
A Hybrid Model Combining Discrete Wavelet Transform and Nonlinear Autoregressive 

Neural Network for Stock Price Prediction: An Application in the Egyptian Exchange 

Asmaa Y. Fathi1* , Ihab A. El-Khodary1 , Muhammad Saafan2

1 Department of Operations Research and Decision Support, Faculty of Computers & Artificial Intelligence, Cairo University, 

Orman 12613, Giza, Egypt 
2 Department of Petroleum Engineering, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak Darul Ridzuan, 

Malaysia 

Corresponding Author Email: a.fathi@fci-cu.edu.eg 

https://doi.org/10.18280/ria.370103 ABSTRACT 

Received: 15 January 2023 

Accepted: 10 February 2023 

Forecasting stock prices is crucial for successful investment in financial markets. However, 

it is challenging due to the nonlinearity and high volatility caused by various factors 

influencing price movements. This paper proposes a hybrid model that integrates the 

discrete wavelet transform (DWT) with the nonlinear autoregressive neural network 

(NARNN) to predict stock prices. Following the division of stock prices into training and 

testing sets, the DWT decomposes the training set into low- and high-frequency 

components reducing the noise and lessening the data's nonlinearity. Then, the obtained 

components are used to train the NARNNs. To predict the future components, the model 

decomposes the preceding available prices at each time step and utilizes the latest eight 

points as input to the NARNNs. Eventually, NARNNs' outputs are combined to provide the 

final predicted prices. In previous works, the entire dataset is first decomposed and then 

partitioned into training and testing sets. This unrealistic approach causes the testing set to 

inherit information regarding stocks' future performance, leading to optimistic deceptive 

results. Twenty-four stocks from the Egyptian Exchange (EGX-30) are utilized to validate 

the proposed model's performance. The DWT-NARNN model is compared against other 

methods, and the empirical findings show that it performs the best. 
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1. INTRODUCTION

Investing in stock markets offers substantial profits, making 

it financially attractive compared to low-yield investments, 

e.g., government bonds. However, a few individuals are

involved in stock trading due to the difficulty of predicting

price behavior that elevates investment risk. Therefore, several

approaches have been suggested in the literature for predicting

stock prices utilizing historical data, such as nonlinear models

based on machine learning. Artificial Neural Networks (ANNs)

are among the commonly utilized algorithms in predicting

stock market prices [1].

Artificial Neural Networks are well suited to model time 

series with significant fluctuations and discontinuities [2]. 

Although ANNs attained remarkable outcomes in predicting 

stock markets, the nonstationarity and the interaction between 

hidden features of the price time series lessen forecasting 

accuracy [3, 4]. Consequently, data preprocessing techniques 

such as discrete wave transform (DWT) and singular spectrum 

analysis (SSA) are utilized to improve the ANNs forecasting 

accuracy by reducing the noise and extracting hidden 

characteristics of the time series [5].  

The wavelet transform has gained considerable interest in 

analyzing non-stationary signals for predictive purposes. The 

WT converts the non-stationary time series into low- and high-

frequency filtered components with reduced noise. This 

process decreases the nonstationarity of time series and 

improves the prediction accuracy of the ANNs [6]. Wang et. 

al. (2011) [7] combined the DWT and backpropagation neural 

network (BPNN) to predict Shanghai Composite Index (SCI) 

closings prices. The DWT decomposed the price data then the 

low-frequency components were utilized for training the 

BPNN. The author found that the suggested model has higher 

performance than the single BPNN. Lahmiri [8] improved the 

model mentioned above, using low- and high-frequency 

components to train BPNN. Huang and Wang [6] integrated 

the DWT with a stochastic recurrent wavelet neural network 

(SRWNN) to forecast crude oil prices and oil-related stocks. 

Hajiabotorabi et al. [5] utilized the B-spline wavelet of a high 

order as a preprocessing method to enhance the recurrent 

neural network (RNN) performance. Lin et al. [9] suggested a 

crude oil price prediction model combining DWT, empirical 

mode decomposition (EMD), ARMA, and complex long 

memory GARCH-M. They employed the DWT and EMD 

methods to reduce volatile oil market noise. 

The existing approaches applied to predict stock prices 

adopting data preprocessing techniques still possess the 

following limitations:  

1) They first decompose the entire dataset then divide it into

training and testing sets. This decomposition process does

not resemble the actual trading manner and inserts

information regarding future performance in the testing set.

Hence, the testing set cannot be characterized as hidden

data, and any model validation process becomes unrealistic.

These approaches always obtain misleading optimistic

prediction results.
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2) The stock prices are highly volatile in the short term, 

influenced by news, rumor, and market makers' 

manipulations. Therefore, utilizing the last price to predict 

the succeeding price is insufficient and leads to the loss of 

useful information.  

This study develops a hybrid model, which integrates the 

DWT and the NARNN model to forecast stock prices. The 

weekly closing prices are initially divided into training and 

testing datasets. Then, the DWT method is employed to 

decompose the training set into its high- and low-frequency 

components, hence extracting hidden information and 

reducing the noise. Each decomposed component in the 

training set is used to train a NARNN model. The NARNNs 

incorporate a time delay line (TDL) in the input layer, which 

utilizes eight-week closing prices to predict the ninth-week 

close and fade the short-term volatility. Unlike previous 

studies, our model predicts any price by decomposing all of its 

preceding prices, thus simulating the actual trading process. 

Then, the predicted decomposed components are combined to 

obtain the model's final output. The weekly closing prices for 

twenty-four stocks from the Egyptian Exchange EGX-30 are 

used to illustrate the proposed model's reliability. Furthermore, 

our model's superiority is shown by comparing it to the BPNN, 

NARNN, DWT-BPNN, SSA-BPNN, and SSA-NARNN 

models. Finally, we proved the existing approaches that 

decompose the entire dataset are unrealistic, and their testing 

set is no more characterized as hidden data and leads to 

misleading results.  

The rest of this paper is arranged as follows: Section 2  

illustrates the suggested DWT-NARNN model with details of 

the underlying models. The performance evaluation criteria 

are also introduced. Section 3 evaluates the results and 

examines the proposed hybrid DWT-NARNN model's 

reliability compared to other models. Also, it investigates the 

reliability of decomposing the entire stock data used by the 

previous approaches. Finally, Section 4 summarizes the 

paper's content and provides its conclusion. 

 

 

2. RESEARCH METHODS 

 

2.1 Discrete wavelet transform (DWT) 

 

The discrete wavelet transform (DWT) is a multiresolution 

decomposition that decomposes a time series into several 

scales with different resolution levels. The DWT is a 

commonly employed for extracting hidden information from a 

non-stationary time series [6, 7]. The main advantage of DWT 

is its ability to de-noise signals [10]. Mallat (1989) reported a 

procedure for implementing the DWT to extract the 

approximation coefficients A(t) and detail coefficients D(t) by 

convolving the signal with a low-pass (LP) and high-pass (HP) 

filters, respectively [11]. Figure 1 illustrates the structure of a 

five-level decomposition DWT of the Commercial 

International Bank, COMI.CA, weekly prices. In the first level 

of decomposition, the prices are decomposed in low- and high-

frequency filtered components A1 and D1, respectively. The 

two filters progressively decompose the resultant low-

frequency component until the predefined decomposition level 

is attained [6, 8]. According to the study [12], the typical 

decomposition level for one-dimensional problems is five.  

The decomposed time series is perfectly reconstructed by 

combining the low and high-frequency components, as in Eq. 

(1). The reconstruction process is called the inverse discrete 

wavelet transform [12]. 

 

𝑅𝑇𝑆 = 𝐴𝑛 + ∑ 𝐷𝑗
𝑛
𝑗=1   (1) 

 

where, RTS is the reconstructed time series, n is the predefined 

decomposition level, An is the residual filtered low-frequency 

component, and Dj is the filtered high-frequency component at 

the jth decomposition level. 

 

 
 

Figure 1. A five-level DWT decomposition of "COMI.CA" 

weekly closing prices using biorthogonal 3.5 wavelets 

 

The appropriate wavelet selection is determined by the time 

series' characteristics under analysis [10]. Accordingly, the 

more resemblance between a mother wavelet and the time 

series results in a more reliable decomposition process. In this 

paper, the biorthogonal 3.5 mother wavelet is utilized due to 

its satisfactory agreement with stock price behavior. Instead of 

employing a single wavelet, the biorthogonal wavelets use one 

wavelet for decomposition (Figure 2a) and another for 

reconstruction (Figure 2b). Consequently, interesting 

attributes are deduced from decomposing the time series. 

  

 
 

Figure 2. Biorthogonal 3.5 wavelet pair: (a) decomposition 

and (b) reconstruction wavelets 

 

2.2 Nonlinear autoregressive neural network (NARNN) 

 

The NARNN is a feed-forward dynamic network that 

predicts future time series values by adopting its past d values 

[8]. The NARNN model implies that the time series' past 

behavior would render its future behavior. The model is 

formulated in terms of the feedback delays as [2, 13]: 

 

�̂�(𝑡) = 𝐹(𝑠(𝑡 − 1), 𝑠(𝑡 − 2), … , 𝑠(𝑡 − 𝑑))  (2) 

 

where, d is a time-delay parameter, and F is a nonlinear 

function. Figure 3 shows an example of NARNN's topology 

with a time delay line (TDL) in the input layer, two hidden 

layers, and an output layer. The network involves biases (b), 

input weights (IW), layer weights (LW), and layers' activation 

 

 

(a) 

 

(b) 
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functions (f). We utilized this NARNN architecture to forecast 

the weekly stock prices in the Egyptian exchange. 

Selecting the number of hidden layers and neurons per layer 

is essential for improving network performance. Since no 

proper process exists to determine them theoretically, trial-

and-error is implemented to select these parameters [2, 13]. 

Ordinarily, the network's complexity increases with increasing 

the number of neurons, while its generalization abilities 

diminish with decreasing the number of neurons [14]. This 

work adopts a two-hidden layer network with ten neurons for 

each layer. The activation function for the first and second 

hidden layers is tan-sigmoid and log-sigmoid, respectively. 

Moreover, the output layer includes a single neuron with a 

linear activation function corresponding to our one-week 

forecasting problem. The ANN's most common learning 

approach is the Levenberg-Marquardt backpropagation 

(LMBP) method. The LMBP approximates the second-order 

derivative without computing the Hessian matrix, improving 

the training process and reducing learning time [2, 14]. The 

backpropagation (BP) algorithm optimizes the connection 

weights among the nodes by minimizing the mean square error 

(MSE) between actual and predicted values in the training 

dataset [5]. The tolerance in MSE in the training process is set 

as less than 0.001. Consequently, when the MSE is less than 

the tolerance value, the training process is stopped, and the 

neural network’s weights and biases are considered optimized. 

 

 
 

Figure 3. A general schematic of a NARNN [15] 

 
2.3 DWT-NARNN forecasting model 

 
Predicting the future behavior of noisy, non-stationary stock 

prices characterized by regular structural discontinuity leads 

to a reduction in the ANN's performance [10]. Consequently, 

enhancing the overall data consistency using the DWT data 

preprocessing technique would boost the prediction results. In 

this paper, the DWT and the NARNN are integrated to build a 

hybrid forecasting model, i.e., the DWT-NARNN model. This 

model adopts the DWT to decompose the time series data into 

its high- and low-frequency components, reducing the impact 

of noise and decreasing the nonstationarity in the price data. 

The decomposed approximation and detail coefficients are fed 

into the NARNNs to predict one step of future prices. Figure 

4 presents a schematic diagram of the hybrid DWT-NARNN 

model, and the detailed procedures are described as follows: 

(1) Divide the weekly closing stock prices into a training 

dataset (70%) and a testing dataset (30%). 

(2) Decompose the training dataset by the DWT, 

utilizing the biorthogonal 3.5 mother wavelet, into 

approximation coefficients A(t) and detail coefficients D(t), as 

discussed in section 2.1. Set the decomposition level to five 

[12] and extract six components D1, D2, D3, D4, D5, and A5. 

(3) Normalize the decomposed components using the 

Min-Max normalization method.  

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (3) 

 

(4) Build six NARNNs, with the topology shown in 

Figure 3, to forecast each decomposed component. The 

number of feedback delays in the TDL is set to eight, i.e., the 

preceding eight weeks' closing prices are utilized to forecast 

the ninth-week closing price. 

(5) Divide the training dataset into three parts: 70% for 

training, 15% for validation, and 15% as test data. Then train 

the six NARNNs. 

(6) Predict the future price for each point in the testing 

data set as follows: 

a) Decompose its preceding price data as described in 

step 2.  

b) Normalize the decomposed features using Eq. (3). 

c) Predict one step for each component.  

d) De-normalize and aggregate the predicted values. 

e) Repeat steps a, b and c until all the testing dataset 

points are forecasted. 

(7) Evaluate the error criteria. 

 

 
 

Figure 4. Schematic diagram of the hybrid DWT-NARNN 

model 

 

2.4 Evaluation criteria 

 

To precisely evaluate the DWT-NARNN model's prediction 

accuracy, three evaluation measures are involved: root mean 

square error (RMSE), mean absolute percentage error (MAPE), 

and directional symmetry (DS). These performance measures 

are represented as [5, 8, 16, 17]: 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑠𝑡 − �̂�𝑡)2𝑁

𝑡=1   

𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝑠𝑡−�̂�𝑡

𝑠𝑡
|𝑁

𝑡=1   

𝐷𝑆 =
100

𝑁
∑ 𝑑𝑖

𝑁
𝑡=1   

𝑤ℎ𝑒𝑟𝑒 𝑑𝑖 = {
1        (𝑠𝑡 − 𝑠𝑡−1)(�̂�𝑡 − �̂�𝑡−1) ≥ 0
0       𝑂𝑡ℎ𝑒𝑟                                       

 

(4) 

 
where 𝑠𝑡 is the actual price, �̂�𝑡 is the predicted price, N is the 

number of points in the testing dataset. Remarkably, the 

RMSE and MAPE delineate the difference between the 

predicted and the actual prices; thus, smaller values manifest 

better-forecasted results [6]. The RMSE is reliable in 

representing errors for the same dataset. In contrast, to 

compare errors for different datasets, the scale-free MAPE is 

more suitable [18]. Furthermore, DS evaluates the model 

performance in predicting the stock's direction; hence, higher 

values reveal better forecasting performance [16]. 

 

 
3. RESULTS AND DISCUSSION 

 
3.1 Experimental data 

 

Our experimental data involves stocks listed in the Egyptian 

Exchange EGX-30 index with at least five-year historical data 

from Jan 3, 2016, to Dec 27, 2020. Twenty-four stocks are 

involved in our analysis, and their weekly closing prices have 

been downloaded from investing financial website 

(https://www.investing.com). Table 1 shows the various 

market sectors with the statistical analysis of the selected 

stocks. 

 
3.2 Training and forecasting by DWT-NARNN model 

 
The proposed DWT-NARNN model (Figure 4) is applied to 

predict the twenty-four stocks' weekly closing prices. This 

section presents a detailed illustrative example of forecasting 

the weekly closing prices of COMI stock, the heaviest 

constituent of the EGX-30. The training set comprises the first 

70% of the available 260 trading weeks, while the testing 

dataset contains the remaining 30%. The training data is 

decomposed using the DWT, and the extracted six components 

are normalized to train the NARNNs. Then, the latest 

decomposed eight points are fed to the trained NARNNs to 

predict the testing dataset's first point components. To predict 

the second point's components, all the preceding prices, i.e., 

the training set plus the first testing point, are decomposed 

using the DWT. Then the latest eight weeks of decomposed 

data are fed to the NARNNs. This process is repeated until all 

points in the testing set are predicted. Finally, the predicted 

decomposed components are aggregated to obtain the weekly 

closing price using the DWT-NARNN model. 

Figure 5 compares the predicted and actual decomposed 

components of the COMI testing dataset. The volatility of 

extracted high-frequency components decreases from D1 to D5. 

Moreover, the low-frequency component A5, which represents 

the stock's general trend, is the smoothest. Also, Table 2 

presents the MAPE of the predicted decomposed components 

to their actual values. From the error analysis in Table 2, it is 

evident that the prediction accuracy of the NARNN increases 

with decreasing the frequency of the time series. Hence, A5 has 

the lowest MAPE among all components. 

 

Table 1. Twenty-four stocks listed in EGX-30 with their 

statistical summary 

 
Market Sector Symbol Mean Std. 

Basic Resources 

ABUK 18.41 7.98 

AMOC 5.39 3.06 

ESRS 14.43 7.01 

SKPC 15.46 6.65 

Non-bank financial services 

CCAP 1.97 1.02 

EKHO 0.94 0.33 

HRHO 15.39 4.01 

OIH 0.63 0.12 

PIOH 6.85 2.03 

Banks 

COMI 61.78 14.26 

CIEB 36.88 9.10 

EXPA 9.35 2.35 

Textile ORWE 7.84 2.70 

Real Estate 

EMFD 3.02 0.66 

HELI 7.44 2.40 

MNHD 5.68 1.58 

OCDI 14.93 4.28 

ORHD 4.12 2.30 

PHDC 2.60 0.95 

TMGH 8.53 2.27 

Food, Beverages & Tobacco 
EAST 13.35 5.91 

EFID 15.23 3.48 

Industrial Goods & Automobiles 
AUTO 3.50 1.30 

SWDY 11.15 5.13 

 

 

 
Figure 5. Predicted vs. actual decomposed components of 

COMI using DWT-NARNN model 

 
Table 2. Error analysis of predicted COMI decomposed 

components 

 
Component D1(t) D2(t) D3(t) D4(t) D5(t) A5(t) 

MAPE (%) 1823 387.5 173.6 100.6 83.91 0.82 

 
Figure 6 displays a comparison of the predicted versus 

actual weekly closing prices of the testing dataset with a 

MAPE of 2.8%. Moreover, Figure 7 illustrates the predicted 

versus actual weekly closing prices for the twenty-four stocks. 

The unit slope line is added to the plots to aid in visualizing 

the relationship between two variables. 

 

  

  

  

 

18



 

 
 

Figure 6. DWT-NARNN model's predicted weekly closing 

prices of the COMI stock 

 

 
 

Figure 7. DWT-NARNN model's predicted weekly closing 

prices versus actual prices of the twenty-four stocks. The 

black line in each plot represents is of unit slope 

 

3.3 Comparison of different forecasting models 

 

The proposed DWT-NARNN model is applied to predict 

the twenty-four stocks' weekly closing prices. This section 

presents a detailed illustrative example of forecasting the 

weekly closing prices of COMI stock, the heaviest constituent 

of the EGX-30. The training set comprises the first 70% of the 

available 260 trading weeks, while the testing dataset contains 

the remaining 30%. The training data is decomposed using the 

DWT, and the extracted six components are normalized to 

train the NARNNs. Then, the latest decomposed eight points 

are fed to the trained NARNNs to predict the testing dataset's 

first point components. To predict the second point's 

components, all the preceding prices, i.e., the training set plus 

the first testing point, are decomposed using the DWT. Then 

the latest eight weeks of decomposed data are fed to the 

NARNNs. This process is repeated until all points in the 

testing set are predicted. Finally, the predicted decomposed 

components are aggregated to obtain the weekly closing price 

using the DWT-NARNN model. 

In order to analyze the proposed DWT-NARNN model's 

performance and prove its effectiveness, we compared it with 

the BPNN, NARNN, DWT-BPNN, SSA-BPNN, and SSA-

NARNN models. Figure 8 illustrates a box plot for the MAPE 

of the different forecasting models. For the twenty-four stocks 

examined, the DWT-NARNN model had the lowest median 

and mean MAPE. In addition, the MAPE for 75% of the stocks 

is less than 11%. 

 

 
 

Figure 8. Box plot of MAPE for the different forecasting 

models 

 

Figure 9 hows a box plot for DS of the different forecasting 

models. For the DWT-NARNN model, the DS for 75% of the 

stocks is higher than 51%. Also, the median and mean DS is 

52.5% of the twenty-four stocks. Moreover, the SSA-NARNN 

model has the highest median and mean DS compared to other 

models. Generally, the NARNN based on data preprocessing 

models shows a better performance in predicting price 

direction.  

 

 
 

Figure 9. Box plot of DS for the different forecasting models 

 

The nonparametric statistical Friedman and Chi-square tests 

are implemented to assess the evaluation criteria and 

determine the best-performing model for predicting stock 

prices in the Egyptian exchange. The null hypothesis of the 

statistical test is H0: The different models have equal 

performance. The obtained p-values (Table 3) for the RMSE, 

MAPE, and DS are 1.83×10-8, 1.84×10-8, and 0.0024, 

respectively, which are lower than the significance level of 

0.05. Therefore, H0 is rejected for the various evaluation 

criteria. Table 4 shows the Friedman test's mean rank for the 
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different models, where smaller values indicate high 

performance. The results demonstrated that the proposed 

DWT-NARNN is superior to other models. Owing to noise 

and nonstationarity reduction in the price data, the DWT 

increased the NARNN's learning and generalization abilities. 

From this analysis, the proposed DWT-NARNN model proved 

its ability to predict stock prices in the Egyptian Exchange. 

From this analysis, the proposed DWT-NARNN model proved 

its ability to predict stock prices in financial markets. 

From the previous analysis, the proposed DWT-NARNN 

model outperforms other models and proves its ability to 

predict stock prices in financial markets. 

 

Table 3. p-values from the Chi-square test 

 
Evaluation Criteria p-value 

RMSE 1.83×10-8 

MAPE 1.84×10-8 

DS 0.0024 

 

Table 4. Mean rank of the Freidman test 

 

Model 
Mean rank 

RMSE MAPE DS 

BPNN 3.42 3.46 4.79 

NARNN 4.48 4.42 3.08 

DWT- BPNN 3.35 3.35 3.50 

DWT-NARNN 1.85 1.75 2.83 

SSA- BPNN 5.04 5.02 3.83 

SSA-NARNN 2.85 3.00 2.96 

 

 
 

Figure 10. Comparison of the old approaches and our point-

by-point decomposition for COMI 

 

3.4 Effect of the unrealistic decomposition of the entire 

dataset on prediction results 

 

The existing stock market prediction approach first 

decomposes the entire dataset and then divides it into training 

and testing sets. However, this approach does not simulate the 

actual trading process. Hence, the decomposition process must 

be carried out point-by-point to validate the models and ensure 

that the succeeding prices are always hidden. Figure 10 

compares the old approach and the realistic point-by-point 

decomposition for COMI. It is clear from Figure 10 that both 

retain the same results for the low- and high-frequency 

components in the training dataset (3-Jan-16 to 23-Jun-19). 

However, the difference in extracted components is quite 

evident for the testing set (30-Jun-19 to 27-Dec-20), especially 

for the low volatility components. Moreover, the old 

approach's extracted components are smooth in the testing 

dataset, indicating that the future trend is already captured 

during the entire data decomposition. This unrealistic 

decomposition process introduces information related to 

future performance in the testing set. 

Figure 11 displays a box plot of the evaluation criteria. The 

results indicate that the old approach has a deceiving high 

performance with an average DS of 82% for the twenty-four 

stocks. The deceiving results are attributed to introducing 

information related to future performance in the testing set 

during the decomposition process. Consequently, the old 

approach's testing set is no more characterized as hidden data 

and cannot be used in the validation process.  

 

 
 

Figure 11. Box plot of MAPE and DS for the 'Unrealistic' 

old approach and our 'Realistic' point-by-point decomposition 

 

 

4. CONCLUSION  

 

The prediction of stock prices is essential for making 

investment decisions and maximizing profits. Stock price 

fluctuations are prominent, particularly in the short term, 

influenced by news, rumors, and major players' manipulation. 

Hence, we deal with a noisy non-stationary time series that 

makes the prediction process challenging. For this reason, we 

proposed a hybrid model based on the integration of the DWT 

and NARNN. The DWT is a data preprocessing technique 

efficient in noise reduction and decreases stock prices' 

nonstationarity via decomposing the raw prices into their 

constituent components. The decomposed training set is used 

as input to the NARNN, which utilizes eight preceding 

timesteps to fade the market's short-term volatility. Next, the 

DWT-NARNN model decomposes all the available prices 

preceding each testing point to simulate the actual trading 

process. 

Based on the empirical finding, the proposed DWT-

NARNN model proves its efficiency in predicting stock prices 

compared to BPNN, NARNN, DWT- BPNN, SSA- BPNN, 

SSA- NARNN models. Also, integrating the DWT in the 

hybrid models results in better performance than single models. 

Moreover, the old approaches do not simulate the actual 

trading process when validating their models. The 

decomposition process of the entire price series, then dividing 

it into training and testing sets introduces information about 

the stock's future performance in the testing set. Hence, their 

validation process invariably produces misleading results. 
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