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Biomedical named entity recognition is a popular research topic in the Biosciences domain 

as number of biomedical articles getting published are increasing rapidly. Generic models 

using machine learning and deep learning techniques have been proposed for extracting 

these entities in the past, however there is no clear verdict on which techniques are better 

and how these generic models perform in a domain-specific big data scenario. In this paper, 

we evaluate three baseline models using the most complex BioNLP 2013 cancer genetics 

dataset addressing the cancer domain. A classifier ensemble, bidirectional long short-term 

memory (Bi-LSTM) model and the bidirectional encoder representations from transformers 

(BERT) model are implemented. We propose NeRBERT, a domain-specific, graphical 

processing unit (GPU) pre-trained language model using extra biomedical corpora 

extending BERTBASE. Experimental results prove the efficacy of NeRBERT as it 

outperforms the other three models with an F1-score gain of 12.18 pp, 8.59 pp and 5.43 pp 

over the ensemble, Bi-LSTM and BERT models respectively. GPUs reduce the model 

training time to less than half. Comparing it to existing state-of-the-art models, it performs 

1.57 pp higher than the next best existing model compared, emerging as a robust biomedical 

and cancer phenotyping NER tagger.  
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1. INTRODUCTION

Given the exponential growth of documents, particularly in 

the biomedical field, there is a critical need for techniques that 

can aid in the automatic extraction of reliable biological 

information. Identification of biomedical entities such as 

proteins, cells, Deoxyribonucleic acid (DNA), Ribonucleic 

acid (RNA), and many more is part of this process. The goal 

of generic named entity recognition (NER) is to locate a word 

or phrase that correlates to a specific occurrence, such as a 

person, location, organization, or any other variable. The 

extraction and classification of biological named entities in a 

corpus with pre-defined entity tags is the primary focus of the 

Biomedical NER task. BIO tagging is commonly used in the 

corpus to represent the beginning (B), inside (I), and outside 

(O) or non-entity tokens.

Even though BioNER is a prominent topic of research, the

best models in literature for classifying biomedical named 

entities and general text still have a significant (~10%) 

performance gap between them. The following factors are the 

main causes of this task's difficulty for bio-medical entities: 

(1) The creation of new biomedical named entities is

happening rapidly, and a complete lexicon for these entities is 

missing;  

(2) Biomedical entities comprise words or phrases that,

despite being the same, can mean contextually different 

entities. Additionally, a lot of terms are with different 

spellings; 

(3) Some entities are also far too lengthy with some

modifiers used before any basic named entity. It is therefore 

very difficult to determine where their boundaries lie; 

(4) Biomedical designated entities may also be

embedded into one another. Because of this, it takes a lot of 

effort to identify these entities; 

(5) It is also noted that abbreviations are widely

employed in this field. The challenge of classifying them 

becomes that much more challenging because there is no proof 

that such abbreviations exist. 

Therefore, directly applying the advancements in NLP to 

generic NER models returns unsatisfactory results. There 

exists a need to develop disease-specific efficient models to 

handle complex biomedical entities in that domain. Hence, the 

key contributions of this paper towards a robust, domain-

specific biomedical NER tagger are: 

(1) NeRBERT, an optimized cancer phenotyping NER

tagger developed by extensive pre-training using extended 

biomedical corpora on the most complex among available (and 

accessible) BioNLP datasets, the BioNLP2013 cancer genetics 

dataset addressing the cancer domain. In intra-model 

comparison, it outperforms the baseline models with an F1-

score gain of 12.18 pp, 8.59 pp and 5.43 pp over the ensemble, 

Bi-LSTM and BERTBASE models respectively. In inter-model 

comparison with existing state-of-the-art models, it performs 

1.57 pp better than the next best existing model compared.  

Optimizing NeRBERT pre-training leveraging GPU 

computing. Since training such a complex model with large 

corpora is extremely time consuming, we leverage the many-

core architecture of the 8 x NVidia V100 (32GB) GPUs and 

fit all mini-batch training into its large memory. With this, the 

time taken to pre-train NeRBERT is reduced to less than half 

(~11 days) compared to training it on an equivalent 8-socket 

CPU-only system.  
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Figure 1. Process flow in baseline models 

The manuscript is organized as follows: Section 1 presents 

an introduction to the topic of named entity recognition and 

the challenges in biomedical entity recognition. In Section 2, 

existing methods in biomedical named entity recognition are 

discussed under related works. Section 3 explains the materials 

and methods proposed for named entity recognition. Results 

and discussion are detailed in section 4. Finally, Section 5 

draws conclusions and ends with references.” 

2. RELATED WORKS

In literature, NER techniques have been categorized as rule-

based heuristic, dictionary-based, and statistical ML 

techniques. However, it has been found that these techniques 

do not produce desired results. Additionally, they fall short in 

terms of entity representation coverage with sufficiently rich 

features, and no one algorithm/technique can achieve higher 

performance. In recent years, classifier ensemble [1-5], which 

is an amalgamation of various base classifiers has emerged as 

a viable machine learning technique. Instead of individual base 

classifier performance, it functions as an aggregator, 

combining the results of base classifiers to address any 

classifier weaknesses and provide a comprehensively well-

balanced performance. 

Deep Learning algorithms for NER tasks, particularly Long 

Short-Term Memory and Bi-directional LSTM [6-10] have 

demonstrated leadership since they have significantly 

outperformed current ML techniques. Deep learning, as 

opposed to feature-based techniques that are curated by 

humans, can automatically identify hidden traits from 

unlabeled data. Word embeddings, which represent word 

meanings in n-dimensional space, are learnt using these 

unlabeled data. One significant advantage of these approaches 

is the ability to design training algorithms that forego task-

specific engineering in favor of relying on large, unlabeled 

datasets to uncover internal word representations useful in the 

overall NER objective.  

From the time Google released the BERT model, 

researchers have been able to determine how effective this 

strategy is for downstream NLP tasks, such as NER [11]. By 

utilizing a masked model that pretrains on a sizable amount of 

textual unstructured data in an unsupervised or self-supervised 

way, this language model increases the impact of the fine-

tuning technique. Despite having a multilanguage model, 

researchers found that BERT works better when it has been 

pretrained on domain-specific language [12-16]. The results of 

the fine-tuning performed better on several NLP tasks, 

including sentiment analysis, NER, and question-answering, 

compared to the initial BERT multilanguage model. However, 

to get the model to understand biomedical content better and 

with an eye on improving performance, the developers of 

BioBERT [17] pretrained it using the original BERT data and 

additional biomedical corpora. This helped to increase model's 

performance for BioNLP workloads tested. Although 

developers of BioBERT have pre-trained the model on 

biomedical corpora and tested few task-specific datasets, the 

most complex BioNLP 2013 Cancer Genetics (CG) dataset 

covering multiple sub-domains of cancer biology was not 

evaluated and there are very few references to develop and 

evaluate any cancer-specific NER taggers in literature.  

3. MATERIALS AND METHODS

The choice of NER models selected in this paper are based 

on literature study. A classifier ensemble may be used to 

improve classification performance, as is discussed in Section 

2. The classification performance can also be improved by

employing a Bi-LSTM network. It is required to recall the

long-range reliance of the entity from the first instance to the

next instance when the sentences are complex and lengthy, for

instance, “TGF-beta mediates RUNX induction and FOXP3 is

efficiently up-regulated by RUNX1 and RUNX3”, where

neural networks are required. And BERT has emerged as a

choice in many NLP areas as it uses a masked model that

predicts randomly masked words in a sequence, and hence can

be used for learning bidirectional representations.

Figure 1 describes a high-level process flow for the baseline 

models considered. We briefly discuss these models and 

NeRBERT, which is same in structure as BERTBASE, and then 

its pre-training and fine-tuning process.” 

3.1 Ensemble model 

Machine Learning algorithms perform poorly in standalone 

mode whereas ensemble techniques have performed well [2]. 

Figure 2 illustrates the architecture of the ensemble model 

used. Five base classifiers with word2vec CBOW embedding 

[18] are used both in standalone and ensemble mode which are

briefly explained below.
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Figure 2. Proposed architecture of the ensemble model 

(1) Logistic regression (LOGR): To achieve the

categorization of the dependent variable, regression is 

performed to the independent and dependent variables. In this 

work, LOGR defines a prediction method that verifies the 

named entity's semantic correspondence to the context. 

Mathematically, it is shown as in Eq. (1).” 

𝑙𝑜𝑔𝑖𝑡[𝜋(𝑥)] = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ … . +𝛽𝑚𝑋𝑚 (1) 

LOGR returns π(x) as in Eq. (2): 

𝜋(𝑥) =
𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯….+𝛽𝑚𝑋𝑚

1 + 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯….+𝛽𝑚𝑋𝑚
(2) 

(2) Support Vector Machine (SVM): “The pattern in the

data is used by SVM, which serves as a non-probabilistic 

binary linear classifier. SVM utilizes the function in Eq. (3) to 

predict. 

𝑌′ = 𝑤 ∗ 𝜙(𝑥) + 𝑏 (3) 

In Eq. (3), 𝑌′ is retrieved by reducing the risk of regression

as in Eq. (4). 

𝑅𝑟𝑒𝑔(𝑌′) = 𝐶 ∗ ∑ 𝛾(𝑌𝑖
′ − 𝑌𝑖) +

1

2
∗ ‖𝑤‖2

𝑙

𝑖=0

(4) 

Here, 

𝑤 = ∑(𝛼𝑗 − 𝛼𝑗
∗)𝜙(𝑥𝑗)

𝑙

𝑗=1

(5) 

In Eq. (5), the parameters 𝛼  and 𝛼∗  state the relaxation

parameter called Lagrange multiplier. The output obtained is, 

𝑌′ = ∑(𝛼𝑗 − 𝛼𝑗
∗)𝜙(𝑥𝑗) ∗ 𝜙(𝑥) + 𝑏

𝑙

𝑗=1

(6) 

𝑌′ = ∑(𝛼𝑗 − 𝛼𝑗
∗) ∗ 𝐾(𝑥𝑗 , 𝑥) + 𝑏

𝑙

𝑗=1

(7) 

In Eq. (6) and Eq. (7), 𝐾(𝑥𝑗 , 𝑥) states the kernel function. In

our study, SVM algorithm with Linear kernel functions is used. 

(3) Extreme Learning Machine (ELM): One of the main

problems with some models is local minima and convergence, 

which gets worse with large training datasets and reduces 

overall learning and classification efficiency. ELM with a 

linear kernel function is suggested as the base classifier for NE 

classification to address this. The proposed ELM base 

classifier's output is defined as in Eq. (8).  

𝑦(𝑡 + 𝑘) = 𝑓(𝑋) = ∑ 𝛽𝑖𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑋)

𝐿

𝑖=1

(8) 

(4) Decision Tree (DT): In this study, C5.0 decision tree

classifier model is applied that performs recursive partitioning 

over the dataset to predict named entity for the input. 

Originating at the root node, each node of the tree splits the 

feature vector into different branches based on association rule 

between the split criteria. 

(5) K-Nearest neighbors (KNN): Since the full data set is

used to categorize new data, K-nearest neighbor is employed 

to solve a classification problem. This approach does not 

require any training data. It determines the separation between 

a new data point and each existing point in the dataset when 

one is provided. Then, based on the K value, it determines how 

many nearest neighbors there are in the data set. If K=1, it 

calculates the minimal distance between each point and 

categorizes them all as belonging to the same class. If K is 

greater than 1, a list of K minimum distances between each 

data point is used. 

The ensemble model uses majority voting to arrive at the 

result. In majority voting, the class label that represents the 

majority (mode) of the class labels predicted by each 

individual classifier is the class label that is projected for a 

specific sample.” 

3.2 Bi-directional LSTM model 

The concept of a bidirectional RNN, which operates in both 

forward and reverse directions and has separate hidden layers 

for each direction, is the foundation of the bidirectional LSTM. 

As depicted in Figure 3, these hidden layers are connected to 

a common output layer. We employ this model to assess its 

BioNER effectiveness in comparison to other models. 

For all models, the dataset is split into train set (70%), 

validation (10%) and test set (20%). The holdout evaluation 

technique is used to assess how well the implemented model 

predicts. Also, we use word2vec continuous bag of words 

(CBOW) embedding. CBOW architecture [18] is used to learn 

word representations which predicts the middle word based on 

the terms in the surrounding context. As seen in Figure 4, the 
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context consists of a few words before and after the present 

(middle) word.” 

3.3 BERT model 

As shown in Figure 4, BERT is typically an encoder stack 

of the Transformer architecture. It’s an embedding layer which 

receives a string of words as input and sends it up to the 

subsequent encoder unit in a way like the standard encoder in 

the transformer. It applies self-awareness to each encoder layer. 

The results are then disseminated via a feed-forward network. 

The output of the feedforward network is then passed on to the 

next encoder.

Figure 3. Proposed architecture of the Bi-directional LSTM model 

Figure 4. The BERT architecture 

BERT uses a fine-tuning method for each activity that does 

not require a specific design. "A pre-trained BERT model can 

be fine-tuned with just one additional layer to achieve cutting-

edge performance. The data from the training set is used to 

fine-tune the BERT architecture. While organizing data, the 

required format is initially followed. Three input arrays are 

received by the BERT layers: input_ids, attention_mask, and 

token_type ids. 

(1) input_ids: They are a list of integers that each have a

unique connection to a word. 

(2) attention_mask: The input IDs array are represented

by this collection of 1s and 0s. 

(3) Token_type ids: To categorize sequences or react to

queries, this is employed. Since these need two distinct 

sequences to be kept in the same input IDs, special tokens like 

classifier [CLS] and separator [SEP] are used to separate the 

sequences. 

The tokenizer class encode_plus function tokenizes the raw 

input, adds the special tokens, and pads the vector to the 

maximum length provided. To feed our raw data into the 

BERT model in the correct format, a helper function is used. 

The two variations, BERTBASE and BERTLARGE as seen have 

varying degrees of architecture complexity. The base model's 

encoder contains 12 layers and 110M parameters, whilst the 

large encoder version has 24 layers and 330M parameters.” 

3.4 NeRBERT model 

In this study, we extend the BERTBASE model to propose 

NeRBERT. It is pre-trained using additional biomedical 

corpora like PubMed abstracts and PubMed Central articles 

and then fine-tune on task specific dataset which is the 

complex BioNLP 2013 CG dataset. Figure 5 provides an 

overview of the pre-training and fine-tuning of the NeRBERT 

model implemented. 

3.4.1 Pre-training NeRBERT model 

During the pre-training phase, the BERT model which is 

trained on general corpora “(Wikipedia) will not be able to 

address complex domain-specific biomedical text like TGF-

beta, RUNX, FOXP3 etc. Therefore, BERT though good for 

general-purpose NLP tasks performs poorly for domain 

specific BioNER tasks. Hence, we pre-train it with extra 

biomedical corpora like PubMed abstracts and PubMed central 

articles. Large amounts of this unannotated corpora is used in 

pre-training in an unsupervised way. 
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Due to a risk of overfitting issues and longer training times 

associated with larger epoch numbers, we decided to limit the 

number of epochs to two. Since training NeRBERT model is 

extremely time consuming, we leverage GPUs for this task. 

Eight Nvidia V100 (32GB) GPUs are used and time to train is 

compared to an equivalent 8-socket CPU system 

The NeRBERT fine-tuned weights and other hyper-

parameters are shown in Figure 6. In brief, the model uses 

BERTBASE, tokenizer used is BERT base-cased, fully 

connected classification layer with Adam optimizer, layers 

used-12 and hidden size is 768. We fine-tune the pre-trained 

model with task specific corpora for named entity 

recognition.” 

3.4.2 Fine-tuning NeRBERT model 

For fine-tuning NeRBERT for named entity recognition 

task, an extra fully connected layer is added that further trains 

the model using biomedical-specific annotated corpora, the 

BioNLP 2013 CG dataset, using the pre-trained backbone 

weights. A single K40 GPU was used to fine-tune NeRBERT 

for this task. 

We assess the performance of all models using standard 

relative performance parameters i.e., Accuracy, Precision, 

Recall and F-1 score. 

Figure 5. Pre-training and fine-tuning of NeRBERT model 

Figure 6. Fine-tuned weights and other hyper-parameters in NeRBET 
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4. RESULTS AND DISCUSSION

The statistics of the complex BioNLP 2013 cancer genetics 

(CG) dataset is shown in Table 1. “This dataset was chosen as 

it has the maximum number of entity and event types and thus 

is the most complex among the available (and accessible) 

BioNLP datasets. 

Since the dataset is complex, visualization of its various 

characteristics can be useful for understanding the output of 

any NER system and for debugging and improving the system. 

Hence we carry out exploratory data analysis on the dataset. 

Figure 7(a) shows the Train Data Frame. This is formed from 

the ‘train’ dataset with analysis performed on the ‘tokens’ and 

‘tags’ column. The n-gram visualization in the dataset is 

shown in Figure 7(b)-(f). Unigram, bigram and trigram of both 

tokens and tags present in the dataset have been captured from 

an exploratory understanding purpose. It shows the top 20 

term frequencies for both tokens and tags in the train data 

frame. As seen from Figure 7(f) only one bigram exists in tags. 

The token and tag word clouds are shown in Figure 8. 

Table 1. BioNLP 2013 CG dataset statistics 

Parameter Train_ data Vali_data Test_data 

No. of lines 300 100 200 

No. of entities 300 100 200 

No. of entity values 18404 6085 6955 

Avg. word count in lines 1334 1316 1272 

Avg. entity value count per line 61 60 34 

(a) (b) 

(c) (d) 
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(e) (f) 

Figure 7. (a) Train Data Frame; (b) unigrams on tokens; (c) bigrams on tokens; (d) trigrams on tokens; (e) unigrams on tags; and 

(f) bigrams on tags

(a) (b) 

Figure 8. Word cloud for (a) tokens; and (b) tags in the dataset 

Table 2. Experimental results of ML classifiers and ensemble model on BioNLP2013 dataset (in %) 

Classifier/Model Accuracy Precision Recall F1-score 

LOGR 77.91 73.28 71.98 72.62 

SVM-LIN 78.38 72.48 69.45 70.93 

DT 80.23 76.87 72.18 74.45 

KNN 74.56 70.57 72.19 71.37 

ELM 70.18 65.48 63.87 64.66 

Ensemble Model 84.38 78.38 75.87 77.10 

Figure 9. Training and validation plots for Bi-LSTM model 
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The results of NE classification using the ensemble model 

and individual base classifiers is shown in Table 2. All 

individual classifiers are outperformed by the ensemble model 

which provides generalization. “With scores of 84.38% and 

77.10% respectively, the implemented majority voting 

ensemble returns the highest performance in terms of accuracy 

and F1-score. The decision tree, which has an accuracy of 

80.23%, outperformed all other individual classifiers, 

followed by SVM-LIN, which has an accuracy of 78.38%. 

With an F1-score of 64.66%, the ELM algorithm returned the 

lowest results. The training and validation accuracy plots of 

the Bi-LSTM model is illustrated in Figure 9. From the plots, 

it is observed that the accuracy of the model is a high 87% 

which is good. From training loss plot, it is observed that the 

model fits well to the training data and it fits new data also 

well as observed from validation loss plot.  

Intra-model experimental results of all models are 

compared in Table 3. It can be observed that BERTBASE pre-

trained on general corpora achieves an accuracy of 88.74% 

and an F1-score of 83.85%. It outperforms the ensemble model 

and Bi-LSTM model on F1-score by 6.75 pp and 3.16 pp 

respectively. However, the proposed NeRBERT model which 

is pre-trained on general corpora and additional biomedical 

corpora achieves the highest accuracy of 91.08% and F1-score 

of 89.28%. There is an F1-score gain of 12.18 pp, 8.59 pp and 

5.43 pp over ensemble, Bi-LSTM and BERTBASE models 

respectively. NeRBERT performs better than other models 

due to extensive pre-training on relevant corpora and better 

ability to consider a word's context. NeRBERT returns 

different vectors for the same word based on the words around 

it as opposed to previous word embedding techniques like 

GloVe, word2vec, and TF-IDF that always return the same 

vector for the word regardless of the context. 

With 8 x Nvidia Volta 100 GPUs, each with 32GB memory 

the NeRBERT model pre-training lasts for “~11 days which is 

less than half the time taken compared to a similar 8-socket 

CPU-only system. “The many-core architecture of the GPUs 

and the fact that all mini-batch training assigned to it fits into 

its large memory helps to accelerate the pre-training task 

thereby providing a viable platform for scaling BERT training. 

In Inter-model comparison shown in Table 4, we compare 

the experimental results of NeRBERT with existing state-of-

the-art models like CNN, HunFlair, SciSpacy and Huner on 

the same dataset. The cross-comparison results are shown in 

Table 4. It is observed that NeRBERT outperforms all models 

with an F1-score gain of 1.57 pp above HunFlair, the next best 

model compared.

Table 3. Intra-model experimental results on BioNLP 2013 CG dataset (in %) 

Models Word Embedding Accuracy Precision Recall F1-score 

Ensemble Model word2vec 84.38 78.38 75.87 77.10 

Bi-directional LSTM word2vec 87.89 82.18 79.26 80.69 

BERTBASE general corpora 88.74 83.59 84.12 83.85 

Proposed NeRBERT model 
general corpora + biomedical 

corpora 
91.08 90.21 88.37 89.28 

Table 4. Inter-model experimental results on BioNLP 2013 CG dataset 

Reference Model F1-score(%) 

Crichton et al. [19] CNN 85.98 

Weber et al. [20] HunFlair 87.71 

Neumann et al. [21] SciSpacy 66.18 

Weber et al. [22] Huner 71.22 

Proposed model NeRBERT 89.28 

5. CONCLUSIONS

In this work, we presented NeRBERT which is a biomedical 

cancer phenotyping NER tagger leveraging the BERT 

architecture. We pre-train NeRBERT with large biomedical 

corpora from two sources namely, PubMed abstracts and 

PubMed central full-text articles using Nvidia GPUs. To 

assess its performance, in intra-model evaluation, we compare 

its performance with three models, an ensemble classifier, a 

Bi-LSTM model and the plain BERT model. For ensemble and 

Bi-LSTM models, we use word2vec word embeddings and 

train using the most complex among the available (and 

accessible) BioNLP shared task datasets, the BioNLP 2013 

CG dataset. The proposed NeRBERT model outperformed all 

the models with an F1-score gain of 12.18 pp, 8.59 pp and 5.43 

pp over ensemble, Bi-LSTM and BERTBASE models 

respectively. The model pre-training leverages GPUs and 

helps to reduce the model pre-training time by less than half 

compared to an equivalent CPU-only system providing a 

viable platform for scaling BERT training. In inter-model 

comparison with existing state-of-the-art NER models, 

NeRBERT outperforms all models with an F1-score gain of 

1.57 pp above HunFlair, the next best model compared, 

emerging as a robust biomedical and cancer phenotyping NER 

tagger. Encouraged by the results, the model will be extended 

to other disease specific vocabulary and for more complex, 

performance-lagging biomolecular event extraction tasks as 

part of future research for which NER is a sub-task to improve 

biomolecular event extraction performance.” 
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