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Due to the speeding up of climate change, there is an urgent need to switch from using 

fossil fuels to producing energy using renewable energy sources. This change has to happen 

as soon as feasibly possible. Thus, in this article, to forecast wind speed and wind energy 

output in Turkey, the Light Gradient Boosting Machine (LightGBM) approach was 

applied, the hyperparameters of the LightGBM were tuned to the grid search method, and 

finally some evaluation criteria such as root mean square error and R2 were calculated to 

show the performances of the LightGBM. Fortunately, an R2 value of 0.98 for forecasting 

wind speed was found after 25 s. Additionally, the assessment criterion R2 =1 for predicting 

the production power of the wind turbine was attained after 90 s.  
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1. INTRODUCTION

In the contemporary electricity grid, wind turbine systems 

are now often seen, and their use is only growing on a 

worldwide scale. The United States Department of Energy set 

the 2030 goal of generating 20% of its power from wind 

resources [1] in 2008. According to an Inter- national Energy 

Agency estimate, 10,800 GW of renewable energy will be 

available globally by the year 2040 [2]. Most wind farms are 

in distant areas or offshore owing to their enormous size since 

they are bound by the right-of-way privileges of regional and 

local governments [3]. To install towers optimally for 

optimum wind power collection, wind farms also need to 

thoroughly analyze the wind currents across potential sites, 

according to [4]. Effective control of each wind turbine is 

crucial for increasing both efficiency and profitability for 

power suppliers because of the complexity and size of the 

electrical architecture of wind farms [5]. To maximize the 

quantity of electricity generated from wind turbines and to 

minimize the time a wind turbine is offline due to damage, the 

remote control and monitoring systems for grid-connected 

wind farms are indispensable. Artificial intelligence (AI) and 

machine learning (ML) methods have been used by experts to 

assist with the forecast of wind turbine systems [6-10]. 

Effective wind power forecasting is essential for operators 

to incorporate wind turbines in smart grids and enhance power 

output control. The literature contains some data-driven 

methods to improve wind power prediction. Short-term wind 

power forecasting has tradition- ally been done using time-

series techniques, such as the autoregressive moving average 

(ARMA) model and its variations [11, 12]. The approach in 

[11] forecasted hourly wind power using an ARMA model. It

showed predicting solid ability 1 hour ahead, decreasing

precision as time passed. A combined technique merging an

ARMA and an Artificial neural network has been suggested in

[12] to expect wind energy over the near term. This research

shows that the coupled strategy outperformed the solo ARMA 

and Artificial neural network in predicting performance. 

Many ML approaches for predicting wind power have been 

developed in recent decades. A Gaussian process-based wind 

power forecasting technique based on numerical weather 

forecasting has been suggested [13]. Azimi et al. [14] 

examined the K-means clustering approach with a cluster 

selection algorithm for enhancing feature extraction from wind 

time-series data. Yang et al. [15] presented an support vector 

machine-enhanced Markov technique for predicting short-

term wind power. Because of its flexibility and capacity to 

describe process nonlinearity, the research of Ti et al. [16] 

showed that an ANN model accurately forecasted wind power 

and outperformed analytical models. In the study of Malakouti 

et al. [17], the performance of different algorithms such as 

CNN-LSTM, ensemble, and predicting the production power 

of the Texas wind farm was examined. Also, in the study of 

Malakouti [18], the author investigated the performance of 

several ML methods in terms of algorithm execution time and 

their accuracy in predicting the production power of a 

supervisory control and data acquisition (SCADA) system. 

2. METHOD

2.1 Data preparation 

The data used in this paper are taken from the SCADA 

system in Turkey [19]. The data comprise attributes as below: 

LV Active Power (kW), Wind Speed (m/s), Wind Direction 

(°), and Theoretical Power (kW) 

2.2 Light gradient boosting machine 

The light gradient boosting machine (LightGBM) system 

uses decision tree methods as its foundation. While previous 
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ensemble learning algorithms utilize the level-wise (or depth- 

wise) approach to form the trees, this technique uses the leaf-

wise (or best-first) strategy. Gradient-Based One-Side 

Sampling (GOSS) and Exclusive Feature Bundling (EFB) are 

two cutting-edge methods that LightGBM uses. Because 

GOSS employs a subset of more minor instances rather than 

all instances, and EFB may combine exclusive features into 

less dense ones, the computing cost is decreased using these 

unique approaches. 

LightGBM tries to find a particular function �̂�(𝑥)  that 

minimizes the loss function 𝐿(𝑦, 𝑔(𝑥)) given the training set 

𝑋 = (𝑥𝑖 , ,𝑌𝑖 )𝑖=1
𝑛  as below: 
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LightGBM uses a combination of T regressor trees for 

finding the final algorithm as below: 
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The function 𝑤𝑝(𝑥), 𝑝 ∈ (1,2, … ,𝑀)  defines regression 

trees, where M is the amount of tree leaves, p is the decision 

rule of trees, and w is the leaf node sample weight.  

At step t, the algorithm trains according to: 
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where, fi and hi are, respectively, the 1st-order and 2nd-order 

gradients of the loss function, Ij is the leaf j sample set, and  
an increase in the constant value that prevents the 2nd term 

from becoming 0. 

The optimal leaf weight scores of each leaf node 𝑤𝑖
∗and the 

extreme value of ΓK are obtained for a particular tree structure 

p(x) using the relations: 
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Finally, following the split, the objective function is: 
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where, IL and IR are the left and right branch samples, 

respectively. 

 

2.3 Grid search 

 

Figure 1 illustrates a sample of the grid search with just two 

hyperparameters. Because each hyperparameter in the figure 

has three potential values, a total of nine different 

hyperparameter value pairings would need to be examined in 

this situation to discover the finest design. The ML practitioner 

must additionally teach the done grid search, as with other 

hyperparameter optimization techniques, to utilize a certain 

performance measure when assessing a group of predictors, 

with overall simulation results commonly set through 10-fold 

cross-validation. 

 

 
•combination of hyperparameter value 

 

Figure 1. An example of a grid search with two 

hyperparameters and nine different hyperparameter value 

pairings 

 

2.4 10-fold cross-validation  

 

 
 

Figure 2. 10-fold cross-validation 

 

Following the data division into 10-folds, an iterative 

assessment method is then applied to the candidate framework. 

The applicant framework is trained using nine of the folds 

throughout each iteration of the evaluation process, and the 

validity of the system is assessed by the use of the other fold. 

There are 10 iterations of training and validation for each 

applicant framework after this procedure is repeated until each 

fold is used as a validation set precisely one time. The model’s 

performance evaluation q is calculated as the average of the 

performance values collected from each iteration according to 

the formula: 
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Figure 2 demonstrates the standard procedure for 10-fold 

cross-validation. 

2.5 Evaluation process 

First, the required pre-processing of the data (Section 2.1) 

was applied. This involved filling the missing values with the 

average method, deleting the noise data, and normalizing the 

data; then, 85% of the data were selected for network training 

(10 months), 7.5% for testing (1 month), and the remaining 

7.5% for validation (1 month). The 10-fold cross-validation 

technique [20-24] (Section 2.4) and the grid search method 

(Section 2.3) were used for tuning the hyperparameters of the 

LightGBM algorithm (Section 2.2). 

3. RESULTS AND DISCUSSION

Realizing the importance of the wind speed characteristic in 

determining the instantaneous wind power [23], in addition to 

predicting the immediate power, the wind speed was also 

predicted so that the productive power of wind farms can be 

safely used, and this power can replace or be in addition to the 

production capacity of fossil power plants. 

In Figure 3, the green dots show the difference between the 

actual value and the value predicted by the LightGBM 

algorithm on the test data and the blue dots show the difference 

between the actual value and the value predicted by the 

LightGBM algorithm on the training data. The results show 

that the error range of the LightGBM algorithm in predicting 

the pro- duction power is between -25 and 25 kW/h. 

Also, these values show that most of the prediction errors 

are between -8 and 8 kW/h, which means that this algorithm 

either predicts 8 kW of production power more than the actual 

value each hour, or the production power is 8 kW less than the 

actual value each hour.  

Figure 4 shows the amount of error between the real power 

and the power predicted by the proposed algorithm. In this 

figure, the values of the actual power produced are placed on 

the x-axis and the predicted powers are placed on the y-axis, 

and the error between the powers is shown with blue dots. Real 

and predicted powers are shown and two lines of best fit and 

identity are used to analyze the performance of the algorithm, 

so that the more the lines of best fit and identity match each 

other, the better the algorithm works. 

The results showed that the production power range of this 

SCADA system is between 0 and 3500 kW per hour, and the 

proposed algorithm has no error because the lines of best fit 

and identity are entirely coincident and there is no error in 

predicting the production power. 

Figure 3. Residual diagram of predicted power and actual 

power 

Figure 4. Power prediction error diagram 

Figure 5. The learning curve of power prediction training 

and validation 

Figure 6. Actual and projected power in each month for 1 

year 

Figure 7. Residual graph of actual and predicted wind speed 
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Figure 8. Wind speed forecast error diagram 

Figure 9. Wind speed training and validation curve 

Figure 10. Predicted and actual wind speed chart for 1 day 

Finally, the diagram of model learning in power prediction 

is shown in Figure 5. As is seen, after training 35,000 samples, 

the difference between the training curve and the validation 

curve was about 0.001, the training accuracy reached 0.999, 

and the validation accuracy reached 0.998, both of which are 

very suitable values. 

Figure 6 shows the sum of the powers measured and 

predicted by the proposed algorithm once a month. In addition 

to providing the power of our proposed algorithm, this chart 

can be used in power generation planning to meet power needs. 

Supposing that the wind farm pro- duction capacity is not 

enough, in that case, help can be obtained from other power 

plants to meet shortages. When extra capacity is available, 

other power plants reduce their production capacity and 

transfer the wind turbine production capacity to the main 

power distribution network. 

In Figure 7, the green dots show the difference between the 

actual value and the value predicted by the LightGBM 

algorithm on the test data, and the blue dots show the 

difference between the actual value and the value predicted by 

the LightGBM algorithm on the training data. 

The results showed that the error range of the LightGBM 

algorithm in predicting the wind speed is between -9 and 6 m/s. 

Also, the maximum error range is between -2 and 2 m/s; these 

values show that most of the prediction errors are between -2 

and 2 m/s, which means that this algorithm either predicts the 

wind speed by 2 m/s more than the actual value, or it predicts 

the wind speed -2 m/s less than the actual value. 

Figure 8 shows the amount of error between the actual wind 

speed and the predicted wind speed by the proposed algorithm. 

In this figure, the actual wind speed values are placed on the 

x-axis and the predicted wind speeds are placed on the y-axis,

and the error between the actual and predicted speeds are

shown. To analyze the performance of the algorithm, two lines

of best fit and identity are used, so that the more the lines of

best fit and identity match each other, the better the algorithm

works.

The results show that the wind speed range of this SCADA 

system is between 0 and 25 m/s, and the proposed algorithm 

does not have much error because there is a slight error in 

predicting wind speeds between 2-3 m/s and 13-20 m/s, and 

the lines of best fit and identity do not completely coincide in 

these intervals. 

Finally, the model learning diagram for predicting wind 

speed is shown in Figure 9. As is seen, after training more than 

35,000 samples, the difference between the training curve and 

the validation curve was about 0.002, the training accuracy 

reached 0.983, and the validation accuracy reached 0.980, both 

of which are acceptable due to the volatile nature of wind 

speed. 

Figure 10 shows the measured wind speed and the obtained 

forecasts for 1 day. In this figure, every 10 minutes during 24 

hours a day, the WS anticipated by the LightGBM algorithm 

and the actual amount of wind speeds are recorded and 

collected together in one illustration. As it turns out, the wind 

speed is well predicted. Therefore, there should be no concern 

about the nature of wind energy fluctuations, and the 

application of the adopted model can be the most critical factor 

in generating wind farm electricity. Wind means predicting 

wind speed, so turbine production capacity can undoubtedly 

be predicted by correctly predicting wind speed. It is possible 

to measure the performance of algorithms using the formulas 

below: 
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where Ti are the actual values, �̂�𝑖 are the predicted values, and 
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m is the number of test data for 1 month. 

According to the results given in Table 1, the wind speed, 

which is the essential factor in power generation in wind farms, 

was well predicted, with a very acceptable value of 0.32 for 

the criterion of mean squared error and 0.56 for squared mean 

squared error. Finally, an 0.21 error was achieved for the 

absolute mean value. It may be asked why, despite the value 

of 0.56 for the RMSE evaluation criterion, the wind speed 

graphs were not more accurately predicted and did not fit 

completely with the actual ones. There is a slight difference in 

the actual and predicted wind speeds. 

In predicting power, the evaluation criteria R2, MSE, RMSE, 

MAE, and time for power test data with a LightGBM are listed 

in Table 2. 

Table 1. Evaluation criteria R2, MSE, RMSE, MAE, and 

time for wind speed test data with LightGBM on test data (1 

month) 

Model MSE RMSE MAE R2 Time (s) 

LightGBM 0.32 0.56 0.21 0.98 25 

Table 2. Evaluation criteria R2, MSE, RMSE, MAE, and 

time for power test data with Light- GBM on test data (1 

month) 

Model MSE RMSE MAE R2 Time (s) 

LightGBM 18.2 4.27 2.71 1 90 

4. COMPARISON WITH OTHER STUDIES

Table 3 shows the evaluation criterion R2, MSE, RMSE, 

MAE, and time for wind speed test data with other algorithms. 

By comparing the results of Table 3 and Table 1, the 

superiority of the results of the proposed LightGBM algorithm 

over the Extra Trees, AdaBoost, KNN, and Ridge algorithms 

in predicting wind speed is evident. 

Table 4 shows the evaluation criteria R2, MSE, RMSE, 

MAE, and time for power test data with other algorithms. By 

comparing the results of Table 4 and Table 2, the superiority 

of the results of the proposed LightGBM algorithm over the 

Extra Trees, AdaBoost, KNN, and Ridge algorithms in 

predicting the wind turbine production power is evident. 

Table 3. Evaluation criteria R2, MSE, RMSE, MAE, and 

time for wind speed test data with other algorithms on test 

data (1 month) 

Model MSE RMSE MAE R2 Time (s) 

Extra Trees 0.4221 0.6494 0.2326 0.9764 39.66 

AdaBoost 0.6589 0.8113 0.5372 0.9632 3.35 

KNN 0.4291 0.6546 0.2462 0.9760 0.9 

Ridge 1.8833 1.3719 1.0209 0.8947 0.21 

Table 4. Evaluation criteria R2, MSE, RMSE, MAE, and 

time for power test data with other algorithms on test data (1 

month) 

Model MSE RMSE MAE R2 Time (s) 

Extra Trees 3.8 1.86 0.291 1 35.46 

AdaBoost 5741.4 75.57 67.02 0.9969 6.02 

KNN 51902.1 226.65 92.65 0.9722 8.4 

Ridge 110288 331.97 222.3370 0.9409 0.2 

5. CONCLUSION

In this article, a SCADA system for a wind farm [19] was 

studied. The data of a Turkey farm were recorded every hour 

for a year. The data included wind direction in degrees, WS in 

m/s, the energy produced in kW, and air temperature 

in °Celsius. Using the LightGBM algorithm, the WS was 

predicted. In less than 1 minute, the value of 0.2503 was 

obtained for the RMSE criterion. Production capacity was also 

predicted using the LightGBM and 4.27 RMSE crite- rion was 

achieved. The present article’s best mean square error for the 

SCADA system in Turkey was 0.32 m/s, whereas in [18], the 

most significant result was achieved by the ensem- ble using 

ML techniques to estimate wind speed (WS), with a mean 

square error of around 12 m/s. In another study of Malakouti 

et al. [17], ML algorithms were used to make predictions about 

the output of a SCADA system; the highest efficiency was 

achieved by an additional tree, with a mean square error of 

297.53 kWh, whereas in this paper, a result of 18.2 kWh was 

obtained for the SCADA system in Turkey. The mean absolute 

error in predicting WS for 6 hours by Pearre and Swan [25] 

was 2 m/s, whereas the greatest reached in this work based on 

the SCADA system in Turkey was 0.21 m/s. 

DATA AVAILABILITY 

The data used in the present research can be accessed on: 

https://www.kaggle.com/datasets/berkerisen/wind-turbine-

scada-dataset. 
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