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To keep the main system and the auxiliary equipment of production system of thermal 

power plants operating normally, it’s a necessary work to fully consider the periodical 

repeat features of thermal process when modelling the thermal process based on thermal 

state data of machine units. Since most equipment in power plant work in an 

electromagnetic coupling environment, a too high ambient temperature will affect the safe 

operation of units, so when studying the dynamic features of multi-modal thermal process 

of power plants and their soft environment, the temperature distribution features of multi-

modal thermal process should be classified. To solve these questions, this paper established 

a model for the coupled temperature field during multi-modal thermal process and studied 

its analytical solutions. At first, this paper proposed a multi-modal modelling method for 

solving the distribution features of coupled temperature during multi-modal thermal 

process, the method can quickly determine the optimal number of local models of multi-

modal thermal process of power plant units while reducing the computational load of the 

coupled temperature field model. Then, this paper introduced an improved niche method 

into the basic cross-entropy optimization algorithm and used it to solve the layout 

optimization problem of coupled temperature field during multi-modal thermal process. At 

last, the validity of the proposed method was verified by experimental results. 

Keywords: 

multi-modal thermal process, coupled 

temperature field, analytical solution, 

thermal power plant, cross entropy 

1. INTRODUCTION

In a power system, the thermal power plants serving as 

power suppliers are one of the most important links [1-4]. 

Their function is to complete the energy form transformation 

of fuel from chemical energy, to the thermal potential energy 

of steam, then to mechanical energy, and finally to electric 

energy. Boiler, steam turbine, and generator are called the 

three main equipment in thermal power plants [5-11], other 

auxiliary equipment of production system includes the coal 

delivery system, the chemical treatment system of water, and 

the slurry discharge system, etc. These systems cooperate with 

the main system to complete the task of electricity production 

[12-15]. To ensure these equipment to operate normally, it’s a 

necessary work to fully consider the periodical repeat features 

of thermal process of power plants [16-19] when modelling 

the thermal process based on thermal state data of machine 

units, thereby promoting the units to develop toward the 

direction of multi-parameter, multi-modal, and highly 

automated.  

Zhang et al. [20] introduced a novel monitoring method of 

multi-modal dynamic processes based on sparse dynamic 

inner principal component analysis. In their work, by adopting 

the concept of intelligent synapses in continual learning, a loss 

of quadratic term was introduced to penalize the changes of 

mode-related parameters, and modified synaptic intelligence 

was proposed to estimate the importance of these parameters. 

Then, authors also discussed the features of the proposed 

method, including computational complexity, advantages and 

potential limitations. At last, compared with several advanced 

monitoring methods, the effectiveness and superiority of the 

proposed method were demonstrated by a continuous stirred 

tank heater case and a practical industrial system. Grigor’ev et 

al. [21] optimized the structure and parameters of an 

autonomous hybrid power plant operating from renewable 

energy sources (sun and wind) and methanol fuel cells using 

mathematical models of thermal processes, then they applied 

the developed models in practice and gave the results of 

simulation experiments of an indicated power plant. Weng et 

al. [22] pointed out that typical thermal processes are usually 

monotonically responsive and can be well described by first-

order plus dead time (FOPDT) model, thus the system 

identification of FOPDT is a major concern in the field of 

thermal process control, including coal-fired power plants and 

gas turbines. However, step response based open-loop 

experiment is sometimes not available due to the limitation of 

field operation, which necessitates the development of closed-

loop identification. Authors employed artificial intelligence to 

derive a new method for closed-loop identification, and used 

Convolution Neural Network (CNN) to identify operation 

characteristics of devices in the closed-loop condition. Their 

experimental results proved that the application of CNN had 

dramatically improved identification accuracy; when the size 

of training datasets reached 50,000, the identification accuracy 

was higher than 98%. 

Most equipment in power plants work in an electromagnetic 

coupling environment, a too high ambient temperature will 

affect the safe operation of units, so when studying the 
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dynamic features of multi-modal thermal process of power 

plants and their soft environment, the temperature distribution 

features of multi-modal thermal process should be classified. 

To solve these questions, this paper established a model for the 

coupled temperature field during multi-modal thermal process 

and studied its analytical solutions.  

 

 

2. MODELING OF MULTI-MODAL THERMAL 

PROCESS 

 

There are a few shortcomings with existing modeling 

method of coupled temperature field for multi-modal thermal 

process: 1) Termination conditions are unreasonably designed; 

2) Feature information contained in sample set are not fully 

utilized, and it’s easy to pick noise data by mistake; 3) The 

validity evaluation index of multi-modal data clustering is not 

effectively utilized, which may result in redundancy of the 

multi-modal model. 

To overcome these shortcomings, this paper proposed an 

optimized multi-model modeling method for analyzing 

distribution features of coupled temperature during multi-

mode thermal process, the method can quickly determine the 

optimal number of local models of multi-modal thermal 

process of power plant units while reducing the computational 

load of the coupled temperature field model. 

Conventional methods usually pick two samples with the 

lowest similarity in the data set of multi-modal thermal state 

as the initial cluster centers, different from these existing 

methods, the multi-modal modelling method proposed in this 

paper based on fuzzy satisfaction clustering could fully 

consider the time-varying characteristics of multi-modal 

thermal process. Starting from the internal feature information 

of the data of sample set, the proposed method determines the 

initial cluster center via Singular Value Decomposition (SVD) 

to attain ideal clustering results. That is, at first, this method 

calculates the unit eigenvector and standard deviation of the 

covariance matrix of multi-modal thermal state data; then, 

based on the calculation results, it selects two sample points 

around the center point of sample set and takes them as the 

initial cluster centers. The proposed method can control the 

core features of the sample set of multi-modal thermal state 

data in the data expansion direction, and quickly complete the 

classification of sample set by taking the iteration advantage 

of clustering analysis. 

The original multi-modal thermal state data matrix C 

composed of original unit thermal state data samples can be 

written as: 
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By performing centralization and scale transformation 

operations on C, we have:  
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u0=T1×(K+1) is the center of the sample set of multi-modal 

thermal state data C*, u0=[nψ1, ..., nψ2, nb] is the center 

corresponding to the original multi-modal thermal state data 

matrix C, then the covariance matrix G0 corresponding to C* 

can be calculated: 
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Assuming: E0j represents the unit eigenvector of G0, μ0j(j=1, 

2, ..., K+1) represents the corresponding eigenvalues, through 

SVD, E0j and μ0j(j=1,2,..., K+1) can be calculated: 
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The eigenvalue μ0j of G0 describes the variance of C* in 

direction E0j. Assuming: μ0,max represents the maximum 

eigenvalue of the sample set of multi-modal thermal state data, 

E0,max represents the principle eigenvector, the main direction 

of data expansion of sample set is the direction of E0,max, in this 

direction, the variance ε2
0,max around u0

* is equal to μ0,max. 

Let ξ1 be equal to ε0,maxe0,max, which can be used to describe 

the data expansion information of the sample set, then the two 

initial cluster centers u0
11 and u0

12 of C* are: 

 
0 0

11 1 12 1,u u = − =  (5) 

 

Based on C*, u0
11, and u0

12, the G-K algorithm can be used 

to cluster the unit state data. If the coupled temperature field 

model identified based on clustering results does not meet 

precision requirements, then the number of clustering 

categories d needs to be increased. Figure 1 shows the 

generation of new cluster center. Assuming: Cq* represents the 

worst multi-modal thermal state data sample sub-set 

determined by current iteration; Gq represents its covariance 

matrix, uq represents the cluster center, ei-1,max represents the 

maximum unit eigenvector calculated by SVD, εi-1,max 

represents the corresponding standard deviation of the data, 

then delete uq, and let ξi =εi-1,maxei-1,max, and define a new cluster 

center as follows: 

 
0 0

1 2,i q i i q iu u u u = − = +  (6) 
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Figure 1. Generation of new cluster center 

 

After clustering was finished, by transforming uq into the 

coordinates of original unit thermal state data, the structure 

parameters (N, di, εi) of the coupled temperature field model 

could be determined further, wherein N is the number of local 

models of multi-modal thermal state, namely d: 

 

N=d (7) 

 

di (i=1, 2, ..., N) is the center of the scheduling function, 

namely the fuzzy cluster center formed by transforming the 

first K items of ui into the coordinates of original unit thermal 

state data, which is denoted as uiψ. 
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Assuming: ukψ (1=1, 2, ..., L) represents L centers closest to 

the i-th center uiφ, αd is a constant used to adjust the width of 

the Gaussian function, then εi (i=1, 2, ..., N) is determined by 

the mean distance between ui and the nearest L centers. 
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Define Ip=[1,1,...,1]T, Ip∈R', the formula below gives the 

applicable domain of the i-th local model:  
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Figure 2 shows the flow of the proposed modeling method. 

 

 

3. ANALYTICAL SOLUTIONS OF THE LAYOUT 

OPTIMIZATION PROBLEM OF COUPLED 

TEMPERATURE FIELD 

 

This paper chose to use the cross-entropy optimization 

algorithm to solve the layout optimization problem of coupled 

temperature field during multi-modal thermal process. Taking 

the model constructed in the previous section as the subject, 

this paper introduced an improved niche method into the basic 

cross-entropy optimization algorithm for the purpose of 

improving the validity of the analytical solutions of the 

coupled temperature filed model of multi-modal thermal 

process. Figure 3 shows the flow of algorithm for solving the 

analytical solutions. Expressions of the species formation 

strategy and crowding strategy of the niche method are given 

below. Assuming: Ri represents the i-th niche, E represents the 

rest population, aj represents individuals in E, abest represents 

the optimal individual in E, s represents niche radius, C 

represents the dimension of design space, DIS(x, y) represents 

the distance between individuals x and y, then there are: 

 

 
 

Figure 2. Flow of the proposed modeling method 
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Figure 3. Flow of algorithm for solving analytical solutions 
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Overall speaking, the attained analytical solutions of 

coupled temperature field model for multi-modal thermal 

process face many challenges. The first is the determination of 

niche radius and the challenge of algorithm parameters, in the 

meantime, it also needs to bear a huge computational load and 

maintain population diversity. Therefore, at first, this paper 

performed adaptive clustering on niche radius, and adopted 

elite strategy and local search to complete the estimation of 

distribution parameters, at last, the crossover operator was 

adopted to generate new niche individuals. After optimization, 

the algorithm’s ability to solve analytical solutions of the 

temperature field model had been greatly enhanced.  

The adaptive clustering process of niche radius can be 

divided into two steps: dynamic population division of niche 

radius, and population adjustment based on same scale. At first, 

the optimal individual was taken as the seed and other 

individuals were sorted according to their distance from the 

seed, then the adaptability values of neighbor individuals were 

compared. If a worse individual is encountered, then the 

adaptability value of the niche radius can be determined based 

on the distance between this individual and the seed. The 

following formula gives the judgment criterion: 

 

( ) ( )1i if x f x −  (13) 

To balance the exploration and development of the 

population, the population divided into multiple clusters was 

adjusted based on the same scale, that is, if a cluster contains 

more individuals, then poor individuals contained in it are 

eliminated; if a cluster contains less individuals, then new 

niche individuals are produced.   

The estimation of distribution parameters of the algorithm 

includes two parts: the estimation of position selection λi of the 

optimal individual, and the estimation of initial standard 

deviation ε0
i and standard deviation ε0

i(t>0). To improve the 

convergence speed of the algorithm, assuming: aibest represents 

the optimal individual in the i-th niche, if λi is selected to be 

aibest, then there is: 

 

,i i besta =  (14) 

 

Assuming: β represents the variance coefficient associated 

with upper and lower limits, in order to attain effective 

solution of the algorithm in the first round of iteration, this 

paper introduced β to control the distribution of initial 

population, finally, effective sampling of the individuals had 

been completed. 
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To provide sufficient multi-modal thermal state data sample 

information, the calculation of standard deviation ε0
i(t>0) 

needs to be performed based on all individuals in the niche. 

Assuming: ki represents all individuals in the niche, mi 

represents the size of population in the i-th niche, then there is: 
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The performance of multi-model modeling strategy has a 

great impact on the global peak number of analytical solutions 

of the temperature field model searched by the cross-entropy 

optimization algorithm. At the same time, the diversity of 

population declined sharply during algorithm iteration. To 

avoid the loss of population diversity, this paper used the 

crossover operator between the optimal individuals in each 

niche to produce new niche individuals. Specifically, keeping 

the total population size ME unchanged was taken as the 

objective, by referring to the size of niche abest, the rest ME-

mbest new individuals were produced. Assuming: ac
j and ac

l 

represent the optimal individual in the i-th and j-th niche, ac
i 

represents new individuals generated by the crossover operator, 

C represents the dimension of design variable, then there is:  

 

( ) ( )( )1,2,3...,c c c c

i j l ja a rand a a c C= +  − =  (17) 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Some data samples of multi-modal thermal state were listed, 

it’s set that the maximum number of allowable local models of 

multi-modal thermal state was 5. Figure 4 shows the initial 

cluster centers of multi-modal thermal state data sample set 

determined by the proposed method and the cluster center 

attained based on G-K clustering. The comparison given in 

this paper showed that the proposed method is effective and 

reasonable, it can control the main features of the sample 

dataset of multi-modal thermal state in the data expansion 

direction, and ensure that the algorithm can find the optimal 

clustering center of the sample set quickly and accurately. 

Figure 5 shows the variation of validity index under the 

condition of different category numbers. When the initial 

threshold of the performance index was given a small value, 

although the validity index of clustering reached local 

minimum value at a category number of 3, the modelling 

accuracy at this time was not satisfactory enough. When the 

initial threshold of the performance index was adjusted to a 

larger value, the modelling accuracy met requirements at a 

category number of 5, the validity index of clustering was ideal, 

and the modelling process terminated. To ensure successful 

modeling, the threshold of performance index should be 

adjusted smaller referring to the validity index of clustering, 

otherwise ideal model accuracy won’t be realized even if the 

number of local model reaches the preset maximum value. 

Table 1 gives the specific system model parameters.  

 

 
 

Figure 4. Clustering of non-linear data samples of multi-

modal thermal state 

 

 

 
 

Figure 5. Validity index under different category numbers 

 

Table 1. System model parameters 

 

Model number 
Parameters of scheduling function Parameters of local models 

di1 di2 εi χi0 χi1 χi2 

1 3.9521 4.1753 1.3453 5.0854 -0.4736 -0.3319 

2 1.5987 3.6758 1.2736 8.8123 -1.9357 -0.7618 

3 3.5329 1.7284 1.2459 7.2617 -0.5723 -1.4317 

4 1.6874 1.5923 1.1736 10.4358 -2.1736 -1.9524 

 

Table 2. Comparison of system modeling accuracy 
 

Model 
Number of local 

models 
Model error 

Piece-wise affine 

model 
7 0.081 

T-S fuzzy model 11 0.0145 

Local model network 5/6 0.113/0.103 

The proposed method 5/6 0.062/0.035 

 

Table 2 compares the accuracy of the proposed model and 

other models in terms of the target multi-modal thermal 

process system, as can be known from the table, the proposed 

model exhibited obvious advantages in terms of accuracy and 

local model number.  

For the purpose of fair comparison, a same initial population 

size and a same calculation times of maximum objective 

function were set for all algorithms used in this study to solve 

the analytical solutions of the layout optimization problem of 

coupled temperature field. The proportion of elite samples in 

the multi-modal thermal state sample dataset was set to 0.1, 

and the settings of other parameters are given in Table 3. 

To evaluate the advantage of the proposed method in 

solving the analytical solutions of the layout optimization 

problem of coupled temperature field, this paper compared it 
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with other algorithms. The selected reference algorithms 

include several classic optimization algorithms, such as ant 

colony optimization (ACO) algorithm, particle swarm 

optimization (PSO) algorithm, bacteria foraging optimization 

(BFO) algorithm, firefly algorithm (FA), artificial fish swarm 

algorithm (AFSA), and artificial bee colony (ABC) algorithm. 

Moreover, this paper also compared the proposed algorithm 1 

(before adaptive clustering of niche radius) with the proposed 

algorithm 2 (before introducing elite strategy and local search 

to perform distribution parameter estimation) to verify the 

improvement effect of the conventional niche algorithm. 

 

 

Table 3. Model parameter settings 

 
Sample 

No. 

Calculation times of maximum objective 

function 

Population 

size 

Number of correct 

predictions 

Coefficient of 

variance 

1 5.1E+4 90 30 1/35 

2 2.1E+4 110 30 1/35 

3 2.1E+4 310 30 1/35 

4 4.1E+4 310 30 1/35 

5 2.1E+4 10 30 1/35 

6 2.1E+4 210 30 1/35 

7 4.1E+4 210 60 1/35 

8 4.1E+4 210 110 1/35 

9 4.1E+4 210 110 1/35 

 

Table 4. Optimal analytical solutions of different algorithms 

 

Algorithm 
Unit 1 Unit 2 

Measuring point 1 Measuring point 2 Measuring point 1 Measuring point 2 Measuring point 3 

ACO -2.0915 -2.7358 -0.0209 -0.0112 0.257 

PSO 0.0035 0.5137 0.0000 -0.1436 -0.0241 

BFO -0.1723 1.4465 0.0223 -0.0145 0.0135 

FA -1.5734 -1.4578 0.0157 -0.0085 0.0023 

AFSA -0.4712 0.0239 -0.2675 -0.2736 -0.1935 

ABC 0.2357 0.5671 -0.0453 -0.0106 -3.50E-06 

The proposed algorithm 1 

-1.2735 2.4941 -0.0213 0.0229 -0.0127 

-2.3675 1.1445 0.0025 -0.0045 4.472E-02 

-0.0134 0.1024 2.53E-05 -3.89E-06 0.1153 

The proposed algorithm 2 

-1.2257 0.8938 0.0046 0.0125 0.00589 

0.2512 0.3857 0.0083 -0.0113 0.0176 

0.3359 2.0592 -0.0142 -4.937E-05 0.0145 

The proposed algorithm 

-2.5359 1.3605 0.0165 -0.0053 0.0123 

-2.7512 0.1574 -0.0089 0.0114 -0.0037 

0.3157 -1.1731 -0.0251 0.0067 0.0019 

 

Table 4 gives the statistical results and the optimal results 

of the proposed algorithm and reference algorithms in solving 

the analytical solutions of the layout optimization problem of 

coupled temperature field, as can be seen from the data in the 

table, the proposed algorithm performed better than other 

reference algorithms.  

The population size of the improved niche algorithm used 

in the paper was respectively adjusted to 100, 200, and 400 to 

solve the temperature field layout optimization problem of all 

equipment in the target unit, and four optimal threshold values 

of 2.6, 2.7, 2.8, and 2.9 were set. Figure 6 shows the number 

of optimal analytical solutions attained by the proposed 

algorithm. As can be seen from the figure, when the population 

size of the niche algorithm was set as 200 or 400, the proposed 

algorithm gave more competitive advantages of multi-modal 

optimization performance of unit thermal process state in 

terms of solving analytical solutions of the layout optimization 

problem of couple temperature field. When the optimal 

threshold was 2.7, the proposed algorithm could get more than 

130 different optimal analytical solutions in a single iteration, 

which had verified that the proposed algorithm attained more 

excellent multi-modal optimization ability in case of larger 

population size. 

 

 
 

Figure 6. Number of optimal analytical solutions attained by 

the proposed algorithm 

 

 

5. CONCLUSION 

 

This paper modeled the coupled temperature field in multi-

modal thermal process and studied its analytical solutions. At 

first, an improved modelling method was proposed for 
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analyzing the distribution features of coupled temperature in 

multi-modal thermal process, the method can quickly 

determine the optimal number of local models of multi-modal 

thermal process of power plant units while reducing the 

computational load of the coupled temperature field model. 

Then, an improved niche method was introduced into the basic 

cross-entropy optimization algorithm for the purpose of 

solving the layout optimization problem of coupled 

temperature field in multi-modal thermal process. 

In the experiment, the clustering of nonlinear data samples 

of multi-modal thermal process state was given, and the results 

proved the proposed modeling method is reasonable and 

effective. Then, the variation of validity index under the 

condition of different category numbers was given; for the 

target multi-modal thermal process system, the modeling 

accuracy of the proposed model and other models was 

compared, and the results verified the obvious superiority of 

the proposed model in terms of accuracy and number of local 

models. Moreover, the optimal results of the proposed 

algorithm and a few reference algorithms in solving the layout 

optimization problem of coupled temperature field were 

shown, and the results demonstrated that the proposed 

algorithm had outperformed other reference algorithms. At 

last, this paper analyzed the number of optimal analytical 

solutions attained by the proposed algorithm and the 

conclusion indicated that the proposed algorithm attained 

more excellent multi-modal optimization ability in case of 

larger population size.  
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