
 
 
 

 
 

 
1. INTRODUCTION 

In recent times, studies involving fluid flow with convective 

heat transfer through parallel plates have attracted huge 

consideration because of its importance in many engineering 

and industrial processes. Several researchers [1-5] (and 

references therein) have investigated several aspects of the 

convective flow problems under different flow conditions. 

However, all the studies above are limited to the Newtonian 

case in which the classical Navier-Stokes equation is valid. In 

reality, most fluid of mechanical, medicinal and industrial 

significance contain several additives in the form of tiny 

microstructure like polymer additives in synthetic fluids, red 

blood cells in blood, drug particles in doping by athletes, 

targeted drug delivery in medicine and lots more. As shown in 

[6], Kaladhar et al., described the forced convective flow of 

reactive couple stress fluids undergoing destructive chemical 

reaction. Adesanya et al. [7] reported the inherent 

irreversibility in the couple stress fluid flow through horizontal 

channel. Asad et al. [8], highlighted the significance of the 

flow and heat transfer of couple stress fluid having 

temperature-dependent thermal conductivity. Nayak et al., [9] 

reported the hydromagnetic couple stress fluid flow and heat 

transfer in a barrier-filled rotating channel. Zelalem et al., [10] 

discussed the fluid flow and heat transfer of couple stress fluid 

through parallel walls endowed with extended porous 

materials. Interested readers can see [11-16] for more 

significant results on couple stress fluid flow.  

Motivated by the study in [6], the primary concern here is 

to investigate the impact of buoyancy force on the entropy 

generation due to convective flow and heat transfer. To the 

best our understanding, the flow situations reported here has 

not been conducted in the literature. The study is necessary due 

to the strong exothermic nature of some reactive fluid. Hence, 

a more accurate approximation would be achieved if the 

variation of fluid density with temperature is taken into 

consideration. The next section describes the flow 

assumptions in detail with the mathematical analysis. In 

section three, the Adomian method of solution will be 

presented. Section four of the work describes the tabular and 

graphical results while section five gives the summary of the 

work. 

2. MATHEMATICAL FORMULATION 

Consider the steady flow of an hydrodynamically and 

thermally developed combustible couple stress fluid through a 

vertical channel of distance h apart. The channel walls are 

maintained isothermally at a constant temperature T0. As 
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shown in igure 1 below, the no-slip and the stress free 

conditions are imposed on the channel walls. The constant 

pressure gradient is in the direction of the flow and variation 

in density due to the presence of buoyancy force effect is taken 

into account in the momentum equation. 

 

 
  

Therefore, the linearized governing momentum and energy 

equations following the Boussinesq approximation can be 

written as [6]: 
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The last term in (1) is due to the effect of buoyancy force as 

in [1-5] together with the suitable boundary conditions at the 

plate ends are given to be: 
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Also, the entropy generation rate in the couple stress fluid 

flow can be represented with this expression as given by [6] 

as: 
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With the under-listed non-dimensional quantities: 
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we procure the under--listed boundary valued problems 

regulating the fluid flow from equations (1 – 4) as: 
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together with the boundary conditions: 
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and the entropy generation rate in dimensionless form is: 
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Furthermore, let N1 be (
𝑑𝜃

𝑑𝑦
)
2

 which represents the 

irreversibility due to heat transfer. 

Also, let N2b he 
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which 

stands for the entropy generation due to the combined effects 

of the viscous dissipation and porous permeability. Then, 

Bejan number (Be) is defined as the heat irreversibility ratio 

as follows: 
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3. ADOMIAN METHOD OF SOLUTION 

The coupled nonlinear equations for momentum in (6) and 

energy in (7) with the boundary conditions in (8) are solved by 

making use of ADM [17-19]. First, the BVP are converted to 

the integral forms as follows: 
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where a0,, b0 and c0 are constants that will be determined by 

employing the appropriate requirements stated in (8). By 

ADM, we take an infine series solutions of the form: 
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substituting (13) into the coupled equations (11) and (12) to 

have 
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and 
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let the nonlinear terms in (15) be represented by: 
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The Adomial polynomials can be obtained by the Taylor’s 

expansion of the series in (16). Then the zeroth order 

approximation becomes: 
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While other terms of the series can be obtained by using the 

relations: 

 

 

2

2

1 2

0 0 0 0

1 0

0 0

( )

y y y y

n

n n r n

y y

n n n

d u
u y u G dYdYdYdY

dY

y c y A B dYdY

  

  





 
   

 

  

   

 

  1n             

(18) 

 

such that the approximate solution of the coupled BVP can be 

obtained in the form of the partial sums: 
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The partial sums in (19) are then utilized in (9)-(10) to 

compute the entropy generation and the Bejan profiles 

provided in the following section. For easy iteration of the 

tedious calculations, equations (9)-(10), (16)-(19) are 

programmed in the Mathematica software package.  

 

 

4. RESULTS AND DISCUSSIONS  

 

In this section, the velocity, temperature, entropy generation 

and heat irreversibility ratio profiles are presented. In Table 02, 

the rapid convergence of the Adomian series solution to the 

couple problem is presented. It is interesting to note that, 

convergence of the series is obtained with just few iterations. 

Also, the validation of the present result in the absence of 

Grashof number is presented in Table 02. From the table,a 

perfect agreement is observed bewteen the exact result 

presented in [6] and the the Adomian series approach.  

 

Table 1. Rapid convergence of the series solution 

 
ε = δ = 0.1, λ = β = 0.2, γ = Gr = 0.5 

n a0 b0 c0 

0 - 0.250000 0.0208333 0 

1 -0.240422 0.0198889 0.100037 

2 -0.242108 0.0200432 0.101764 

3 -0.242143 0.0200482 0.101755 

4 -0.242143 0.0200482 0.101755 

 
Table 2. Validation of numerical results of the velocity profile 

 

 β = 0.1, γ = 1, Gr = 0 

u(y) Exact solutions 

from [6] 

ADM Absolute Error 

0.0 0. 0 0 

0.1 0.00371505 0.00371574 6.86111× 10-6 

0.2 0.00702528 0.00702658 1.30462× 10-6 

0.3 0.00961357 0.00961536 1.78656× 10-6 

0.4 0.01125560 0.01125770 2.12648× 10-6 

0.5 0.01181780 0.01182000 2.18983× 10-6 

0.6 0.01125560 0.01125770 2.12648× 10-6 

0.7 0.00961357 0.00961536 1.78656× 10-6 

0.8 0.00702528 0.00702658 1.30462× 10-6 

0.9 0.00371505 0.00371574 6.86111× 10-6 

1.0 0 -2.45939 × 10-18 2.45939 × 10-18 

 

Figure 2 represents the velocity profile with variations in the 

Grashof number. From the result, an increase in the Grashof 

number is seen to enhance the fluid temperature since an 

increase in fluid temperature increases the thermal expansion 

of the fluid, and the upthrust force will increase significantly 
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in the vertical channel. Figure 3 shows the influence of couple 

stress inverse parameter on the fluid flow. As observed from 

the graphical result, an increase in the couple stress inverse 

parameter shows a corresponding increase in the flow velocity 

as a consequence of the shear thinning of the fluid as the 

couple stress inverse parameter increases. However, as the 

couple stress inverse parameter decreases, the shear thickening 

property of the fluid becomes prominent in the flow channel. 

As revealed in Figure 4, an increase in Grashof number is seen 

to enhance the temperature profile. The result is correct since 

Grashof number increases the flow velocity. Hence a rise in 

the fluid temperature is expected due to volumetric expansion. 

The result in Figure 5 revealed the effect of couple stress 

inverse parameter on the fluid temperature distribution within 

the flow channel. As observed, as the couple stress inverse 

parameter increases, the fluid becomes thinner, as a result, 

inter-particle collisions becomes higher, and the fluid 

temperature rises. Furthermore, since both Grashof number 

and couple stress inverse parameter enhances both flow and 

temperature profiles, it is expected to enhance entropy 

generation within the channel. In the real sense, the couple 

stress inverse parameter will ultimately minimize entropy 

generation as it decreases as reported in Figures 6-7. Finally, 

in Figures 8-9, it is observed that as both Grashof number and 

couple stress inverse parameter increases, heat irreversibility 

due to fluid friction dominates over heat transfer irreversibility 

in the flow channel. 

 

 
 

Figure 2. Effect of Gr on u(y) 

 

 
 

Figure 3. Effect of γ on u(y) 

 
 

Figure 4. Effect of Gr on ϴ(y) 

 

 
 

Figure 5. Effect of γ on ϴ(y) 

 

 
 

Figure 6. Effect of Gr on Ns 
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Figure 7. Effect of γ on Ns 

 

 
 

Figure 8. Effect of Gr on Be 

 

 
 

Figure 9. Effect of γ on Be 

5. CONCLUSIONS 

The effect of temperature-depend density on the steady flow 

of a highly combustible couple stress fluid through a channel, 

due to convective flow and heat transfer, was presented. The 

nonlinear equations governing the fluid flow were formulated, 

non-dimensionalized and solved by using Adomian 

decomposition method. The result of the computations 

highlights the significance of couple stresses in reducing the 

fluid temperature when undergoing exothermic chemical 

reactions and minimizing entropy generation. This is 

important in improving yields and enhancing the safety of the 

environment. 
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NOMENCLATURE 

P   Modified fluid pressure 

K   Darcy's permeability constant.  

g   Acceleration due to gravity  

T0   The wall temperature 

k   Thermal conductivity of the fluid 

Q   Heat of the reaction term 

C0   Reactant species initial concentration,  

h   The channel width  

(x,y)  Distance measured in the axial and normal direction 

A   Reaction rate constant 

E   Activation energy 

U  Fluid velocity 

R   Universal gas constant  

U   Fluid characteristic velocity  

l    Fluid molecular dimension 

M  Pressure gradient  

Da  Darcy number  

Gr  Grashof number  

EG   Dimensional entropy generation rate 

Ns   Dimensionless entropy generation rate 

 

Greek symbols 

 

μ   Dynamic viscosity coefficient 

    Couple stress coefficient 

    Fluid density 

    Activation energy parameter 

    Frank—Kamenettski parameter  

   Couple stress inverse parameter   

   Viscous heating parameter  

   Porous medium permeability parameter 

   Thermal expansion coefficient 

    Fluid temperature
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