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A numerical program is adapted for the solution of the 2D, unsteady state equations of 

coupling convective transport of Buongiorno model and surface radiation; computations 

are performed in a square cavity differentially heated filled up with an AL2O3-water 

magneto nanofluid. The governing equations in Helmholtz variables (ψ, ω) are solved 

using a method based on Gauss’s theorem integral on triangles meshes. Effects of aiding 

buoyancy forces (Nr=0.1, 2, and 4), emissivity (ε=0, 0.2, 0.6 and 0.9) on flow structure and 

convective transport characteristics are investigated. Hartmann number (Ha=50), and 

Lewis number (Le=5), nanofluids parameter of Brownian motion (Nb=0.5), thermal 

Rayleigh number (Ra=105), H=0.0098, nanofluids parameter of thermophoretic (Nt=0.5), 

Prandtl number (Pr=10) are invariable. 
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1. INTRODUCTION

In recent years, the nanofluids are becoming a popular in 

many research fields experimentally or numerically to 

transform base fluids into nanofluid with enhanced 

thermophysical properties (nanofluid have stronger heat 

transfer performance than base fluids), such as thermal 

engineering, solar convection, nuclear industry, biomechanics, 

etc. By using nanofluids in thermal industrial applications, we 

can reduce energy consumption and thus preserve the 

environment more. The nanofluids are prepared by adding a 

little amount of nanoparticles to a pure fluid (water, ethylene 

glycol, oil, etc.).  

All numerical studies on nanofluids based on pure fluid 

equations with modified thermal properties, which are 

obtained by a theoretical or experimental method.  

Previously, there was a consensus of researchers on the 

assumption that slip velocities between the fluid molecules 

and nanoparticles equals zero at thermal equilibrium, this 

means the nanofluid have a fixed concentration of 

nanoparticles, and it is believed that in nanofluids free 

convection. 

By the experimental results of subsequent studies, it was 

found that the previous assumption is incorrect. 

In 2006, the most essential investigation of nanofluids flow 

and heat transfer done by Buongiorno [1]. Through the 

calculations he was found that the particle rotation has too 

small effects on heat transfer enhancement, and refer this 

enhancement to the effect of Brownian motion and 

thermophoresis mechanisms, the nanoparticles do not 

accompany fluid molecules so the nanoparticles concentration 

not be uniform anymore and we will have a variable volume 

fraction of the nanofluids. 

To explain the observed increase in heat exchange, 

Buongiorno suggest a model in which the Brownian diffusion 

effects combined with thermophoresis, a model has been 

focused on the relative velocity between a nanoparticle and 

original fluid. He suggested that the absolute velocity of 

nanoparticle it is the sum of two parts, first part is fluid 

velocity and the second part is the nanoparticle velocity 

respect to the fluid (slip velocity). He was able to conclude, 

the effects of Brownian diffusion and the thermophoresis that 

will be large when the flow is laminar. 

Among the important numerical studies in field of coupling 

free convection with surface radiation in a square enclosure 

filled with air the study was made by Akiyama and Chong [2] 

and Wang et al. [3]. Research in convective transport of 

nanofluids technologies have had studied in a large number of 

cavities of different shapes. A number of studies were related 

to convection in fluids partially or completely confined to solid 

walls.  

Mahmoudi et al. [4] presented a study of natural convection 

in a square enclosure nanofluid-filled and subjected to the 

influence of a magnetic field. Mabood et al. [5] presented a 

radiation effect on Williamson nanofluid flow over a heated 

surface with magneto hydrodynamics. Rana et al. [6] 

presented study and analysis of Williamson micropolar of 

magneto nanofluid flow past stretching sheet. Ibrahim et al. [7] 

Presented study of free convection inside an inclined enclosure 

filled with a Ag–water nanofluid and containing a hot solid 

body (ellipse and circular cylinders) at the center, they used in 

their studies The COMSOL program as computational tools, 

They concluded that the Nusselt numbers at the hot left wall is 

not affected by the change in the value of angle, well they 

found only at a high Rayleigh number there is effect of the 

angle on the stream function. Sheikholeslami et al. [8] 

presented the integrated Brownian motion and thermophoresis 

effects on free convective transport of nanofluid in an L-

shaped cavity; the finite element method was used as method 

for solving the equations. As a Result, they concluded that the 

Nusselt number increases with increases in either of the 
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thermal Rayleigh number and the Lewis number but it 

decreases with increases in either of the aspect ratio and the 

concentration Rayleigh number. Sheikholeslami et al. [9] 

Presented MHD effect on free convection treatment in a cavity 

filled-up with nanofluid, where it was taken into account 

thermophoresis and Brownian motion effects, the magnet filed 

is imposed, the Control Volume based Finite Element Method 

was used to solve the governing equations, They come to a 

conclusion that it is the Nusselt number is an increasing 

function of Nr (the buoyancy ratio number) but it is a 

decreasing function of Hartmann number and Lewis number, 

they also found that as buoyancy ratio number increases the 

effects of other active parameters appear larger. 

Sheikholeslami [10] presented the electric forces effect on 

convective transport of Fe3O4 nanofluid in a cavity with 

moving wall, the Control Volume based Finite Element 

Method was used to solve the governing equations, they come 

to a conclusion that the existence of coulomb force can change 

the style of nanofluid flow, and augments the temperature 

gradient along hot wall. The supplied voltage augment the 

Nusselt number enhances. 

Sheikholeslami and Rokni [11] presented the numerical 

study of FeO-water nanofluid free convection in a semicircular 

enclosure subjected to the influence of Lorentz force, the 

numerical method in which the problem is solved is CVFEM. 

The results show that the Lorentz force reduces the velocity of 

the nanofluid and augment the thermal boundary layer 

thickness, and enhance the heat transfer, Nusselt number is 

increases with the buoyancy forces but decreases with 

increasing of Lorentz forces. 

Sheikholeslami [12] presented the influence of magnetic 

field on Fe3O4-water nanofluid thermal radiation in a cavity 

with tilted elliptic inner cylinder, the numerical method in 

which the problem is solved is CVFEM, the radiation source 

was adopted in the energy equation ,the conclusion is reached 

that the Nusselt number goes up with radiation parameter but 

it goes down with the rise of Lorentz forces. 

Sheikholeslami and Rokni [13] presented the effects of 

magnetic field and thermal radiation on convective transport 

of Fe3O4–H2O nanofluid, the constant heat flow was imposed 

for the interior walls as boundary condition, the control 

volume based finite element method was used to solve the 

governing equations, the study found that the thermal radiation 

on convection is more sensible when the buoyancy force is 

greater, with increasing of radiation parameter, and Hartmann 

number the thermal boundary layer thickness augments, the 

nanofluid velocity augments with the rise of radiation 

parameter. 

Sheikholeslami and Shamlooei [14] Magneto 

hydrodynamic nanofluid flow and convective transport of heat 

transfer is studied considering thermal radiation, the equations 

are solved by the control volume-based finite-element method 

(CVFEM), the rate of heat transfer increases as a function of 

radiation parameter and Rayleigh number but on contrary, a 

decrease in heat transfer was recorded with the increasing of 

Hartmann number. Various papers [15-18], presented the 

numerical studies on the nanofluid application using 

Buongiorno model. Various papers [19-26], presented the 

numerical studies on the nanofluid application. 

It is evident through researching in the literature on studies 

that dealt with the coupling free convection of nanofluids with 

surface radiation, they are very few, as for the studies that 

relied specifically on a Buongiorno model coupling with 

surface radiation, they are rare.  

The present work is motivated by this reason, and by all 

process of natural convection in fact coupled with surface 

radiation. 

The first objective of our present work is to develop a 

numerical computer code written in FORTRAN language to 

resolve the two-dimensional, time-dependent convective 

transport of nanofluid equations coupled with surface radiation 

based on Buongiorno model inside cavities. 

The governing equations are formulated in Helmholtz 

variables; our numerical computer code is based on a method 

the basis of which is the application of Gauss’s theorem 

(integrals over a closed line around an area) on a grid made up 

of triangles. 

This numerical computer code can give several advantages 

for solve several problems of convective transport of nanofluid 

coupled with surface radiation based on Buongiorno model 

over complex various geometries, which is difficult with other 

software. 

The second objective of our present work is to use our 

numerical code as a computational tool to analyze numerical 

investigation of convective transport of AL2O3-water 

nanofluid coupled with surface radiation based on Buongiorno 

model in square enclosure differentially heated, where the 

internal walls considered opaque, diffuse and gray and have 

the same emissivity value. 

Our numerical investigation is concerned with identifying 

two effects: 

The first is the effect of aiding buoyancy forces change, it 

means the effect of the change of the positive number of 

buoyancy ratio (Nr=0.1, 2, and 4) in the presence of different 

values of surface radiation (emissivity ε=0, 0.3, 0.6 and 0.9) 

on flow structure and convective transport characteristics. 

The second is the effect of surface radiation change of 

cavity internal walls (emissivity ε=0, 0.3, 0.6 and 0.9) on flow 

structure and convective transport characteristics of nanofluid 

for different values of Nr (Nr=0.1, 2, and 4). 

Hartmann number (Ha=50), and Lewis number (Le=5), 

nanofluids parameter of Brownian motion (Nb=0.5), thermal 

Rayleigh number (Ra=105), H=0.0098, nanofluids parameter 

of thermophoretic (Nt=0.5), Prandtl number Pr=10 are 

invariable. 

The main aim of this study is to determine the two effects 

on the convective transport characteristics of nanofluid in 

square cavity in the presence of surface radiation and enhances 

the database of coupled convective transport nanofluid surface 

radiation. 

 

 

2. MATHEMATICAL FORMULATION 

 

2.1 Problem description 

 

 
 

Figure 1. The geometry of studied problem 
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In this study, we consider a square-shaped enclosure 

differentially heated that has a shape where the internal walls 

considered opaque, diffuse and gray and have the same value 

of emissivity ε, (the schematic diagram is shown in Figure 1). 

The 2D-dimensional enclosure was filled with AL2O3-water 

nanofluid (Pr=10.0) and the volume fraction of nanoparticle 

φh=0.05 at hot wall. The enclosure walls are subject to 

condition of no-slip; the standing walls are isothermal at two 

different temperatures TC and TH, while the horizontal walls 

are considered thermally insulated. We also consider that the 

boundary conditions applied to nanoparticle volume fraction 

are identical to the thermal conditions. 

The nanofluid inside the cavity is subjected to a fixed 

magnetic field that creates an angle with the horizon equal to 

θ=45o. 

where the electromagnetic force is given by: 

 

F σ(V B) B=    (1) 

 

2.2 Governing equations of nanofluid flow and boundary 

 

2.2.1 Governing equations 

The governing equations of nanofluid flow are not change 

by the presence or absence of surface radiation; also, the 

isothermal boundary conditions are not affected by the 

presence or absence of surface radiation. The effect of surface 

radiation on free convection is done only through the adiabatic 

thermal conditions in the adiabatic walls. In the absence of 

radiation the adiabatic condition means that the convective 

flux is zero in adiabatic wall, while with radiation the adiabatic 

condition becomes that the sum of the fluxes due to convection 

and radiation is zero. 

The governing equations in nanofluid flow are the 

conservation equation of mass, tow equations of momentum 

and, equation of energy and equation of conservation 

nanoparticles. They are the governing equations of 

Buongiorno model. 

We assumed that the Boussinesq approximation for 

nanofluid is valid. 

 

(1 )P f   = + −  (2) 

 

 0(1 ) (1 ( ))P f cT T    = + − − −  (3) 

 

where, ρ is the nanofluid’s density; ρf is the base fluid’s density; 

ρP is the nanoparticles’s density; ρf0 is the base fluid’s density 

at the reference temperature. 
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The governing equations on variables (ψ, ω) are the 

equation of mass conservation, vorticity equation, stream 

function equation and energy equation, equation of 

nanoparticles conservation.  

We used the following non-dimensional variables in order 

to write the equations in the dimensionless forms: 
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(12) 

 
After inserting the dimensionless variables above into 

governing equations, we can get the following dimensionless 

system of equation that governs the flow of the nanofluid: 
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In the equations above we note the presence of the 

characteristic numbers, namely the Rayleigh number: 
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The buoyancy ratio number: 
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The Prandtl number: 
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The Brownian motion parameter: 
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The thermophoretic parameter: 
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The Lewis number: 
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The Hartman number: 

 

Ha BH
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Although all the nanofluid flow equation are fully 

formulated, this system can only be solved by providing values 

for all the variables at the boundaries of the studied cavity. 

 

2.2.2 Boundary conditions 

At all walls: 
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At the left isothermal walls: 

 

1T = =  (30) 

 

At the right isothermal walls: 

 

0T = =  (31) 

 

At the bottom adiabatic walls: 
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At the top adiabatic walls: 
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λnf is the thermal conductivity of nanofluid which is 

calculated using a model of Mintsa et al. [26] as follows: 

 

(1.72 1.0)nf f  = +  (36) 

 

where, λf is the thermal conductivity of water. 

qr is the flux produced by surface radiation and is calculated 

through the equations: 
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
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 (37) 

 

and J is the vector of radiosity, calculated by the matrix: 

 
1J M b−=  (38) 

 

where, 

 

( )4

i ib b T=  (39) 

 

is the vector of emissive power and M is the matrix whose 

elements are written as follows: 

 

( )1ij ij ijM F = − −  (40) 
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Fij is the view factor of geometry, are calculated through the 

equations extracted theoretically as follows: 
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So far, we have written each of net radiative flux qr and the 

radiosity J and adiabatic condition equation on dimensional 

form, and to write these variables on dimensionless form we 

used σ(TH-TC)4 as reference of J and qr. After inserting the last 

dimensionless variable into the equation of the adiabatic 

boundary conditions, a new dimensionless number appears, 

which radiation number Nr is where: 
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2.3 Nusselt numbers computation 

 

2.3.1 Nusselt number of convection Nuc 

The convective local Nusselt number was calculated locally 

at each node of the wall with the following expression: 

At hot wall: 
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At cold wall: 
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Regarding the mean convective local Nusselt number was 

computed from calculating the average Nusselt number in 

each wall nodes i as follows: 
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(46) 

 

where, N is the number of nodes in the wall. 

 

2.3.2 Radiative Nusselt number Nur 

The radiative local Nusselt number was calculated locally 

at each node of the wall with the following expression: 

 

( )r rNur N q y=  (47) 

 

with 
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Regarding the mean Nusselt radiative number, we use the 

same method as calculating the mean Nusselt number for 

convective: 

1

( )
i N

i
avg

Nur i

Nur
N

=

==


 
(49) 

 

 

3. NUMERICAL CALCULATIONS 

 

In order to numerically calculate the various terms of the 

governing equation that we obtained earlier, we used the 

Gauss approach of integrals. 

For the numerical calculations of partial derivatives that 

appear in differential equations, we use the Gauss’s theorem, 

integrals over a closed line around a polygon as shown in 

Figure 2. 

The equation that expresses the Gauss approach is written 

as follows: 
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Figure 2. Polygon control volume 

 

where, a the fluxes, s is the total area of the polygon control 

volume and ds is elemental area, l the total length of the 

perimeter of the polygon, dl elemental length, 𝑛→is the unit 

vector perpendicular to dl outward. We can derive from the 

previous equation and using the unit vector perpendicular 

components the following approaches: 
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3.1 Convective flux computation 

 

The convictive flux has been calculated at the polygon 

centre (see Figure 3) by applying the previously obtained 

approaches to polygon volume control. 

The convictive fluxes are calculated using the two equations: 
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where, SC is the total polygon surface, a is a flow variable 

which can be the temperature T, the stream function ψ, 

Vorticity ω, or temperature, φ nanoparticles traction, (X,Y) 

coordinates of the vertices of polygon, ( iXn )( , iYn )( ) are the 
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component of vector 𝑛→ on the line segment i and i refers the 

ordinal number of nodes of the polygon. NC represents the 

total number of nodes of the polygon.  

The integral is calculated along the perimeter of the polygon 

using the rule of trapezoidal integration for each line segment, 

so the integral for each line segment is obtained by evaluating 

the flux averaged value in line segment and use its product 

with the directed length of line segment. 

 

 
 

Figure 3. Computation of convictive fluxes at polygon centre 

 

3.2 Diffusive flux computation 

 

The diffusive flux has been calculated at the polygon centre 

(see Figure 4), Since we have the fluxes values in the all grid 

nodes (T, ψ, ω, φ), to calculate the diffusive flux, we are 

required to design inner polygons; we designed the inner 

polygons as shown in the figure below, the desired goal of 

these inner polygons is to calculate the first-order derivatives 

in the middle of the inner polygons line segment.  

The diffusive fluxes are calculated using the two equations: 
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where, SCI is the total inner polygon surface, a is a flow 

variable (the temperature T, the stream function ψ, Vorticity ω, 

or temperature, φ nanoparticles traction), (X,Y) coordinates of 

the vertices of inner polygon, ((nX)i, (nY)i) are the component 

of vector 𝑛→  on the line segment i and i refers the ordinal 

number of nodes of the polygon, (i+1/2) is the centre of inner 

polygon line segment, NC represents the total number of nodes 

of the polygon. 

Since the centre of the line segment of inner polygon is 

congruent with the centre of parallelogram as shown in Figure 

5, we chose to apply on the parallelogram area the same 

approaches used previously to calculate the first-order 

derivative fluxes, so that the derivates at middle line segment 

of inner polygon is the sum of four terms. 

 
 

Figure 4. Computation of diffusive fluxes at polygon centre 

 

 
 

Figure 5. Computation of the first -order derivatives at 

parallelogram centre 

 

The first-order derivatives at the parallelogram centre are 

calculated by: 
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where, Sd is the total parallelogram surface, a is a flow variable 

(the temperature T, the stream function ψ, Vorticity ω, or 

temperature, φ nanoparticles traction), (X,Y) coordinates of the 

vertices of inner polygon, j represents to the number of four 

ordered nodes of the parallelogram and ((nX)i, (nY)i) are the 

component of vector 𝑛→ on the line segment i and i refers the 

ordinal number of nodes of the polygon, (i+1/2) is the centre 

of inner polygon line segment, NC represents the total number 

of nodes of the polygon. 

 

 

4. RESULT AND DISCUSSION 

 

4.1 Validation 

 

Before adopting our numerical code to study our model, we 

have selected some studies closest to our models for validating 

our code, among the studies that compared the results of our 

numerical code with their results were studies prepared by 

Akiyama and Chong [2] and Wang et al. [3]. 
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Table 1. Comparison of our average Nusselt numbers of isothermals walls with the numbers of Wang et al. [3] 

 

H=0.045, TO=293.5K, ΔT=10K, Ra=105 

Result 
Coldwall Hotwall 

Nuc Nur Nuc+ Nur Nuc Nur Nuc+Nur 

[3], ε=0.0 4.540 0 4.540 4.540 0 4.540 

Our result, ε=0.0 4.553 0 4.553 4.552 0 4.552 

Error 0.28% 0% 0.28% 0.26% 0% 0.26% 

[3], ε=0.2 4.394 1.090 5.484 4.411 1.073 5.484 

Our result ε=0.2 4.413 1.089 5.502 4.430 1.072 5.502 

Error 0.43% 0.09% 0.32% 0.42% 0.09% 0.32% 

[3], ε=0.8 4.189 5.196 9.385 4.247 5.137 9.384 

Our result ε=0.8 4.200 5.198 9.398 4.259 5.139 9.398 

Error 0.26% 0.03% 0.13% 0.28% 0.03% 0.14% 

 

A study of coupling of free convection with surface 

radiation in a square enclosure air-filled, so that all its walls 

have the same value of emissivity.  

Table 1 shows a comparison of our average Nusselt 

numbers of isothermals walls with the numbers of Wang et al. 

[3]. What can be observed is the largely congruence between 

the results of our automated program and the results of the 

study [3]. 

 

4.2 Effects of active parameters 

 

It is necessary to note that negative Nr values (opposing 

buoyancy forces) appear more complex due to inconsistent 

flow patterns, so in this study, the results for auxiliary 

buoyancy forces (positive Nr), where is the temperature and 

species induced buoyancy pushing in same direction, that is, 

due to the compatibility of the two flow patterns. 

The Figure 6 and 7 illustrates the influence of surface 

radiation and the species-induced buoyancy force on the 

isotherms lines and flow structure for different buoyancy ratio 

numbers and for the different emissivity values. We can see 

for the isotherms lines the effects are visible especially near 

along the horizontal walls, regarding the effects on the flow 

structure the stream function lines tend to become square and 

converge to each other especially along the isothermal walls 

with the increase of Nr buoyancy ratio number. 

Figure 8 (left) shows the net radiative flux distribution and 

(right) shows the temperature distribution on the horizontal 

walls for different emissivity values and at different Nr 

number. Figure 9 (left) shows temperature distribution and 

(right) the profiles of horizontal velocity at vertical median 

line x=0.5 for different emissivity values and for different Nr 

number. 

The average net radiative flux of the upper wall is positive; 

while for the lower wall is negative (the upper wall loses heat 

by radiation, while the lower wall acquires heat by radiation). 

We can see at the top adiabatic wall the average net radiative 

flux increases with the increase in emissivity value, the top 

horizontal wall loses more heat, For the bottom adiabatic wall 

the average net radiative flux decreases with the increase in the 

emissivity value, the bottom adiabatic wall gains more heat. 

Despite the significant changes in the net radiative flux 

value of horizontal walls, the temperature decrease of the 

upper horizontal wall and the temperature increase of the 

lower horizontal wall is small, and since the adiabatic 

condition in the horizontal walls is expressed mathematically 

as the sum of the convective and radiative flux is zero. 

The explanation for the small changes observed in 

temperatures of the horizontal wall is due to the large value of 

the thermal conductivity of the nanofluid, unlike what is found 

in previous studies on the effect of surface radiation when the 

fluid used is air which has a small thermal conductivity, where 

we find a significant decrease in the temperature of the top 

wall, as well as a significant increase in the temperature of the 

bottom wall.  

It can be noted that the increase in emissivity leads to a 

slight decrease of nanofluid temperature near the upper 

adiabatic wall and a slight increase of nanofluid temperature 

near the bottom adiabatic wall, these slight changes recorded 

in the nanofluid temperature cause a slight rise in the 

horizontal velocity in the vicinity of the horizontal walls. 

Figure 10 (left) shows the temperature profiles at x=0.5 and 

(right) shows the temperature on the horizontal walls for 

different Nr values and for (1) ε=0.0, (2) ε=0.3, (3) ε=0.6 and 

(4) ε=0.9. 

We can see the increasing of species-induced buoyancy 

force heats up the top adiabatic wall and cools down the 

bottom adiabatic wall with the increasing of buoyancy ratio 

number.  

This behaviour of the horizontal wall temperature is caused 

by the fact that the upper wall gains heat while the lower wall 

loses heat, this is due to the increase in heat transfer from the 

hot wall to the top wall and from the cold wall to the bottom 

wall with the increase of the number of nanoparticles in 

nanofluid. 

We can see also that the nanofluid in the upper half of cavity 

is heat up but in the other half cools dawn with the increasing 

of species-induced buoyancy force (the increasing of Nr) 

especially near the adiabatic walls; this is due to the 

temperature change in the horizontal wall.  

Figure 11 shows the horizontal velocity profiles at x=0.5 for 

(1) ε=0.0, (2) ε=0.3, (3) ε=0.6 and (4) ε=0.9 and for different 

values of buoyancy ratio number Nr. It is noted that near along 

the horizontal walls the horizontal velocity is increased with 

the increasing of Nr but in the cavity core the horizontal 

velocity is slightly decreased. 

Figure 12 shows the curve change for average Nusselt 

number of convections of active walls in terms of Nr the 

buoyancy ratio number for different emissivity. 

We notice that the average Nusselt numbers of convection 

increases clearly with the increasing of Nr; this is due to the 

increase in heat transfer process due to the increase of the 

nanoparticles number in the nanofluid, as the nanofluid 

reaches hotter to the cold wall and reaches colder to the hot 

wall.  

Figure 13 shows the curve change for average Nusselt 

number of convections of active walls in terms of emissivity 

for different Nr values (the buoyancy ratio number). 

In general, we notice a slight decrease in the average Nusselt 

numbers of convection with the increasing of emissivity; this 
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is due to the decrease in heat transfer process due to the slight 

change in the temperature of the horizontal walls, as the 

nanofluid reaches hotter to the hot wall and reaches colder to 

the cold wall. 

Figure 14 shows the curve change for average Nusselt 

number of radiation of active walls in terms of emissivity; we 

notice that the average Nusselt numbers of radiation increases 

clearly with the increasing of emissivity.  

This is due to the fact that the Nusselt number of radiation 

is directly proportional to emissivity. 

Figure 15 shows the curve change for average Nusselt 

number of radiation of active walls in terms of Nr the 

buoyancy ratio number, we notice a slight increase in the 

average Nusselt numbers of radiation with the increasing of Nr; 

this is due to the slight change in the horizontal walls 

temperature. 

 

   

(1) 

   

(2) 

(a) (b) (c)  

 

Figure 6. Isotherms for (a) Nr=0.1, (b) Nr=2, (c) Nr=4 and at the emissivity equals (1) ε=0.0, (2) ε=0.6 

 

   

(1) 

   

(2) 

(a) (b) (c)  

 

Figure 7. The flow structure for (a) Nr=0.1, (b) Nr=2, (c) Nr=4 and at the emissivity equals (1) ε=0.3 and (2) ε=0.9 
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(a) 

 
(b) 

 
(c) 

 

Figure 8. The flux of net radiative (left) and the temperature (right) at the adiabatic walls at (a) Nr=0.1, (b) Nr=2, (c) Nr=4 and 

for different emissivity values 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 9. Temperature (left), profiles of horizontal velocity on x=0.5 (right) at (a) Nr=0.1, (b) Nr=2, (c) Nr=4 and for different 

emissivity values 

 

 
(1) 

 
(2) 
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(3) 

 
(4) 

 

Figure 10. Temperature profiles at x=0.5 (left) and Temperature on the horizontal walls (right) at (1) ε=0.0, (2) ε=0.3, (3) ε=0.6 

and (4) ε=0.9 and for different values of buoyancy ratio number 

 

 
(1)                                                  (2) 

 
(3)                                                 (4) 

 

Figure 11. The profiles of horizontal velocity on x=0.5 at (1) ε=0.0, (2) ε=0.3, (3) ε=0.6 and (4) ε=0.9 and for different values of 

Nr the buoyancy ratio number 
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Figure 12. The curve change for average Nusselt number of convection in terms of Nr the buoyancy ratio number at (above) hot 

wall (below) cooled wall 

 

 

 
 

Figure 13. The curve change for average Nusselt number of convection in terms of emissivity at (above) hot wall (below) cooled 

wall 
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Figure 14. The curve change for average Nusselt number of radiation in terms of emissivity at (above) hot wall (below) cooled 

wall 

 

 
 

Figure 15. The curve change for average Nusselt number of radiation in terms of Nr the buoyancy ratio number at (above) hot 

wall (below) cooled wall 

 

 

5. CONCLUSIONS 

 

Convective transport coupling with Surface radiation in 

AL2O3-water nanofluid-filled square room has been 

investigated numerically by using Buongiorno model. 

We have written a computer code for a method that uses 

Gauss’s theorem integrals, this code was developed for use on 

triangles meshes. 

Our numerical code validated its results by comparing them 

with the result of previous studies. 

This program has ability to solve several flow fields 

problem, even in complex geometries. 

The current numerical investigation showed that the flow 

and heat field’s characteristics were affected by emissivity and 

species-induced buoyancy force. The species-induced forces 

(the buoyancy ratio number Nr) clearly affect the isotherms 

lines and the flow structure especially near the adiabatic walls, 

while hardly any effect of emissivity is seen on them. 

In general, with all fluids, the heat transfer decreases with 

the increasing of emissivity value of walls (the decreasing of 

convective Nusselt number of active wall), and this is due to 

the fact that with the increasing of emissivity, the temperature 

differences of cavity walls decrease, with more precisely, the 

temperature difference of adiabatic walls decreases. 

Through our study, the effect of the increasing of emissivity 

value of walls on decreasing of heat transfer is small when 

there is a fluid with a large thermal conductivity inside the 

cavity (nonofluid for example), on the contrary, if inside the 

cavity there is a fluid with a small thermal conductivity such 

as air, the effect of increasing the emissivity value of the walls 

will be greater. 

That is, the thermal conductivity of fluid is what determines 

the extent to which the influence of the increasing of 

emissivity value of walls, the large thermal conductivity of 

fluid inside the cavity, the less effect of the increasing of 

emissivity value of walls. 

Since increasing of the Nr value (the buoyancy ratio number) 

increases the value of thermal conductivity of nanofluid, the 

increasing of Nr reduces the effect of the increasing of 

emissivity value of walls. 

The increasing of species-induced buoyancy force (the 

increasing of Nr=the increasing of nanoparticles number) 
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increase the heat transfer clearly (the increase of convective 

Nusselt number of active walls). 

The effect of the increasing of species-induced buoyancy 

force (the increasing of Nr=the increasing of nanoparticles 

number) with surface radiation is similar to the case without 

surface radiation. 

 

 

REFERENCES 

 

[1] Buongiorno, J. (2006). Convective transport in 

nanofluids. ASME Journal of Heat and Mass Transfer, 

128(3): 240-250. http://dx.doi.org/10.1115/1.2150834 

[2] Akiyama, M., Chong, Q.P. (1997). Numerical analysis of 

natural convection with surface radiation in a square 

enclosure. Numerical Heat Transfer, Part A Applications, 

32(4): 419-433. 

http://dx.doi.org/10.1080/10407789708913899 

[3] Wang, H., Xin, S., Le Quéré, P. (2006). Étude numérique 

du couplage de la convection naturelle avec le 

rayonnement de surfaces en cavité carrée remplie d'air. 

Comptes Rendus Mécanique, 334(1): 48-57. 

http://dx.doi.org/10.1016/j.crme.2005.10.011 

[4] Mahmoudi, A., Mejri, I., Omri, A. (2016). Study of 

natural convection in a square cavity filled with 

nanofluid and subjected to a magnetic field. International 

Journal of Heat and Technology, 34(1): 73-79. 

http://dx.doi.org/10.18280/ijht.340111 

[5] Mabood, F., Ibrahim, S.M., Lorenzini, G., Lorenzini, E. 

(2017). Radiation effects on Williamson nanofluid flow 

over a heated surface with magnetohydrodynamics. 

International Journal of Heat and Technology, 35(1): 

196-204. http://dx.doi.org/10.18280/ijht.350126 

[6] Rana, B.M.J., Arifuzzaman, S.M., Reza-E-Rabbi, S., 

Ahmed, S.F., Khan, M.S. (2019). Energy and magnetic 

flow analysis of Williamson micropolar nanofluid 

through stretching sheet. International Journal of Heat 

and Technology, 37(2): 487-496. 

http://dx.doi.org/10.18280/ijht.370215 

[7] Ibrahim, M.N.J., Hammoodi, K.A., Abdulsahib, A.D., 

Flayyih, M.A. (2022). Study of natural convection inside 

inclined nanofluid cavity with hot inner bodies (circular 

and ellipse cylinders). International Journal of Heat and 

Technology, 40(3): 699-705. 

http://dx.doi.org/10.18280/ijht.400306 

[8] Sheikholeslami, M., Chamkha, A.J., Rana, P., Moradi, R. 

(2017). Combined thermophoresis and Brownian motion 

effects on nanofluid free convection heat transfer in an 

L-shaped enclosure. Chinese Journal of Physics, 55(6): 

2356-2370. http://dx.doi.org/10.1016/j.cjph.2017.09.011 

[9] Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D., 

Rana, P., Soleimani, S. (2014). Magnetohydrodynamic 

free convection of Al2O3–water nanofluid considering 

Thermophoresis and Brownian motion effects. 

Computers & Fluids, 94: 147-160. 

http://dx.doi.org/10.1016/j.compfluid.2014.01.036 

[10] Sheikholeslami, M. (2017). Influence of Coulomb forces 

on Fe3O4–H2O nanofluid thermal improvement. 

International Journal of Hydrogen Energy, 42(2): 821-

829. http://dx.doi.org/10.1016/j.ijhydene.2016.09.185 

[11] Sheikholeslami, M., Rokni, H.B. (2017). Numerical 

modeling of nanofluid natural convection in a semi 

annulus in existence of Lorentz force. Computer 

Methods in Applied Mechanics and Engineering, 317: 

419-430. http://dx.doi.org/10.1016/j.cma.2016.12.028 

[12] Sheikholeslami, M. (2017). Magnetic field influence on 

nanofluid thermal radiation in a cavity with tilted elliptic 

inner cylinder. Journal of Molecular Liquids, 229: 137-

147. http://dx.doi.org/10.1016/j.molliq.2016.12.024 

[13] Sheikholeslami, M., Rokni, H.B. (2017). Magnetic 

nanofluid natural convection in the presence of thermal 

radiation considering variable viscosity. The European 

Physical Journal Plus, 132: 1-12. 

http://dx.doi.org/10.1140/epjp/i2017-11498-4 

[14] Sheikholeslami, M., Shamlooei, M. (2017). Fe3O4–H2O 

nanofluid natural convection in presence of thermal 

radiation. International Journal of Hydrogen Energy, 

42(9): 5708-5718. 

https://doi.org/10.1080/10407782.2015.1125709 

[15] Turkyilmazoglu, M. (2021). On the transparent effects of 

Buongiornonano fluid model on heat and mass transfer. 

The European Physical Journal Plus, 136(4): 1-15. 

http://dx.doi.org/10.1140/epjp/s13360-021-01359-2 

[16] Khan, M., Ahmed, A., Ahmed, J. (2020). Transient flow 

of magnetized Maxwell nanofluid: Buongiorno model 

perspective of Cattaneo-Christov theory. Applied 

Mathematics and Mechanics, 41: 655-666. 

http://dx.doi.org/10.1007/s10483-020-2593-9 

[17] Rajput, S., Verma, A.K., Bhattacharyya, K., Chamkha, 

A.J. (2021). Unsteady nonlinear mixed convective flow 

of nanofluid over a wedge: Buongiorno model. Waves in 

Random and Complex Media, 1-15. 

https://doi.org/10.1016/j.csite.2020.100820 

[18] Dawar, A., Shah, Z., Tassaddiq, A., Kumam, P., Islam, 

S., Khan, W. (2021). A convective flow of Williamson 

nanofluid through cone and wedge with non-isothermal 

and non-isosolutal conditions: A revised Buongiorno 

model. Case Studies in Thermal Engineering, 24: 100869. 

https://doi.org/10.1016/j.csite.2021.100869 

[19] Sheikholeslami, M. (2018). Magnetic source impact on 

nanofluid heat transfer using CVFEM. Neural 

Computing and Applications, 30: 1055-

1064.https://doi.org/10.1007/s00521-016-2740-7 

[20] Sheikholeslami, M., Vajravelu, K.J.A.M. (2017). 

Nanofluid flow and heat transfer in a cavity with variable 

magnetic field. Applied Mathematics and Computation, 

298: 272-282. 

http://dx.doi.org/10.1016/j.amc.2016.11.025 

[21] Sheikholeslami, M., Hayat, T., Alsaedi, A. (2017). 

RETRACTED: Numerical simulation of nanofluid 

forced convection heat transfer improvement in existence 

of magnetic field using lattice Boltzmann method. 

International Journal of Heat and Mass Transfer, 108: 

1870-1883. 

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.01.0

44  

[22] Sheikholeslami, M., Vajravelu, K., Rashidi, M.M. (2016). 

Forced convection heat transfer in a semi annulus under 

the influence of a variable magnetic field. International 

Journal of Heat and Mass Transfer, 92: 339-348. 

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.0

66 

[23] Sheikholeslami, M., Ellahi, R. (2015). Three 

dimensional mesoscopic simulation of magnetic field 

effect on natural convection of nanofluid. International 

Journal of Heat and Mass Transfer, 89: 799-808. 

85

http://dx.doi.org/10.1115/1.2150834
http://dx.doi.org/10.1080/10407789708913899
http://dx.doi.org/10.18280/ijht.370215
http://dx.doi.org/10.18280/ijht.400306
http://dx.doi.org/10.1016/j.cjph.2017.09.011
http://dx.doi.org/10.1016/j.compfluid.2014.01.036
http://dx.doi.org/10.1016/j.ijhydene.2016.09.185
http://dx.doi.org/10.1016/j.cma.2016.12.028
http://dx.doi.org/10.1140/epjp/i2017-11498-4
https://doi.org/10.1080/10407782.2015.1125709
http://dx.doi.org/10.1140/epjp/s13360-021-01359-2
http://dx.doi.org/10.1007/s10483-020-2593-9
https://doi.org/10.1007/s00521-016-2740-7
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.066
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.066


http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.1

10 

[24] Sheikholeslami, M., Hayat, T., Alsaedi, A., Abelman, S.

(2017). Numerical analysis of EHD nanofluid force

convective heat transfer considering electric field

dependent viscosity. International Journal of Heat and

Mass Transfer, 108: 2558-2565.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.10.0

99

[25] Sheikholeslami, M., Chamkha, A.J. (2016). Electrohydro

dynamic free convection heat transfer of a nanofluid in a

semi-annulus enclosure with a sinusoidal wall.

Numerical Heat Transfer, Part A: Applications, 69(7):

781-

793.https://doi.org/10.1080/10407782.2015.1090819

[26] Mintsa, H.A., Roy, G., Nguyen, C.T., Doucet, D. (2009).

New temperature dependent thermal conductivity data

for water-based nanofluids. International Journal of

Thermal Sciences, 48(2): 363-371.

http://dx.doi.org/10.1016/j.ijthermalsci.2008.03.009

NOMENCLATURE 

a The flux (T,  ,ω, ψ) 

B uniform magnetic field 

b The power vector of emissivity 

DB Brownian diffusion coefficient 

DT Thermophoretic diffusion coefficient 

Fij , Fik The factor of form 

H Cavity height [m] 

Ha Hartman number 

h Heat transfer coefficient [Wm-2K-1] 

J The radiosity 

LC Non-Dimensional polygon closed contour 

LCI Non-Dimensional inner polygon closed contour 

Ld Non-Dimensional parallelogramclosed contour 

Le Lewis number 

M Matrix 

Nr Buoyancyrationumber 

Nr Number of radiation 

Nuc Nusselt number of convection 

Nur Nusselt number of radiative 

Nut Nuc +Nur 

Nb Brownian motion parameter 

Nt thermophoretic parameter 

Pr Prandtl Number 

qr Non-dimensional net flux of radiation 

Ra The Rayleigh Number 

t Non-Dimensional time 

t+ Dimensional time [s] 

T Non-Dimensional temperature 

T+ Dimensional temperature [k] 

T0 Average temperature [k] 

TC Non-Dimensional temperature of cold wall 

TC
+ Dimensional temperature of cold wall [k] 

TH Non-Dimensional temperature of hot wall 

TH
+ Dimensional temperature hot wall [k] 

U, V Components of non-dimensional velocity 

u,v Components of dimensional velocity [m/s] 

X, Y Non-dimensional cartesian coordinates 

x, y Dimensional cartesian coordinates [m] 

Greek symbols 

α The thermal diffusivity [m2/s] 

β The coefficient of volumetric expansion [K-1] 

ΔT Difference of temperature [K] 

ε The emissivity 

κ Electric conductivity 

λnf Nanofluid thermal conductivity [W/ (K m)] 

μ The dynamic viscosity 

ν The cinematic viscosity 

ρ The Nanofluid density 

fc)( ff c  

f fluid density

fc Heat capacity of fluid

Pc)( PPc  

P nanoparticles density

Pc Heat capacity of nanoparticles

σ The constant of Stefan-Boltzmann 

φ Volume fraction of nanoparticle 

φ c Volume fraction of nanoparticle at cold wall 

φ h Volume fraction of nanoparticle at hot wall 

 Non-Dimensional volume fraction of 

nanoparticle 

ψ Non-Dimensional stream function 

ψ+ Dimensional stream function [m2/s] 

ω Non-Dimensional vorticity 

ω+ Dimensional vorticity[s-1] 
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