
 R. Kasemsri et al., Int. J. Transp. Dev. Integr., Vol. 1, No. 2 (2017) 148–158 

© 2017 WIT Press, www.witpress.com
ISSN: 2058-8305 (paper format), ISSN: 2058-8313 (online), http://www.witpress.com/journals
DOI: 10.2495/TDI-V1-N2-148-158

ROBUST OPTIMIZATION OF FACILITY LOCATION 
MODELS AND FUNDAMENTAL RESOURCE 

ESTIMATIONS UNDER DEMAND UNCERTAINTY:  
A CASE STUDY OF RELIEF DISTRIBUTION

R. KASEMSRI, K. SANO, H. NISHIUCHI & A. JAYASINGHE
Department of Civil and Environmental Engineering, Nagaoka University of Technology, Japan.

ABSTRACT
Humanitarian logistics are recognized as significant issues of natural disaster operations and manage-
ment. This study considers the vital item distribution network models to relieve the large number of 
surviving victims under their uncertainty by the reason that the post-disaster undergoes fluctuation of 
demand and imprecise prediction. The purpose of this study is to handle this demand uncertainty with 
the facility location model and to compare their sensitivity with the deterministic model. The expected 
results are to explore the location of facilities and optimize transportation link flows in order to mini-
mize total delivery cost, which includes travel, facility and transhipment costs. We propose three dis-
tinct network models based on their hierarchy structures and truck sizes to determine the most efficient 
model with high robustness for both deterministic demand and uncertainty demand. We determine a 
single hierarchy and double hierarchies of the facility sites; each hierarchy is then distributed by the 
distinct truck sizes. The two hierarchies with the large truck’s delivery offered preferable objectives; 
they are robust when demand becomes uncertain or unknown. We solve the problem by the ellipsoidal 
uncertainty set, which is a novel approach that has never been fully applied so far to solve the facility 
location. We also estimate the fundamental resource requirements, including the number of trucks and 
total working time of drivers. Therefore, this study can help the decision maker to plan for post-disaster 
distribution network and their systems when demand uncertainty occurs.
Keywords: facility locations, robust optimization, uncertainty demand.

1 INTRODUCTION
Post-disaster logistics functions are defined for two significant issues: providing essentials 
to surviving victims and rescuing the victims. This study focuses on vital item distribution 
to help surviving victims. There are three sub-problems in logistics activities: location, rout-
ing and location-routing, which are realized with cost efficiency, quick response, satisfied 
demand and an environment issue, for example the air pollution from vehicle’s exhaust and 
the noise pollution of vehicle in urban area. Moreover, the efficiency of planning and coordi-
nating logistic activities is necessary to treat the problems.

The problem of location is one of the most important aspects in logistic activities. Some 
research has been done on the appropriate location of medical centres where the evacuees 
can be quickly accessed (Mete and Zabinky [1]). The research is conducted not only on the 
medical centres but also on the location of shelters. Lin et al. [2] focused on the improvement 
of logistics efficiency. They said that the prioritized items for delivery and an extensive time 
period are important for humanitarian logistics. They presented the location of temporary 
depots around the disaster-affected area between the long travel distances of demand points 
and the central depots. This study intends to design the depot locations by considering cost 
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efficiency and also the satisfaction with the demand. Furthermore, real situations usually 
meet with fluctuations of parameter uncertainty. The methodology to handle this demand 
fluctuation is robust optimization (RO), which is opposite to deterministic models. Snyder 
[3] surveyed the facility location under uncertainty. Snyder illustrated the surveys in several 
articles, which were categorized by his approach to uncertainty. Those are stochastic loca-
tion problems and robust location problems. However, there are no location problems solved 
using a robust counterpart. Therefore, this study also stresses the importance of uncertainty 
of parameters; here is the demand uncertainty.

There have been enormous impacts and a humanitarian crisis following the 2011 Tohoku 
earthquake and tsunami [4]. Japan’s central bank said that the economic losses of Kobe quake 
in 1995 were 10 trillion yen for both immediate problems with industrial production sus-
pended in many factories and the longer-term issue of the cost of rebuilding. However, the 
Japanese government and BOJ Governor Masaaki Shirakawa had estimated that this cost 
is much higher than the cost of just the direct material damage and could exceed 25 trillion 
yen. Moreover, there are several costs generated to recover the situations during disaster and 
post-disaster periods, for example reconstruction cost, rescue cost and logistics cost. The 
logistic cost was presented by Nagurney [5] as approximately 80% from the overall opera-
tion responding cost. Therefore, cost efficiency should be one of the many aspects that must 
be considered. For this reason, this study focuses on the logistic cost efficiency. An improved 
supply distribution cost can reduce the expenditure of the whole operation cost during the 
amelioration period. A bottle of water is considered to be a requisite item for a preliminary 
succour. Even the total delivery cost minimization is one to consider in humanitarian logis-
tics; however, it is a good criterion to compare the results of distinct network systems.

This study considers robust counterpart in RO, which is provided by AIMMS software and 
has more recently been applied to handle under uncertainty of the parameters in the models. 
RO is designed to meet some major challenges associated with uncertainty-affected optimi-
zation problems as follows: to operate under lack of full information on the nature of uncer-
tainty, to model the problem in a form that can be solved efficiently and to provide guarantees 
about the performance of the solutions. RO is an uncertainty modelling approach suitable for 
a situation where the uncertainty ranges are known and not necessarily the distribution. Typi-
cally some inputs take an uncertain value anywhere between a fixed minimum and a maxi-
mum. This demand uncertainty can show how the worst case presents itself when we con-
sider the fluctuation of the demand, which was recommended by Holguín-Veras et al. [6, 7]; 
from the Tohoku experience, the disaster planners must design for worst-case scenarios from 
small disasters to large ones to improve future response efforts and Holguín-Veras et al. [8, 9] 
suggested the policy on the important and overlooked point of material convergence phenom-
enon. RO is suitable for our situations as only simple inputs are required from the user about 
the data uncertainty because there are no scenarios or distribution functions to be defined. 
The advantage of RO models is that their complexity grows only slightly when uncertainty is 
added. As the result, the model can be solved efficiently. Many fields of the academic study 
had discussed uncertainty parameter handling with RO approaches, for instance, the design 
and operations of chemical processes, an electrical capacity system, supply chain networks 
and transportation planning design.

2 OBJECTIVES
The case study was carried out on Miyagi prefecture, the most affected area in a severe 
Tohoku earthquake in 2011. The compositions of this study are summarized as major objec-
tives of the study and expected results of the models. The major objectives are the following:
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1. To propose the three different models by structure and truck sizes and then compare the 
total delivery cost efficiency and their sensitivity of those networks

2. To handle the facility location problem for both deterministic demand and uncertainty 
demand and compare their robustness

The expected results of facility location model are defined as follows:

1. To search the appropriate locations of depots to distribute the relief items in Miyagi pre-
fectures

2. To allocate the transportation link flow at each network configuration
3. To minimize the total delivery cost which includes the transportation cost, the opening 

facility cost and the transhipment cost

3 MODEL STRUCTURE
The problem is designed for three different network frames. We categorize the distinct net-
works by the network configurations and the dispatched truck sizes. Two types of the net-
work configurations are single hierarchy and double hierarchies of facility sites, defined as 
central depots and depots, respectively. Then, the problem becomes one of three network 
configurations with two echelons and four network configurations with three echelons. The 
first network element is the location where the serviceable supports are known as suppliers. 
The second network element is the central relief depot in case of double hierarchies. The 
third element is the relief depots for double hierarchies and the relief depot in case of a single 
hierarchy. These second and third network locations are unknown and need to be defined with 
the most efficiency. Finally, a possible area that was attacked by the natural disaster is called 
an affected area which can be defined based on known locations as demands. The transporta-
tion truck sizes are 10-ton trucks and 4-ton trucks. The configurations of the networks are 
illustrated in Fig. 1.

4 MATHEMATICS
Indices
M : Set of the supplier nodes (i) (i = 1, 2, 3,…, M)
N : Set of the candidate central depots (j) (j = 1, 2, 3, … N)
L : Set of the candidate depots (k) (k = 1, 2, 3, …, L)
P : Set of the demand nodes or shelters (l) (l = 1, 2, 3, …, P)
TS : Set of the truck size (s)

Figure 1: The three different network frameworks.
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Notations

x x x,  , ij jk kl
1 2 3  : The flow of items from i to j, j to k and k to l

Cj
1  : The capacity at the candidate central depots j (j = 1, 2, 3, …, N)

Ck
2  : The capacity at the candidate depots k (k = 1, 2, 3, …, L)

Sets of parameters

S
i
 : The amount of items at the supply nodes i

D
l
 : The demand at the affected area nodes l 

S
i
 : The amount of items at the supply nodes i

D
l
 : The demand at the affected area nodes l

c c c,  , ij jk kl
1 2 3  : The travel cost from i to j, j to k and k to l

f f, j k
1 2  : The opening depot cost at j and k

tc tc,  j k
1 2  : The transhipment cost at j and k

v v v, ,ij jk kl
1 2 3  : The capacity of truck from i to j, j to k and k to l

w w w, ,ij jk kl
1 2 3  : The maximum working time of drivers from i to j, j to k and k to l

d d d, ,ij jk kl
1 2 3  : The distance from i to j, j to k and k to l

t t t, ,ij jk kl
1 2 3  : The travel time from i to j, j to k and k to l

R
s
 : The energy consumption rate of truck size s

S
s
 : The driver salary of truck size s

T
s 
 : The truck cost of truck size s

4.1 Objective function
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Decision variables
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Constraint (7) guarantees that the total amount flow from suppliers i to central depots j is not 
more than the amount of serving goods at suppliers i. Constraint (8) restricts for the summa-
tion of link flow from i to j not exceeding the capacity of opening the central depots j. Con-
straint (9) limits for the total amount of link flows from j to k not exceeding the total availabil-
ity of goods at opening central depots j. Constraint (10) restricts that the summation amount 
of link flow from j to k must not be more than the capacity of next network configuration or 
depots k. Constraint (11) ensures that the total amount from depots k to demand l is not more 
than the availability of goods at depots k. Constraint (12) is confirmed that the total amount 
serving from depots k is satisfied with the demand l. Constraints (13)–(15) are determined to 
prohibit that the amount of a commodity cannot exceed the maximum truck volume restric-
tion. Constraints (16)–(18) are restricted for the total driving hours of a driver which are not 
more than the maximum working time. Constraint (19) is confirmed that each link flow from 
site i to j, j to k and k to l needs to be defined with some amount of goods. Constraint (20) is 
generated to specify that both the decision variables Y

j
 and Z

k
 are binary variable 0 and 1; 1 is 

represented if the facility is located at site j and k and 0 otherwise.

4.2 Mathematical robust formulation using robust counterpart

This study focuses on the multi-source and multi-layer facility location problem with uncer-
tainty demand by considering the ellipsoidal uncertainty set in the RO approach. Ben-Tal and 
Nemirovski [10] consider ellipsoidal uncertainty set with linear programming. Kouvelis and 
Yu [11] discussed the robust discrete optimization and its applications. They proposed an 
approach to find a solution that minimizes the worst case performance under a set of scenarios 
for the data. Bertsimas and Brown [12] proposed a methodology for constructing uncertainty 
sets for robust liner optimization based on decision maker risk preferences. Josef [13] gave an 
overview on the state-of-the-art and recent advances in mixed integer optimization to solve 
planning and design problems in the process industry. Stochastic programming for continu-
ous linear programming problems is now part of most of the optimization packages, and there 
is encouraging progress in the field of stochastic mixed-integer linear programming (MILP) 
and robust MILP. Ben-Tal et al. [14] proposed a soft robust model for optimization under 
ambiguity. Whenever the uncertainty set of a mixed-integer robust problem is an ellipsoidal, 
the robust counterpart can be reformulated as a mixed-integer second-order cone programme.

This study focuses on the demand uncertainty parameter which deviates from the nomi-
nal value of the uncertain parameters. The demand uncertainty is expanded followed by the 
region of the ellipsoidal uncertainty set. The demand is defined as parameter D and (D  ) 
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is the demand that deviates from historical or nominal values. The uncertainty demand is 
∈D R  d , we consider the sets around the nominal value ∈D R  d . Then, we use ρ   2

 to restrict 
the region around the nominal value, which is equal to 1. We determine the interval range of 
demand ( −D D) as equivalent to maximum truck capacity.
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5 RESULTS
We would like to illustrate circumstantial outcomes of both deterministic and uncertainty 
models. The expectation results for both circumstances are the total delivery cost of the three 
different network frames. As mentioned before, each network frame includes five demand 
scenarios; thus we prefer to report five expectation results for each. In order to identify the 
network efficiency by total delivery cost minimization and network robustness, we compare 
the total delivery cost of the three networks and indicate the best network structure. Then, we 
present the sensitivity analysis and compare the robustness of the three networks. Therefore, 
this study can help the decision maker to plan for post-disaster distribution network and their 
systems when the circumstance of demand uncertainty occurs.

5.1 Total delivery cost and their sensitivity

From the results, we found that the network configurations and their systems are affected 
with the total delivery cost of both deterministic demand and uncertainty demand as shown 
in Fig. 2. It can be seen that network 2 and network 3, as defined for two hierarchies of 

Figure 2: The total delivery cost.
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facility, have obviously preferable cost performance when compared with network 1 which 
is single hierarchy. The total delivery cost of network 2 and network 3 lessened by 17.96% 
and 16.78%, respectively. The total delivery cost is mostly generated by travel, which is more 
than about 90% and its rapid increase depends on the amount of transportation.

When comparing network 2 and network 3, all demand scenarios in network 2 can be 
reduced by 1.19%, 2.79%, 6.06%, 2.49% and 1.71%, respectively. These results demonstrate 
that not only network configurations but together with truck size, operations are significant 
with total delivery cost function. By using 10-ton truck to deliver from suppliers to central 
depots and from central depots to depots, we can have a benefit of cost reduction.

Figure 3 illustrates the standard deviation of objective function for each network. The 
standard deviation network 1 is higher than that of the others, which means that there are 
much fluctuations. The standard deviation of deterministic demand of network 1 is approxi-
mately 6 million, while there is around 4 million for network 2 and network 3.

Comparing the deterministic demand and uncertainty demand, network 2 and network 3 
are similar, which by using RO to handle the uncertainty demand illustrates more robustness 
than deterministic demand. In addition, the fluctuation between deterministic demand and 
uncertainty demand of network 2 is less than that of network 3, which means that network 2 
is robust than the other networks.

5.2 Fundamental resource requirements

Figure 4 shows the maximum number of trucks that need to be used for relief distribution at 
each network configuration for uncertainty demand. From the results, we found that by dis-
patching a big lot size at central depots of network 2, the truck requirements can be reduced 
by approximately 50%. These trucks were not more than six vehicles at each central depot 
(echelon 2). This was an advantage on the transportation cost by reducing working time of 
drivers and their hiring cost. Thus, the whole system cost was reduced.

6 CONCLUSION AND FUTURE WORK
This study principally analysed the multi-facility location problems under both deterministic 
demand and uncertainty demand issues. We diagnose the uncertainty demand by the reason 
that it is quite difficult to predict the post-disaster demand. So, we determine the region of 

Figure 3: The standard deviation.
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Figure 4: Fundamental resource requirements of uncertainty demand.
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uncertainty demand as an ellipsoid uncertainty set that is suitable for our situation where only 
the uncertainty ranges are known and not necessarily the distribution. Moreover, an ellipsoid 
uncertainty set is a novel approach that has never been fully applied so far to solving facility 
location. We consider a whole distribution network starting from the beginning, suppliers, 
until the end, demands. We propose the three network structures which are the one network 
of single hierarchy facility and two networks of two hierarchies with distinct truck sizes 
(large trucks and small trucks). We determine the region of uncertainty demand as ellipsoid 
uncertainty set. Therefore, this study can help the decision makers to prepare the appropriate 
network with robustness for relief distribution.

First, the calculation results of both deterministic demand and uncertainty demand dem-
onstrate that the network configurations are significant with total delivery cost. It can be 
seen clearly that the total delivery cost of network 2 and network 3 can reduce by about 
18% because the travel cost is much reduced even though it requires more facility cost and 
transhipment cost. The results show that the travel cost has more significance than the open-
ing facility cost. Moreover, the truck size operation is significant when the demand is high 
enough. This study found that large truck is appropriate to deliver both inbound and outbound 
supplies at the central depots. To apply the model, we suggest establishing the central depots 
and using large trucks to deliver both inbound and outbound supplies.

Furthermore, we would also prove that the networks are robust when the demand becomes 
uncertain or unknown. Here, we assume five different demand scenarios in each network 
based on the actual number of evacuees post-disaster. After solving the uncertainty demand 
by using RO, the results prove that the structural networks have an effect on the model robust-
ness. The two hierarchies of facility provide an extra robustness than the single hierarchy of 
facility. Moreover, the uncertainty demand model is robust than deterministic demand model.

Finally, we discuss the interrelated aspects to improve the future work as follows: (1) we 
have not considered the other parameters that could possibly fluctuate during humanitarian 
logistics, for example the supply amount, the unit transportation cost, the opening facility 
cost and so on. Therefore, the uncertainty demand as well as  the cost parameters should be 
considered simultaneously. (2) A new research can be improved with more efficiency by con-
sidering the vehicle routing problem together with our facility location problem. This model 
can be referred as location routing problem. The model might give more interesting results 
because the travel cost would be reduced by route detour. (3) The future work is considered 
the two-objective facility location problem. The model should be more reasonable by investi-
gating both cost and time indicators simultaneously. After that the uncertainty of the demand 
is assigned to use with the model and then evaluates the robustness of the model.
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