5.52 0.76

RF 0.73 −0.09 3.53 5.39 0.76

Figure 2: Scatter plot of the GBM vs. RF normalized NO
x
 concentrations.



382      Roberta Valentina Gagliardi & Claudio Andenna, Int. J. Environ. Impacts, Vol. 4, No. 4 (2021)

that the change in local sources emissions could overcome the effects of local meteorology 
in the observed NO

x
 variability.    

4.4  Models interpretability

The relative importance of predictors and the partial dependence plots can be used to shed 
light on the role of single predictors on the NO

x
 concentrations variability. In Fig. 4, it is 

shown that the relative importance of the predictors is normalized to 100% and in a descend-
ing order. 

Figure 3: �GBM and RF normalized NO
x
 concentrations (blue and green lines respectively). 

Red dots represent the daily averages of the observed NO
x
 concentrations.

Figure 4: Relative importance of the explanatory variables in the GBM and RF models.


