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An increasing number of industrialized and developing countries are concentrating their 

efforts in order to achieve net zero carbon emissions by generating electricity from 

renewable energy sources in the current environmental conditions. The Photovoltaic (PV) 

and wind energy systems have been modelled and their performance under a variety of 

operating situations has been investigated in this study work. Based on investigation the 

renewable energy sources are generate the nonlinear power under various weather 

conditions. Also, that the maximum power point tracking algorithm MPPT (P&O) play a 

major role for generate maximum power under the same conditions. The primary goal of 

this research project is to develop hybrid renewable energy system and integrated to 

microgrid power system and improve the power quality. To archive the primary goal to 

construct an advanced cascade feedforward deep neural network (CFNN) for the 

integration of hybrid solar and wind energy systems into the micro grid. The proposed 

controller will operate the grid integrated voltage source inverter for ensure real and 

reactive power flow through voltage source converter controller (Phase lock loop, Voltage 

regulator and current regulator). The proposed CFNN controller modelled for current 

regulator for improve the power quality and control real and reactive power flow. The 

proposed model has been created using the Math Works simulation environment as a 

starting point. The secondary goal of this project work is to develop battery management 

system for support excess power demand for consumer and store the power for future 

demand. and the simulated results are analyzed under a variety of operating scenarios, and 

the power quality results (THD for Voltage and Current) are evaluated and compared to 

industry standards, such as IEEE 519 standards. Finally, the effectiveness of the proposed 

system will be demonstrated. 
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1. INTRODUCTION

Microgrids, which make use of renewable and alternative 

energy technology, are now being used by customers to meet 

their energy demands while also helping to alleviate 

environmental problems in the process. As a result of the 

implementation of these modern technologies through a 

microgrid, resource efficiency is considerably improved, 

power quality is improved, and a more stable supply of energy 

is delivered. Grid advances such as multi-microgrids, 

interconnected AC-AC microgrids, and interconnected AC-

DC microgrids, as well as zone-based and distributed grids, 

have enabled these newer characteristics to be integrated into 

grids that are zone-based or distributed. et cetera, Md. Halim 

Mondol is a professor at the University of Maryland. The half-

height neutral point clamped (NPC) inverter is a modern 

single-phase multilevel inverter that has fewer switches than 

the previous generation inverters. One direct current source, 

one full bridge cell, switching devices, and half the number of 

power diodes seen in typical topologies are used in the 

proposed inverter [1]. 

Using a unipolar modulation technique, the switching 

signals for the proposed inverter are generated, resulting in the 

lowest total harmonic distortion (THD) in both the output 

voltage and output current. Using the example of a single-

phase eleven-level inverter, the inverter topology presented in 

this section is described. MATLAB/Simulink is used to 

simulate the topology. There is also a comparison between the 

proposed and traditional topologies. The following are the 

names of individuals: Md Mubashwar Hasan and others 

Numerous cascaded multilevel inverter (MLI) topologies that 

are unique to themselves have been proposed and published in 

the academic literature. All proposed topologies for three-

phase cascaded MLI implementations have a fundamental 

disadvantage in that they require expensive semiconductor 

components and a high-voltage input dc supply [2]. This 

article presents a novel generalized concept that may be 

applied to any existing cascaded MLI topology in order to 

reduce the number of semiconductor switches, diodes, and dc 

power supply required for the system. The new generalized 

model is divided into two stages: a cascaded stage (CS) and a 

phase generator stage (PGS). In addition to a three-phase two-

level inverter (CTPTLI) and three bidirectional (BD) switches, 

the PGS stage can be adjusted to accommodate any existing 

cascaded topology, although the cascaded stage cannot. 

Extensive modelling and experimental analysis are carried out 

in order to verify the proposed notion. Based on the findings, 

it appears that the proposed methodology can be used to 
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reduce the number of devices in existing topologies while 

maintaining their functionality. 

Researchers Nakul Thombre and colleagues have developed 

a novel cascaded multilevel inverter design that allows for a 

significant decrease in the number of switches and DC voltage 

sources used. To achieve the desired output level, the proposed 

design is based on an asymmetrical multilevel inverter that 

contains eleven unidirectional switches, three diodes, and four 

direct current voltage sources to offer a total of 21 levels of 

output [3]. This topology has the advantage of lowering the 

number of switches and gate driver circuits (each with two), as 

well as the number of DC sources (each with two), that must 

be implemented (2 nos.) Furthermore, the hardware's cost, 

complexity, and physical space requirements are reduced 

without reducing the quality of the inverter's output, which is 

a significant benefit. C K Kishore and colleagues Instead of 

using clock phase shifting to regulate the cascaded switched 

diode (CSD) multilevel inverter, a sinusoidal pulse width 

modulation (SPWM) control technique was developed [4]. In 

the proposed cascaded switched diode multilevel inverter 

(CSDMLI) system, two identical resistive loads are connected 

to the inverter. When used in conjunction with multiple loads, 

the proposed MLI reduced harmonic content by up to 12.76 

percent when compared to the existing control technique, 

which resulted in harmonic distortion of 16.82 percent. The 

transition between loads is accomplished by the use of a main 

pulse-width modulation technique. et cetera Mohammad Ali 

Hosseinzadeh is an Iranian politician. High-power medium-

voltage applications benefit from the usage of multilevel 

inverters because they have reduced harmonics and a lower 

standing voltage on the power switches. The most significant 

disadvantage of multilayer inverters is that they need a large 

number of switching components, which makes control more 

difficult [5]. This work describes the design and fabrication of 

an asymmetric switch-diode multilevel inverter for use with 

cascaded multilevel inverters, as well as the operation of the 

device. Power switches and DC power sources are reduced in 

the proposed asymmetric multilevel inverter, which creates 31 

levels with fewer power switches and DC power sources and 

a lower maximum total blocking voltage on the switches. A 

comparison is made between the proposed topology and other 

cascaded multilevel inverters in order to illustrate the 

advantages and disadvantages of multilevel inverters. 

It is proposed in this paper to use a novel two-stage cascaded 

switched-diode multilevel inverter topology for the integration 

of medium voltage renewable energy. The fundamental goal 

of this design [6], is to reduce the number of switches and gate 

drivers on the circuit board. As a result, the installation space 

required for a multilayer inverter is reduced, as is the cost of 

installing one. Furthermore, by incorporating an artificial 

intelligence controller into multilevel inverters that are used 

for renewable energy integration, worries about dc source 

variations can be alleviated. Renewable and alternative energy 

sources can be used more efficiently with the help of these 

advanced network topologies, which is a significant plus for 

society. It is possible to connect two or more microgrids 

together to enable reserve sharing, voltage and frequency 

support, and ultimately boost the overall dependability and 

resilience of interconnected microgrids [7, 8]. 

The following is the structure of this paper. In Section II, 

the modelling of the PV and wind systems has been built, and 

the system's performance has been examined. Section III 

discusses the integration of hybrid PV and wind systems into 

the grid, as well as the design, performance, and comparisons 

of the controllers. Section IV presents the findings of this study 

project as a conclusion. 

2. MODELLING OF WIND AND PV SYSTEM

WECs with permanent magnet synchronous generators 

(PMFG) as their power source are widely used because 

research is continually identifying new designs that have high 

power density, higher efficiency, the possibility of smaller 

turbine diameters, and the availability of high-energy 

permanent magnet material at a reasonable price [9, 10]. A 

large number of research articles have been published in the 

development of WECS domain, with the goal of producing 

WECS that are more efficient, highly reliable, have minimal 

wear and tear, are quiet, are compact, and require less 

maintenance. 

When converting variable voltage and variable frequency 

electricity to fixed frequency and fixed voltage power, the 

most common WECS configurations utilized with PMSG 

machines are three in number. A PMSG WECS with an 

appropriate MPPT controller is created and constructed for 

control of the converter, which is dependent on the converter 

configuration. For PMSG WECS, the MPPT controller 

algorithm is often implemented using one of three techniques. 

The MPPT (maximum Power Point Tracking) controller is 

a control system for controlling the rotor speed of a wind 

turbine by manipulating the generating controlling torque 

generated by the turbine. The blade pitching drive causes a 

delay in response time with response to act proportionately 

with changes in wind conditions, such as turbulent and gusty 

winds, which has an impact on the energy yield and puts 

mechanical stress on the wind turbine as a result of this delay. 

On the other hand, the generator rotor speed can be regulated 

electrically in order to maximize the amount of electric power 

produced. The development of MPPT-based control 

approaches has been motivated by the goal of achieving the 

highest possible power coefficient [11]. The output power of a 

generator in a variable speed wind energy system is efficiently 

managed with the use of power electronics-based converters 

in a highly efficient manner. 

The following is the proposed PMSG design parameter: 

3000 watts of mechanical output power. 

Vmax is the maximum voltage that can be reached. 

Imax is the maximum current available. 

Base 2977.77 kilowatts of electrical generating power 12 

m/s is the base wind speed. 

1 p.u. is the rotational speed divided by the base. 

Maximum power equals 0.8 p.u. at the base wind speed. 

Pitch angle is equal to 0 degrees. 

When using this P&O-based MPPT approach, the wind 

voltage and current are monitored in the current atmospheric 

conditions [12]. The wind power P1, which is determined by 

taking into account the tiny changes in duty cycle, and the 

wind power P2, which is computed by using the duty cycle. 

The wind power P2 is compared to the solar power P1. When 

P2 is greater than P1, the perturbation is considered valid; 

nonetheless, this approach has a significant drawback because 

of infrequent deviations from the maximum. A simulation of 

the modelled P&O based MPPT approaches for Wind systems 

has been built and tested in the Matlab environment, as 

illustrated in Figure 1. Figure 2 is represented 100 kW wind 

energy system simulation model. The wind energy system 

performance has been analyzed under various wind speed 

conditions as soon in Figure 3.  

2



 
 

Figure 1. Matlab simulation model of winder energy system 30 kW 

 

 

 
 

Figure 2. Matlab simulation model of winder energy system 100 kW 

 

 
 

Figure 3. The wind energy system output power under various wind speed conditions 
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PV Simulation model 

A significant role in meeting consumer electricity demand 

is played by renewable energy sources because of their 

abundant availability and low environmental impact. The most 

significant impediment to the growth of solar and wind energy 

is the high cost of putting solar and wind power systems in 

place [13, 14]. Because of the changing weather, solar and 

wind energy generation does not remain steady throughout the 

day. The efficiency of electricity generation is really low (the 

range of efficiency is only 9-17 percent in low irradiation 

regions). In order to achieve the best possible power output 

under a variety of weather circumstances, MPPT technologies 

play a vital role in PV and wind power generating. 

PV voltage and current are monitored using this technology 

while the current atmospheric condition is maintained. PV 

power P1, which is estimated by taking into account the tiny 

changes in duty cycle, and PV power P2, which is also 

calculated. It is necessary to compare the PV power of P2 with 

that of P1. When P2 is greater than P1, the perturbation is 

considered valid; nonetheless, this approach has a significant 

drawback because of infrequent deviations from the maximum. 

As illustrated in Figure 4, the modelled P&O based MPPT 

approaches for PV systems have been created and tested in the 

Matlab environment. The 200 kW PV simulation model has 

been developed in MATLAB model as shown in Figure 5. 

Figures 6 & 7 illustrates the photovoltaic array out power 

generation under various weather conditions. 

Figure 4. PV simulation model with MPPT controller 

Figure 5. 200 kW PV simulation model 
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Figure 6. 100 kW PV system 1 simulation result under various weather conditions 

Figure 7. 100 kW PV system 2 simulation result under various weather conditions 

PV voltage and current are monitored using this technology 

while the current atmospheric condition is maintained. PV 

power P1, which is estimated by taking into account the tiny 

changes in duty cycle, and PV power P2, which is also 

calculated. It is necessary to compare the PV power of P2 with 

that of P1. When P2 is greater than P1, the perturbation is 

considered valid; nonetheless, this approach has a significant 

drawback because of infrequent deviations from the maximum. 

As illustrated in Figure 1, the modelled P&O based MPPT 

approaches for PV systems have been created and tested in the 

Matlab environment. Figure 2 illustrates the voltage and 

current characteristics of a photovoltaic array. 

3. GRID INTEGRATION OF HYBRID 300 KW PV /

WIND ENERGY SYSTEM

Throughout this part, we have discussed the integration of a 

microgrid with a hybrid PV / wind-based power system, which 

has been created and regulated using a CFNN algorithm. 

Figure 8 shows a detailed simulation model with a number of 

variables. This simulation model makes use of a hybrid PV 

and wind system of 300 kW. The wind energy system is linked 

into the power microgrid with the assistance of a smart inverter, 

which is controlled by a voltage source controller based on 

CFNN [15-17]. There are three key sub-controllers in this 

controller, which comprise a phase-lock loop, a current 

regulator, and a voltage regulator, among other things (Figure 

9). In the end, the PWM signals are created by a current 

regulator that is connected to a smart inverter that is 

responsible for synchronizing a 300kW hybrid PV/wind and 

micro grid system. The phase lock loop model has been 

presented in Figure 10 and 11 shows voltage regulator. The 

CNFNN based current regulator has been presented in Figure 

12, and the Figure 13 is CFNN network model. 

In neural networks (NNs), the neuron is the fundamental 

building block. Neurons are connected by the weight of their 

synapses. Figure 4 depicts a neural network with five hidden 

layers and an output layer, which can be viewed. A Cascaded 

Feed Forward Neural Network is a type of neural network that 

5



is frequently referred to as one of the neural networks [10-12]. 

It is common for input nodes to pass information processes to 

hidden nodes, while hidden nodes pass information processes 

to the output nodes. In CFNNs, the information process is 

passed from the input nodes to the hidden nodes and vice versa. 

Consider the following example: the first connection goes 

from the input to that layer for each layer in the network, and 

the second connection goes from each layer to the next layer 

in the network, and so forth. 

Figure 8. Advanced artificial intelligent controller-based grid integrated 300 kW hybrid PV and wind energy system 

Figure 9. CFNN based voltage source converter controller 

Figure 10. Phase lock loop 

Figure 11. Voltage regulator 

Figure 12. CNFNN based current regulator 

Figure 13. CFNN architecture – 7 layer 

In a perceptron, the link between input and output is a direct 

one; whereas, in a CFNN, the link between input and output is 

an indirect one. It is because to an activation function that the 

connection in the hidden layer has a linear and nonlinear 

structure. When the connection form on perceptron and 

multilayer networks is combined, it is feasible to construct a 

network that connects the input and output layers. Cascade 

Forward is the name of the Cascade Forward Neural Network 
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network that was built using this link design (CFNN). 

Alternatively, the equations of the CFNN model can be 

represented as follows: 

𝑦 = ⅀𝑖=1
𝑛  𝑓𝑖𝑤𝑖

𝑗
𝑥𝑖 + 𝑓0 (⅀𝑗=1 

𝑘 𝑤𝑗
0𝑓𝑗

ℎ(⅀𝑗=1 
𝑛 𝑤𝑗𝑖

ℎ𝑥𝑖)) (1) 

As far as the activation function is concerned, that is the one 

between the input and output layers, and the weight in the 

input layer's activation function is the activation function from 

the input layer to the output layer. Eq. (2) becomes when an 

additional bias is applied to the input layer, and the activation 

function of each neuron in the hidden layer is 𝑓ℎ.

𝑦 = ⅀𝑖=1 
𝑛 𝑓𝑖𝑤𝑖

𝑗
𝑥𝑖 + 𝑓0 (𝑤𝑏

+ ⅀𝑗=1
𝑘 𝑤𝑗

0𝑓𝑗
ℎ(⅀𝑖=1

𝑛 𝑤𝑗𝑖
ℎ𝑥𝑖))

(2) 

In most cases, time series data is employed in conjunction 

with the CFNN model. As a result, neurons in the input layer 

delay time series data represented by the data at the Xt-1, Xt-

2, ..., Xt-p levels, and the output is the current data at the Xt level, 

as seen in the graph below. This link raises the predicted 

network weight, which leads the overall network size to 

increase by the number of neurons in the input layer, as seen 

in the graph below. It is divided into three stages: initial weight 

calculation, pattern error counting, and more weight 

computation. Backpropagation is a feedforward method based 

on convolutional neural networks. The error is determined 

during the feedforward phase, and then the process moves on 

to the next step, which is the feedforward calculation (the 

difference from the output to the target). The following step is 

to adjust the weights and then re-run the computation to 

confirm that everything is still accurate before proceeding. I 

was continuing to conduct this step as long as no errors or 

iteration halts were discovered during the process. The 

conjugate gradient optimization strategy for weighting 

modifications of the CFNN model is addressed in detail in this 

section, albeit only briefly. Assume that is a weight vector of 

length s and that the goal function is to find all of the network 

weights.  

𝑒 =
1

2
(𝑋𝑡 − �̂�𝑡)2 (3) 

Defined Q is the positive definite matrix of size s×s where 

QT=Q. Stages of the algorithm on Conjugate Gradient 

optimization are described as follows: 

Step 1: Set k=0, select the initial point Ω(0); 

Step 2: Calculate the gradient of the initial weight: 

𝑔(0) =
𝜕𝑒

𝜕𝑤(0)
=

𝜕𝑒

𝜕𝑤
|

𝑤=𝑤(0)
= [

𝜕𝑒

𝜕𝑤𝑖

(0)
…

𝜕𝑒

𝜕𝑤𝑠
(0)

]

𝑇

(4) 

If g(0)=0 then stop, and it obtained the optimal weight Ω(0). 

Else, set d(0)=g(0). 

Step 3: Calculate 

∝𝑘= 𝑎𝑟𝑔 𝑚𝑖𝑛∝≥0 𝑒(𝑤(𝑘)+∝ 𝑑(𝑘)) = −
𝑔(𝐾)𝑇𝑑𝑘

𝑑(𝐾)𝑇𝑄𝑑(𝑘)

Step 4: Calculate Ω(𝑘+1) = Ω(𝑘) +∝𝑘 𝑑(𝑘).

Step 5: 𝑔(𝑘+1) =
𝜕𝑒

𝜕𝑤(𝑘+1) if 𝑔(𝑘+1) = 0.

Stop and the optimal weight is 𝑤(𝑘+1).

Step 6: Calculate 𝛽𝑘 =
𝑔(𝐾+1)𝑇 𝑄𝑑𝑘

𝑑(𝐾)𝑇 𝑄𝑑𝑘 . 

Step 7: 𝑑(𝑘+1) = −𝑔(𝑘+1) +∝𝑘 𝑑(𝑘).

Step 8: k=k+1: go to step 3. 

Epoch iteration in FFNN is commonly known as weight 

searching in the CFNN context. The program must not have 

met the iteration termination condition until the epoch k=K in 

order to begin the iteration process at that point. Given that this 

strategy does not guarantee convergence in n steps, the 

direction vector is reset after each iteration, and the method is 

repeated until the termination condition is met [18, 19]. For 

each iteration of the nonlinear model, the nonlinear model 

calculates Q, which is a non-constant Hessian matrix. In order 

to keep the algorithm as simple as possible, an algorithm for 

eliminating Q is employed, with the result that the function 

and gradient value of each iteration remain the only sources of 

algorithm dependence throughout the algorithm. There are 

several formulas for substituting Qd(k) with other forms, such 

as the Hestenes-Stiefel formula, i.e. The form Qd(k) is replaced 

by (𝑔(𝑘+1) − 𝑔(𝑘))/∝𝑘.

By this formula, the βk becomes: 

𝛽𝑘 =
𝑔(𝐾+1)𝑇 [𝑔(𝑘+1) − 𝑔(𝑘)]

𝑑(𝐾)𝑇  [𝑔(𝑘+1) − 𝑔(𝑘)]
(5) 

3.1 Result and discussion 

Figure 14. The cascade feed-forward neural network 

architecture 

Figure 15. The best validation performance of CFNN model 

(7.3503e-8 at epoch 25) 
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Figure 16. CFNN’s Gradient, Mu, and validation checks for 

grid-connected VSC inverter current regulator 

The suggested CFFNN-based algorithm has been 

constructed in the Matlab environment to demonstrate its 

functionality as shown in Figure 14. There are more than 

90000 data points that are used for training (80 percent), 

testing (10 percent), and validation (the remaining 10 percent) 

(10 percent). As illustrated in Figure 15, the greatest validation 

performance of the proposed system is 7.3503 e-8 at epoch 25, 

which is the best possible value. As shown in Figure 16, the 

best validation performance of current regulation has been 

investigated using a variety of parameters such as gradient 

2.7214e-5 and mu 1e-7 at epoch 31 to determine the best 

validation performance. The overall performance of the 

suggested current regulator algorithms has been evaluated 

using the following parameters: training, validation testing, 

and overall results are shown in Figure 17. Figure 18 shows 

the overall results of the proposed current regulator algorithms. 

When the suggested multilayer inverter is synchronized with 

the electrical grid, the created current regulator algorithm is 

used to regulate the current flowing through it. The Figure 19 

presented the bidirectional converter for battery system and its 

performance in Figure 20a. The results of the performance of 

the three-phase induction machine are shown in Figure 20b, 

Despite the constraints of internal and external disturbances, 

and the importance of load demand of IM, and therefore the 

disadvantage of the sensitivity of the flux control (IFOC), 

following the high complicity of the nonlinearity of system, in 

particular that the unfavorable meteorological conditions of 

hybrid systems, the controller with deep artificial intelligence 

(CFNN) showed its robustness to convince the constraints of 

various global disturbances and ensures the perfect operation 

of control with this technique, which makes the 

synchronization operation and the interconnection between the 

hybrid networks and the load very satisfactory, and which 

meets the requirements of the ISO international energy 

standard and offers very favorable energy consumption rates. 

Figure 17. CFNN training and validation performance for 

grid-connected VSC inverter current regulator 

Figure 18. CFNN test and regression performance for grid-

connected VSC inverter current regulator 

Figure 19. Bidirectional converter simulation model for battery energy management system 
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(a) 

(b) 

Figure 20. (a) Battery voltage, current and SoC; (b) Three 

Phase Induction motor performance under various conditions 

3.2 Results and discussion 

Figure 21 depicts the voltage and waveform of a distributed 

power grid, whereas Figure 22 depicts a real-time power 

waveform. Figures 23 to 25 depicts the results of the THD 

assessments of the voltage profile performed using the CFNN 

algorithm. Figures 26 to 28 show THD analyses of the current 

profile performed using the CFNN THD analysis method. 

Figures 29, 30, and 31 show the fuzzy-based current regulator 

that was constructed in Matlab, as well as the rules-based 

system that was used to develop it. Figure 32 depicts a voltage 

and current waveform for a distribution power grid that is 

based on fuzzy logic. Figures 33 to 35 show the fuzzy based 

THD evaluations of the voltage profile, which are given in the 

same order. As seen in Figures 36 to 38, fuzzy THD 

evaluations of the current profile are provided in several ways. 

The voltage and current results for the fuzzy controller and the 

suggested controller are reported in Tables 1 and 2, 

respectively. 

Table 1. Voltage THD comparison 

THD First 10 Cycle 
After 1 sec 

(10 Cycle ) 

After 1.3 sec 

(10 Cycle) 

CFNN 10.43% 4.45% 0.88% 

Fuzzy 10.43% 4.45% 0.91% 

Table 2. Current THD comparison 

THD First 10 Cycle 
After 1 sec 

(10 Cycle) 

After 1.3 sec 

(10 Cycle) 

CFNN 26.96% 8.94% 1.49% 

Fuzzy 26.96% 8.98% 1.50% 

Figure 21. Grid distribution voltage and current waveform 

Figure 22. Real power simulation results 

Figure 23. CFNN based distributed power grid voltage THD 

waveform (0 to 10 Cycle) 

Figure 24. CFNN based distributed power grid voltage THD 

waveform after 1 sec (10 Cycle) 

Figure 25. CFNN based distributed power grid voltage THD 

waveform after 1.3 sec (10 Cycle) 
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Figure 26. CFNN based distributed power grid load current 

THD waveform sec (0 to 10 Cycle) 

 

 
 

Figure 27. CFNN based distributed power grid load current 

THD waveform after 1 sec (0 to 10 Cycle) 

 

 
 

Figure 28. CFNN based distributed power grid load current 

THD waveform after 1.3 sec (0 to 10 Cycle) 

 

 
 

Figure 29. Fuzzy based current regulator 

 

 
 

Figure 30. Fuzzy controller model for current regulator 

 

 
 

Figure 31. Fuzzy rules base system for current regulator 

 

 
 

Figure 32. Fuzzy based distribution power grid voltage and 

current waveform 

 

 
 

Figure 33. Fuzzy based distributed power grid voltage THD 

waveform (0 to 10 Cycle) 
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Figure 34. Fuzzy based distributed power grid voltage THD 

waveform after 1 sec (10 Cycle) 

Figure 35. Fuzzy based distributed power grid voltage THD 

waveform after 1.3 sec (10 Cycle) 

Figure 36. Fuzzy based distributed power grid load current 

THD waveform after 0 sec (10 Cycle) 

Figure 37. Fuzzy based distributed power grid load current 

THD waveform after 1 sec 

Figure 38. Fuzzy based distributed power grid load current 

THD waveform after 1.3 sec (0 to 10 Cycle) 

4. CONCLUSIONS

This article concentrated on modeling the 300 kW PV 

system and implement it in Matlab. They have developed two-

controller such as the CFNN algorithm and Fuzzy algorithm 

for the 200 kW PV and 100 kW wind system. The model was 

simulated, and the system's performance was assessed under 

various operating circumstances. The second section of this 

study report focused on photovoltaic system integration and 

performance. Finally, the suggested system was tested under 

various operating circumstances, and the findings are 

presented in Table 1 and Table 2. The effectiveness of the 

proposed system, simulation results are evaluated under IEEE 

519. 
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