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Visual neuroprostheses are devices that restore limited visual perception for visually 

impaired patients. Some of these neuroprostheses, implanted in the retina or the visual 

cortex, include an implant, a computing device and an external camera to capture the 

scene. Microstimulation of the retina or the visual cortex activates white spots called 

phosphenes, which restores a limited visual perception. Indeed, the resolution of 

current implants (i.e., the number and spacing of the electrodes) that have passed 

clinical trial phases remains low. Such a low resolution, coupled with the limited 

number of different colours rendered by the implants, limits the information that can 

be transferred. Hence, the regular rendering process used in the implants, called 

scoreboard, is insufficient to provide implanted patients with a good understanding of 

the visual scene and complex sensorimotor processes such as wayfinding. Ongoing 

research mainly aims at maximising the quality and quantity of the phosphenes 

provided by the implant.  We set up a comparative study between different renderings, 

and we showed that providing the implanted patient with the possibility to switch 

between different renderings significantly increases the understanding of the 

environment. 
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1. INTRODUCTION

According to the WHO [1], 253 million people are visually 

impaired: 36 million of them are blind, and 217 million have 

moderate to severe visual impairment. Visual neuroprostheses 

first appeared in the 1960s [2] and have emerged as a 

promising technique for partially restoring vision in people 

with visual impairments. Over the last ten years, several 

implants have passed clinical trials [3] but show limited 

improvement in scene perception. Since the implants have a 

low resolution (about 300 electrodes), the way to choose the 

electrodes to stimulate appears to be the main difficulty. This 

study is based on the analysis of the needs of blind people 

provided by Ratelle and Couturier [4]. Their report presents 

the elements described as necessary to perform certain tasks 

by the blind (locating obstacles, catching objects,...). We 

compared three different prosthetic rendering modes: the 

regular Scoreboard rendering; a rendering that combines both 

semantic object segmentation and scene structure detection 

(called “Combined”), which is similar to a recent state-of-

the-art rendering [5]; and a new rendering method that we 

called "Switch", which allows switching between the 

Combined rendering and two other renderings where only 

objects or only structure can appear.  

Our hypothesis is that the Switch rendering mode provides 

a better understanding of the visual scene than the two other 

rendering modes (Scoreboard and Combined). Since it is 

impossible to perform such tests on implanted patients, the 

study was performed with a prosthetic vision simulator 

inspired by clinical results. Our results, obtained on twenty 

subjects, show that using the Switch allows subjects to better 

understand and analyse outdoor scenes. 

2. RELATED WORK

2.1 Visual neuroprostheses 

Visual neuroprostheses are devices designed to restore 

visual perception in people with partial or total blindness. 

They usually consist of a portable camera, a small computer 

and an array of electrodes that is implanted in the retina. The 

neuroprosthesis generates electrical micro-stimulations that 

cause the appearance of blurred points called phosphenes. 

Several devices have been developed, and some implants have 

been clinically tested. 

Current visual neuroprosthesis are based on the retinal 

implantation of a limited number of electrodes (6x10 for the 

Argus II developed by Second Sight [6], 21x18 for the PRIMA 

system developed by Pixium Vision [7]). While these 

neuroprostheses have improved the daily lives of many blind 

people [8], the restored visual perception is too weak to allow 

more advanced perceptual or sensorimotor processes such as 

wayfinding. 

2.2 Different phosphenic renderings depending on the task 

The limitations of current visual neuroprostheses pose 

significant problems for rendering a scene in a comprehensible 

manner. The historical method of "Scoreboard" rendering 

consists in reducing the captured image to the resolution of the 

implant, then converting the image to grayscale and 

quantifying the grayscale to the intensity level supported by 

the implant (Figure 1B). However, several studies have shown 

that specific image processing can improve the performance 

of subjects involved in various perceptual or cognitive tasks 

Modelling, Measurement and Control C 
Vol. 83, No. 1-4, December, 2022, pp. 39-44 

Journal homepage: http://iieta.org/journals/mmc_c 

39

https://crossmark.crossref.org/dialog/?doi=10.18280/mmc_c.831-407&domain=pdf


 

[9-11]. Specifically, Sanchez-Garcia et al. [5] proposed a 

rendering that highlights the structural edges and silhouettes 

of segmented objects. An example of this type of rendering is 

proposed on Figure 1E. 

 

 
 

Figure 1. Examples of prosthetic renderings: (a) shows the 

initial image in a virtual environment. (b) shows how (a) is 

rendered with the Scoreboard rendering. (c) shows how (a) is 

rendered with a method that detects objects only (semantic 

object segmentation), and (d) shows how (a) is rendered with 

a method that enhances structural information in the scene 

(structure enhancement). (e) is a rendering combining (c) and 

(d) and called Combined 

 

 

3. PROSTHETIC VISION SIMULATOR (PVS) 

 

Due to the difficulty in involving implanted patients to test 

different renderings, the use of a prosthetic vision simulator is 

common [5, 9, 10, 12]. It allows doing simulations of different 

implants (size, position, resolution) in various contexts (2D or 

3D visual scenes, static or dynamic). To conduct this study, we 

have created a prosthetic vision simulator using the Unity 3D 

engine (Unity Technologies, version 2019.4.19f1). This tool 

initially dedicated to the development of video games includes 

many functionalities (rendering engine, physics engine, user 

interface components) which allowed us to develop an online 

simulator. 

 

3.1 Simulated implant 

 

We chose to simulate the PRIMA neuroprosthesis 

developed by Pixium Vision, Paris, France, made of a 21x18 

electrodes array. Our choice was motivated by the fact that it 

is one of the most recent implants, having passed clinical trials 

[4]. In addition; it is one of the implants with the highest 

resolution to date. For instance, a competing device called 

Argus II (Second Sight Medical Products Inc., Sylmar, CA, 

USA) has 6x10 electrodes only [13].   

Our simulator was inspired by [12, 14]. During the 

experiment, to ensure that the visual rendering was similar to 

reality, we asked the subjects to stand at a distance between 50 

and 75 cm from the screen. Since the display area on the screen 

was 10cm x 10cm, the perceived field of view was about 10°, 

which is close to what was measured during the PRIMA 

clinical trials. Each electrode can generate a phosphene with 

four levels of grey. A dropout rate of 10% was applied to the 

electrodes to simulate non-functional or broken electrodes. A 

Gaussian blur was applied to the generated phosphenes. The 

size of the phosphenes varied between 0.235° and 0.275° of 

the field of view. The spacing between two phosphenes varied 

between 0.55° and 0.825° of the field of view. 

3.2 Phosphenic renderings 

 

A different phosphene layout was randomly generated for 

each subject, in order to simulate the realistic scenario where 

two people implanted with the same visual neuroprosthesis 

have different phosphenic perceptions. In this study, we used 

the Scoreboard rendering as the control condition. We used a 

second rendering inspired by [5], which is based on both object 

and structure segmentation. We called it "Combined". We also 

designed a third rendering mode called "Switch" which allows 

one to freely change the rendering that is used during the task 

(Objects only, Structure only, Combined). We detail below the 

different renderings used in the study. 

 

Scoreboard rendering (control condition) 

The image is reduced to the resolution of the implant. We 

then quantize the intensity into four levels of gray. Finally, we 

transform each rectangular area that now represents a micro-

electrode into a phosphene (see Figure 2). 

 

 
 

Figure 2. Generation of the Scoreboard rendering (Control) 

 

Combined rendering (objects + structure) 

First, we extract an object segmentation map from the input 

image (Figure 3-2). Then, we extract the edges of the scene 

structure, and we scale and quantize the image (Figure 3-3). In 

a parallel thread, we also extract objects and quantize the 

image (Figure 3-4). We then combined both images into a 

single image (Figure 3-5). Finally, we transform each 

rectangular area that now represents a mirco-electrode into a 

phosphene. 

 

 
 

Figure 3. Generation of the Combined rendering (objects + 

structure) 

 

Switch rendering 

The Switch rendering mode allows the subject to change the 

rendering at will by clicking on a button. In this mode, the 

available renderings are Combined, Objects and Structure 

renderings. The Objects rendering is obtained by transforming 

the semantic image (Figure 3.4) into a phosphenic display. The 

Structure rendering is obtained by transforming the structure 

image (Figure 3.3) into a phosphenic display. 
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4. MATERIAL AND METHOD 

 

We made the hypothesis that the ability to independently 

switch between renderings in real time would provide a better 

understanding of outdoor visual images than using a specific 

rendering. 

 

4.1 Subjects, task and experimental conditions 

 

The subjects were recruited in an engineering school and via 

social networks (LinkedIn, Facebook). 20 subjects, (11 men 

and 9 women aged from 17 to 55 years, mean: 25 years, sd: 13 

years), participated in the experiment. Each participant had 

normal or corrected vision.  

The three tasks consisted in answering questions related to 

the presence or absence of three categories of items (objects, 

streets, doors and crosswalks) in the image. 

In this study we included three experimental conditions: (i) 

“Scoreboard” (control condition), (ii) “Combined” (Objects + 

Structure), and (iii) “Switch” that allows one to use any 

renderings (among Objects, Structure and Combined) at will 

before answering. 

 

4.2 Protocol 

 

The experimental session contained three blocks 

corresponding to the three experimental conditions. Each 

block was divided into three parts, including familiarization 

with the rendering used in the block, the test phase per se, and 

then a questionnaire.  

During the familiarization, subjects were free to watch the 

image as long as they wanted to answer two questions. In the 

Switch condition, they can change the rendering at will before 

answering these two questions. During the test phase, the 

subject had to answer a series of 15 questions including 5 

questions in each task ("objects", "streets", "doors and 

crosswalks"). Once an answer is validated, users can move on 

to the next question. The orders of the blocks and tasks were 

randomized across subjects to limit sequence-related biases.  

At the end of each block, subjects were asked subjective 

assessments about the rendering used in this block, which 

focused on user experience and perceived usability. There 

were three assessments for the Scoreboard and Combined 

conditions, and four for the Switch condition (an additional 

one related to the relevance of this condition). The assessments 

were: “I enjoyed using this rendering”, “This rendering is 

adapted to the task I had to do”, “This rendering provides me 

with enough information to complete the task”. They were 

asked to answer these questions on a Likert scale from 1 to 7 

(1 meaning not at all in agreement and 7 meaning completely 

in agreement). 

At the end of the session, they were asked to rank the 

renderings according to their preference. 

 

4.3 Variables and analysis 

 

For each subject, we measured: (i) the validity of each 

answer (Correct / Incorrect / I don't know), (ii) the response 

time for each trial, (iii) the score (1-7) for each subjective 

assessment, and (iv) the rendering preference order. In 

addition, for the Switch condition, we measured: (i) the 

rendering selection order, (ii) the usage duration for each 

rendering, and (iii) the number of rendering changes. To 

analyze the quantitative results, we performed 2-way ANOVA 

tests according to the model Condition * Task * Interaction, 

and then used a Tukey post-hoc test to compare pairs. In the 

figures, we use 95% confidence intervals. 

 

 

5. RESULTS 

 

5.1 Comparison of the three renderings  

 

Correct answers: the results of the two-way ANOVA 

(Condition * Task * Interaction) showed that the number of 

correct answers is significantly different according to the 

Rendering (F(2,171) = 15.834; p < 0.0001) and to the Task 

F(2,171) = 81.730; p < 0.0001). The interaction was also 

significant (F(4,171) = 5.728; p<0.001), showing that the 

Switch condition was highly effective in identifying objects, 

but even more in understanding street layouts. A Tukey post-

hoc test confirmed the differences between the three 

renderings for Streets questions and between the Switch and 

the two other conditions for Objects questions (see Figure 4). 

“I don't know” answers: A two-way ANOVA (Condition 

* Task * Interaction) showed that the number of "I don't know" 

answers was significantly different by Rendering (F(2,171) = 

10.543; p<0.0001) and by Task F(2,171) = 5.882; p < 0.001). 

The interaction was not significant (F(4,171) = 1,909; p = 

0.111). Tukey's post-hoc test shows that the results are 

significant between the Control and Switch conditions in the 

case of the "Objects" task and between the Control and 

Combined or Switch conditions in the case of the "Streets" task 

(see Figure 5).  

Response time: Since the distribution of response times 

was not normal, we performed a logarithmic transformation of 

the data. We performed a two-way ANOVA (Condition * Task 

* Interaction) on the transformed data which showed that the 

response time is significantly different according to the 

Rendering (F(2,891) = 17.245; p < 0.0001) and to the Task 

F(2,891) = 14.081; p < 0.0001). The interaction was not 

significant (F(4,891) = 0.465; p= 0.762). A Tukey post-hoc 

test shows that the results are significantly different between 

the Control and Switch conditions in the case of the "Objects" 

task, between the Switch and Combined or Control conditions 

in the case of the "Doors and Crosswalks" task, and between 

the Switch and Control conditions in the case of the "Streets" 

task (see Figure 6). 

 

 
 

Figure 4. Average number of correct responses by Rendering 

and by Task. Detection of crosswalks and doors is equivalent 

for all conditions. Identification of objects and street patterns 

is significantly improved with the Switch rendering. (N=20. 

Bars indicate 95% confidence interval. *=0.05; **=0.01; 

***=0.001; ****=0.00001) 
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Figure 5. Average number of “I don’t know” responses by 

Rendering and by Task. (N=20. Bars indicate 95% 

confidence interval. *=0.05; **=0.01; ***=0.001; 

****=0.00001)  

 

 
Figure 6. Average response time by Rendering and by Task. 

(N=20. Bars indicate 95% confidence interval. *=0.05; 

**=0.01; ***=0.001; ****=0.00001) 

 

Subjective judgement: A two-factor ANOVA (Rendering 

* Task * Interaction) shows that the score is significantly 

different by Rendering (F(2,228) = 11.878; p<0.0001) and by 

Task (F(3,228) = 5.604; p < 0.001). The interaction is 

significant too (F(6,228) = 7.537; p < 0.0001). A Tukey post-

hoc test shows that the results are significant for all three tasks 

(see Figure 7). We see that in terms of pleasure of use, the 

Combined and Switch renderings are significantly better rated 

than the Control rendering (scoreboard). We can also see that 

in terms of difficulty of use, perceived usability and the 

amount of information presented, the Switch rendering is 

better rated than the Control rendering. We also notice that the 

Control and Combined renderings are not perceived with a 

different level of difficulty. Note that for the question: "I found 

the ability to switch renderings very useful", we obtain an 

average score of 6.2 +/- 0.52 (out of 7). 

Final Ranking: Subjects were finally asked to rank the 

renderings in order of preference for each task separately, and 

overall. In order to generate a preference score, we assigned 3, 

2 or 1 points to the rendering according to the preference order. 

The results show that the average order of preference for the 

renderings is: Switch, Combined, Scoreboard, regardless of 

the task (see Figure 8). 

 

5.2 Behavior observed with the Switch rendering 

 

In the Switch mode, users can choose to freely use one or 

more renderings among the Objects, Structure, and Combined 

renderings. For each trial performed by the subjects, we 

analyzed the number of times each rendering was used, the 

usage duration of each rendering, and the last rendering used 

in the task. 

 

 
 

Figure 7. Average score given by subjects to the three 

renderings (Scoreboard, Combined and Switch). The scores 

are between 1 and 7 (1 meaning strongly disagree and 7 

meaning strongly agree). (N=20. Bars indicate 95% 

confidence interval. *=0.05; **=0.01; ***=0.001; 

****=0.00001) 

 

 
 

Figure 8. Average final ranking given by users (N=20). 

Switch rendering is the best ranked on average, regardless of 

the task performed 

 

 
 

Figure 9. Average number of last rendering used in the 

Switch mode by Task. (N=20 subjects) 

 

Because the distribution of usage durations was not normal, 

we performed a log transformation of the data.  A one-way 

ANOVA (Task) showed that the usage durations were not 
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significantly different according to the task (F(2,860) = 0.09; 

p = 0.914). A one-way ANOVA (Task) showed that the 

number of uses was not significantly different according to the 

task either (F(2,860) = 1.589; p = 0.205). Interestingly, a one-

way ANOVA (Task) showed that the number of times a 

rendering is used last is significantly different according to the 

task (F(2,171) = 5.914; p < 0.001; see Figure 9). A Tukey's 

post-hoc test shows that the results are significant for all three 

tasks. Figure 9 illustrates the relation between the last 

rendering used and the task. Independently of the task, the last 

rendering used is the Combined rendering. For the Objects 

task, the Object and Combined renderings are used similarly. 

 

 

6. DISCUSSION 

 

Our results show that the detection of crosswalks and doors 

is easy, regardless of the rendering used. This is not surprising 

because the rendering of doors is always a white rectangle, and 

the rendering of crosswalks is a series of rectangles, which are 

easy to perceive. On the other hand, the identification of 

objects and the understanding of the street layout strongly 

depends on the rendering being used. 

The results show that the Switch rendering is significantly 

better than the Control and Combined renderings for 

identifying both objects and streets. The Combined rendering 

is not significantly better than the Control rendering for object 

detection. This is not consistent with the study by Sanchez-

Garcia et al. [5]. This difference can be explained by the 

resolution of the implants used in our simulator (21x18) that is 

lower than in their study (32x32). Indeed, according to Tan et 

al. [15], 600 electrodes with a scoreboard rendering (Control) 

are sufficient to obtain an already functional perception.  

The analysis of the "I don't know" responses shows that 

there is a significant difference between renderings and tasks. 

The Control rendering gets more "I don't know" responses than 

the Switch rendering in the "objects" and "streets" tasks. One 

subject used this option a lot and answered "I don't know" 14 

times for the scoreboard rendering mode (control), 6 times for 

the Combined rendering mode and 7 times for the Switch 

mode. His number of correct answers is 1 for scoreboard, 6 for 

the Combined rendering mode and 6 for the Switch mode. 

Regarding the response times, we obtain significant 

differences. The Switch rendering is systematically more used 

in terms of time than the Control rendering whatever the task. 

It is also more used than the Combined renderer in the "Doors 

and crosswalks" type tasks. This can be explained by the fact 

that changing rendering automatically increases response time. 

On the other hand, as shown by the preference indices, the 

decision is more reliable and the satisfaction is higher. One 

could imagine that with training, the decision is made more 

quickly with the Switch mode. According to the analysis of 

subjective judgments and ranking of the rendering modes, we 

highlight that the Switch rendering mode has a clear advantage 

over the Scoreboard rendering mode in all categories. That 

said, the Switch rendering mode is not significantly preferred 

over the Combined rendering mode. On the other hand, the 

final ranking still shows that the top-ranked rendering mode is 

Switch over Combined. In the case of Switch, subjects often 

use the renderings in the order that the buttons are displayed 

on the screen. Thus, it seems that there is no conscious strategy 

on which rendering to choose. On the other hand, we observe 

that the last rendering chosen is significantly related to the task 

performed. In particular, we observe that the Combined and 

Objects renderings are more often the last rendering used for 

object identification. The Combined and Structure renderings 

are more often the last renderings used to understand the street 

configuration. This confirms the hypothesis that the 

appropriate renderings for each task are more usable for 

making the final decision.  

 

 

7. LIMITATIONS AND PERSPECTIVES 

 

First, we can address the issue of predicting the 

segmentation and structure images to build the different 

renderings. In our study, these data are very easy to obtain 

because the objects of the scene are labelled and the cameras 

are parameterized to capture only the elements that are 

relevant (objects for the object camera that changes the texture 

according to the labels, structure elements for the structure 

camera). In real conditions, we would have to find another way 

to recover this information. The addition of neural networks 

would solve this problem. The prediction of semantic 

segmentation maps has been widely discussed lately, leading 

to the birth of neural networks such as EfficientDet [15] or 

DeepLab [16] which obtain excellent performances. 

Regarding structure recovery there are also some networks 

trained to predict this kind of information such as PanoRoom 

[17]. There are still two problems to manage, the errors in the 

predictions and the calculation time. It is necessary that the 

predictions are not too far from reality and that these 

predictions are produced in quasi-real time. Another limitation 

is that our study does not allow us to capture the notion of 

motion since we use static images. The motion information is 

a very useful information, so much so that some devices use 

event-based cameras (event cameras) [18] to create a 

phosphenic rendering. To solve this problem, one could 

imagine performing the same study using video clips instead. 

To push the realism to the maximum it could also be 

interesting to realize an experiment in real condition. The 

device could be composed of a virtual reality helmet equipped 

with a camera that films the scene and a calculation box that 

takes care of calculating the visual rendering. A remote control 

would allow the subject to change the rendering in real time. 

This device would be an extension of the first one proposed by 

Cha in 1992 [19]. The interest to make a study in real 

conditions is double: on one hand we could propose a 

complete device of study very close to reality, which would 

allow the future works to be tested on a realistic model. 

Moreover, we could measure the reaction of the subjects in 

navigation tasks and not in perception and comprehension 

tasks. 
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