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One of the main ways of economic development has been to improve the performance and 

efficiency of manufacturing systems. Indeed, competition is fierce between most industrial 

organizations to provide new products and richer services for customers who are 

increasingly demanding. Although, indeed, most of the quality control and visual inspection 

tasks are performed by humans who use only the naked eye to detect defects, this form of 

control presents a number of limits, such as the size of the defects impossible to detect, risk 

of marketing a defective product and reduce the production performance. In this paper, a 

new method based on deep learning in the context of ceramic tile defect detection on a 

conveyor is proposed in order to provide effective quality control and real-time inspection. 

Our model is based on a convolutional architecture with a convolutional block attention 

module (CBAM) to pay more attention to the relevant areas of the input image and 

overcome the spatial information loss problems. A pre-processing step is performed before 

training by processing each image corresponding to a type of defect with an appropriate 

mask to facilitate learning. The experimental results show that our model produces an 

accurate and efficient classification of ceramic tile defects with a reduced number of 

parameters. We also propose a novel Ceramic defect tile dataset obtained from a ceramic 

production unit. The results of the experiments show that the suggested approach reaches 

an average accuracy rate of 99.93% compared to the state-of-the-art. 
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1. INTRODUCTION

Ensuring effective visual inspection is increasingly 

becoming a complex task for many industrial companies. With 

the evolution of artificial intelligence, it seems essential to take 

advantage of this progress to provide machine vision solutions 

based on deep learning approaches for visual inspection, 

quality control, and object recognition in an industrial context. 

The task of detecting defects in ceramic tiles in the industry 

is a complex task. The latter is due to the diversity in the shape, 

appearance, and number of tiles to be treated in this way in most 

production units average, this task is performed by a human. 

Manual surface quality inspection represents a significant 

challenge to maintain customer satisfaction since it is tedious, 

repetitive for humans, and performed in an environment with 

noise, extreme temperature, and humidity [1], making 

detecting faults easy. 

During the production stages of ceramic tiles, different 

defects affect the quality of tile surfaces, such as cracks, spots, 

pinholes, and corner or edge breaks. Thus for complete 

automation of the ceramic tile quality inspection system, other 

problems have to be solved, especially the diversity of defects 

in terms of shape and texture. 

Indeed, different solutions have been presented in the 

literature to address the limitations of manual detection of 

surface defects. However, the traditional techniques are 

characterized by the lack of robustness of the proposed systems 

and reduced production performances. 

Recent techniques based on convolutional neural networks 

have appeared. These offer automatic feature extraction using 

different filters on a 2D image. However, convolutional neural 

networks lose spatial information, which prevents efficient 

local and global feature extraction to remedy this problem in 

the context of ceramic tile defect detection. Our idea is to 

integrate a CBAM attention module in a convolutional neural 

network to pay more attention to the relevant areas of the input 

image. Thus, increase the number of instances by generating a 

mask image for all samples of the default class for each image. 

This step allows the neural network to easily recognize the 

patterns' positions in the input image and facilitate learning. 

The surface defects taken into account by our model are corner 

breaks, pinholes, and pattern discontinuity. 

In this paper, the main contributions are summarized as 

follows: 

(1) We propose a new method based on convolutional neural

networks with CBAM attention mechanism to have local and 

global feature extraction, allowing the CNN to focus on 

relevant pixels and provide an efficient classification of 

ceramic tile defects. 

(2) We introduce a new dataset of real images for ceramic

tile defect detection. Our dataset considers three types of 

defects (corner breaks, pinholes, and pattern discontinuity). 

(3) The efficiency of the pre-processing part is proved

through a quantitative comparison and the integration of the 

attention module is validated through an ablation study. 
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2. RELATED WORK 

 

Traditional defect detection algorithms have not achieved 

stable results despite a strong dependence on illumination, disk 

grain structure, defect morphology, and defect size [2]. On the 

other hand, several studies have been presented to achieve high 

accuracy for defect detection on ceramic tiles [3-9]. Ragab and 

Alsharay [3] have proposed a solution consisting of two steps 

to minimize the time required for detecting defects in ceramic 

images. In the first step, it detects defects in each of the eight 

parts of the image, and in the second, it determines their type 

using the algorithms of defects of spots and cracks. 

experiments show that the time of detection and classification 

of defects in ceramic tiles is reduced compared to previous 

work. However, they are used a limited number of images and 

it is limited to too low detection rate. Hanzaei et al. [4] used 

processing techniques such as median filter, local variance 

rotation invariant measure, thresholding, and morphological 

closure operations, and then use a support vector machine 

(SVM) for multiclass classification. This solution improves the 

automatic detection rate of cracks and holes on ceramic tile 

surfaces by accurately detecting edge and defect regions and 

eliminating unimportant areas. However, this work does not 

deal with tile’s textured surfaces. While Chen et al. [5] used a 

decision tree algorithm to classify the defects of textured 

ceramic tiles based on a Fourier transformer to remove the 

background, they applied Laplacian sharpening, histogram 

specification, and median filtering. They then extracted the 

features using Lavel Co-occurrence Matrix (GLCM) and 

Casagrande et al. [6] proposed a hybrid algorithm to extract 

features from smooth and textured ceramic tile images, a 

combination of segmentation-based fractal texture analysis and 

discrete wavelet transform methods was used after applying the 

preprocessing techniques, which were then introduced for the 

five classifiers. Within them, the SVM classifier reaches 

99.01% for smooth images and 97.89% for textured images. 

This solution only deals with the defects of the pattern's 

discontinuity despite using textured tiles. In addition, it is 

limited to a single model of the pattern of textured ceramic 

tiles. Mariyadi et al. [7] proposed to use GLCM to extract 

fourteen properties of the defect area, which are then sent to the 

artificial neural network for classification. The defect area was 

clipped from the image after counting the mean hue, deviation 

square and euclidean distance, threshold segmentation, and 

morphological operation. Despite the limited number of 

images without texture, there are errors in the classification of 

defects, especially the pinholes which classify as crack. Zorić 

et al. [8] developed a method for detecting defects on the 

surfaces of biscuit tiles which based on Fourier Spectrum for 

extraction features of defects and on K-nearest neighbors 

(KNN) and random forest for classification. Zhang et al. [9] 

proposed an efficient method is proposed based on three basic 

steps: image preprocessing, defect detection, and defect 

determination. The authors remove the background 

information by SRR algorithm, adjust the lateral contrast, and 

then apply the spatial distribution variance (CSDA) and the 

color spot area weight (CSAW) to the HSV color. A defect 

saliency map is generated, and the defect area is divided into 

blocks according to the boundaries of the defect rectangle to 

extract the feature vector color, which is then fed to the SVM 

algorithm. The method achieves good performance with an 

accuracy rate of 98.75%. The performance of this method 

decreases with the increase in the complexity and variety of the 

textures of the tile surfaces, due to the increase in the number 

of characteristics of the colors to be represented. 

However, recent contributions based on deep learning 

models have appeared. A new method, "Segmentation Model 

for Cracks in Ceramics (CCS)," is proposed [10]. Indeed, the 

latter is based on the U-net model and a combination of pre-

processing techniques that are applied to the images to render 

prominent cracks in a white and perfect font based on 

morphological and correction operations. The accuracy of 

defect detection is very high, reaching 99.9%. However, the 

effectiveness of this solution has been tested on a limited 

number of ceramic tile images and does not treat just one defect. 

Nogay et al. [11] used the AlexNet pre-trained model to 

classify invisible cracks in ceramic tile images based on 

acoustic noise. Indeed, a dataset of nine classes of invisible 

crack images of different sizes but similar structural properties 

are introduced. The model achieves better accuracy in 

detecting cracks. The model achieves better accuracy in 

detecting cracks despite the generalization supported by this 

work. However, it does not specify the location of cracks, 

which is essential for automated inspection of cracks, and it 

does not remove noise in images. Thus, a limited number of 

images are used for training and testing. While Stephen et al. 

[12] proposed a lightweight convolutional neural network to 

automate the detection of cracks in ceramic tiles with smooth 

surfaces. Feature extraction and classification are performed in 

parallel in this CNN model. Indeed a better accuracy in 

detecting cracks is obtained. 
 

 

3. PRELIMINARY 

 

3.1 Convolutional block attention module (CBAM) 

 

The attention mechanism has significantly improved the 

performance of defect inspection applications in several areas: 

agriculture [13, 14], medical [15, 16] and industrial [17, 18], 

because of its ability to mimic human perception to focus on 

salient regions and neglect that are not important. For example, 

among the intention modules used to increase the performance 

of detection of defects in industrial products are various that 

easily integrate with convolutional neural networks such as 

Convolutional Block Attention Module (CBAM) [19], 

Squeeze-and-Excitation Attention Module (SE) [20], Dual 

attention Module (DAM) [21] and Bottleneck Attention 

Module (BAM) [22]. 

CBAM is one of the usable intent modules that help pay 

more attention to relevant areas of the image. It consists of two 

attention modules to allow the network to extract the relevant 

features by focusing on what to pay attention by the Channel 

module and where to pay attention by the Spatial module. The 

overall architecture of the CBAM module is shown in Figure 1. 

The general function of CBAM, as shown in Eq. (1), is to 

generate an attentional feature map (AttenF) from a 

convolutional feature map (ConvF) accepted as input that will 

be multiplied with the Channel feature map and a Spatial 

feature map. 
 

AttenF = SAM(CAM(ConvF)ConvF). (CAM(ConvF)
× ConvF) 

(1) 

 

CAM(ConvF) represents the channel feature map generated 

by the Channel Attention Module (CAM), which is described 

in Figure 2. CAM consists of a Max Pooling (MaxP) and 

Average Pooling (AvgP) layer in parallel. Then, the multilayer 
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perceptron (MLP) and a sigmoid function are applied. 

Mathematically, this map is formulated by the following 

formula: 
 

CAM(ConvF) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃 (𝐴𝑣𝑔𝑃(ConvF)

+ 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃(ConvF)))) 
(2) 

 

SAM(CAM(ConvF)ConvF) represents the spatial feature 

map generated by the Spatial Attention Module (SAM), whose 

architecture is illustrated in Figure 3. SAM sequentially 

contains a max pooling layer and an average pooling layer, 

followed by a single convolutional layer of size 7×7 (Convf) 

and a sigmoid function, as shown in the following equation: 

 
SAM(CAM(ConvF)ConvF)

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (Convf 7×7 ([
𝐴𝑣𝑔𝑃(CAM(ConvF)ConvF);

𝑀𝑎𝑥𝑃(CAM(ConvF)ConvF)
])) 

(3) 

 

 
 

Figure 1. Architecture of the CBAM attention module 

 

 
 

Figure 2. Architecture of the Channel Attention Module (CAM) 

 

 
 

Figure 3. Architecture of the Spatiale Attention Module (SAM) 
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4. METHOD AND MATERIEL 

 

This section presents the steps corresponding to our solution 

and the proposed architecture to improve the detection of 

ceramic tile defects. 

 

4.1 An overview of the solution proposed 

 

In this paper, a new model based on convolutional 

architecture is proposed to improve the detection of defects in 

ceramic tiles. Our solution operates in three main steps, which 

are; data collection, preprocessing, and classification. Indeed, 

the collection step consists in collecting images of ceramic tiles 

with and without defects. The second step consists of a 

preprocessing of the collected images, allowing the treatments 

carried out in this step to remove the background and the 

generation of the mask for the images with a defect. The last 

step is to classify ceramic tiles using a convolutional neural 

network, and in order to increase the efficiency and 

performance of our model of classification of defects for 

ceramic tiles, we have introduced two layers of attention in our 

CNN. The latter takes RGB images as input and produces a 

binary classification with defect or without defect. Figure 4 

shows the global architecture of the proposed solution. 

 

 
 

Figure 4. The global architecture of our solution 

 

4.2 Collected images 

 

We introduce a new dataset for defect detection of ceramic 

tiles. The collected images are 1032 RGB images. These 

images are of different shapes (rectangular and square) and 

appearances (texture, illumination). The collected images are 

divided into two classes defect and no defect. Figure 5 below 

shows samples of the collected defect-free and defect images. 

 

 
 

Figure 5. Examples of images from our dataset 

4.3 Preprocessing 
 

The preprocessing step of our model consists of two phases. 

The first is to remove the background from the image, and the 

second phase is to create a mask for the defective images to 

better represent the position and shape of the defects and 

reduce the complexity of detecting it on the ceramic tiles. In 

the automation of the industrial inspection system, the great 

challenge is detecting the different types of defects in the 

texture surfaces [23]. Indeed, the specificity of each defect on 

a ceramic requires a different treatment for the creation of the 

mask. The purpose of adding these masks is to improve the 

representation of features. In our solution, we have adopted 

three types of masks for the images of the defective tiles: the 

first two are highlighted the breaks of the corners of the 

ceramic tiles and the pinholes via the segmentation and 

morphological operations. Thus, one extracts the white parts, 

which appeared because of the discontinuity of the textures.  
 

4.3.1 Corner and pinholes masks 

This step consists in creating a binarized image, where the 

pixels of the latter are composed of two black and white values. 

Then, from a grayscale image, we use the Otsu function [24] 

with the operation of inversion to identify the tile in white and 

the background and the pinholes in black. The Otsu method 
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created by Nobuyuki Otsu which is an automatic thresholding 

method that is based on the search in the histogram of the image 

on the optimal value among the thresholding values denoted (t) 

which is in the interval [0, 255]. Indeed, this is calculated with 

maximize the variance inter-classes, denoted by (𝜎𝑦
2) and 

minimize the variance intra-classes denoted by ( 𝜎𝑤
2 ) for 

separate the pixel values of the background (bg) and 

foreground (fg). These are calculated by following equations: 
 

𝜎𝑤
2(𝑡) = 𝜔𝑏𝑔(𝑡) 𝜎𝑏𝑔

2 (𝑡) + 𝜔𝑓𝑔(𝑡) 𝜎𝑓𝑔
2 (𝑡) (4) 

 

𝜎𝑦
2 = 𝜎2 − 𝜎𝑤

2  (5) 

 

𝜔𝑏𝑔 =∑𝑃(𝑖)

𝑡

𝑖=0

 (6) 

 

𝜔𝑓𝑔 = ∑ 𝑃(𝑖)

255

𝑖=𝑡+1

 (7) 

 

Such as: 

𝜔𝑏𝑔: presents the sum of the probabilities of the pixels 𝑃(𝑖) 

which are lower than the threshold t devised by the overall 

probability of all pixels of an image.  

𝜔𝑓𝑔: presents the sum of the probabilities of the pixels 𝑃(𝑖) 

greater than the threshold t divided by the overall probability 

of all an image's pixels. 

where: the probability of pixels is calculated by this equation: 

 

𝑃(𝑖) =
𝑛𝑖
𝑛

 (8) 

𝑛𝑖: the value of the 𝑖𝑒𝑚𝑒  pixelin image. 

n: the average value of all pixels of the background and 

foreground classes.  

σbg
2 : presents the variance of background class and σfg

2 : 

presents the variance of foreground class, where are calculated: 

 

𝜎𝑏𝑔
2 =

∑ (𝑁1(𝑖) − 𝑀𝑜𝑦𝑏𝑔(𝑇))
2 
× 𝑃(𝑖)𝑡

𝑖=0

𝜔𝑏𝑔
 (9) 

 

𝜎𝑏𝑓
2 =

∑ (𝑁2(𝑖) − 𝑀𝑜𝑦𝑏𝑓(𝑇))
2 
× 𝑃(𝑖)255

𝑖=𝑡+1

𝜔𝑏𝑓
 (10) 

 

where: 

𝑁1: is a vector from 0 to t-1. 

N2: is a vector from t to 255. 

𝑀𝑜𝑦𝑏𝑔: the average of the background class and 𝑀𝑜𝑦𝑓𝑔 : the 

average of the foreground class, which are calculated by the 

following equations: 

 

𝑀𝑜𝑦𝑏𝑔(𝑡) =  
∑ 𝑁1(𝑖) × 𝑃(𝑖)𝑡
𝑖=0

𝜔𝑏𝑔(𝑡)
 (11) 

 

𝑀𝑜𝑦𝑓𝑔(𝑡) =
∑ 𝑁2(𝑖) × 𝑃(𝑖)255
𝑖=𝑡+1

𝜔𝑓𝑔(𝑡)
 (12) 

 

Finally, we remove the noise from the binary images by 

operating the morphological opening with a filter of a size 3×3 

filled by ones to obtain a clear image, followed by a dilation 

operation. Figure 6 shows a resulting pinholes and corner mask 

after performing this series of operations on two faulty images.

 

 
 

Figure 6. The steps to generate a mask of two images with a default: (a) Input image, (b) Gray scale, (c) Binary image, (d) 

Opening morphology and (e) Mask image 

 

 
 

Figure 7. Defective images with the locations of the pattern discontinuity by red rectangles 
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4.3.2 Texture mask 

In order to obtain a more precise representation of the 

discontinuity of patterns on the surfaces of ceramic tiles like 

the examples shown in Figure 7, we used the HSV (Hue 

Saturation Value) color mode [25], which Alvy Ray Smith 

creates. This model is a system of human visual perception 

consisting of three components: Hue (color), Saturation 

(intensity), and Value (brightness). Studies use the HSV color 

mode to improve color defects in colored images, such as 

detecting defects in fruit [26] and on the surface of printing 

rollers [27]. 

For conversion between RGB mode to HSV mode, the three 

values: Red (R), Green (G), and Blue (B), are used to calculate 

the H, S, and V values according to the following functions 

knowing that: 𝑅, 𝐺, 𝐵 ∈ [0,1]. 
 

𝑀𝑎𝑥 = 𝑚𝑎𝑥 (𝑅, 𝐺, 𝐵) (13) 

 

Min = min (𝑅, 𝐺, 𝐵) (14) 

 

𝐻 =

{
 
 

 
 
0                                , 𝑖𝑓 𝑅 = 𝐺 = 𝐵

60° × (0 +
𝐺−𝐵

𝑀𝑎𝑥−𝑀𝑖𝑛
) , 𝑖𝑓 𝑀𝑎𝑥 = 𝑅

60° × (2 +
𝐵−𝑅

𝑀𝑎𝑥−𝑀𝑖𝑛
) , 𝑖𝑓 𝑀𝑎𝑥 = 𝐺

60° × (4 +
𝑅−𝐺

𝑀𝑎𝑥−𝑀𝑖𝑛
) , 𝑖𝑓 𝑀𝑎𝑥 = 𝐵

  (15) 

 

𝑆 = {
0              , 𝑖𝑓 𝑅 = 𝐺 = 𝐵

𝑀𝑎𝑥−𝑀𝑖𝑛

𝑀𝑎𝑥
                  ,𝑒𝑙𝑠𝑒

 (16) 

 

𝑉 = 𝑀𝑎𝑥 (17) 

 

An example of the texture mask is shown in Figure 8. 

 

 
 

Figure 8. Generation of a texture mask (c) from the input 

image (a) HSV mode (b) 

 

4.4 Classification 

 

Our ceramic tile classification model has an architecture that 

combines a convolutional neural network (CNN) and an 

attention mechanism. The CNN is composed of four 

convolutional layers, two first consequential layers to extract 

the low level characteristics, followed by a ReLU activation 

function and a Maxpooling layer. Then the CBAM layer 

followed by two convolutional layers. After each layer a ReLU 

function is applied. The second CBAM attention module is 

inserted. We adopted a regularization using the dropout by a 

factor of 0.25 to avoid overfitting. Finally, a fully connected 

(FC) layer with 100 neurons followed by a sigmoid activation 

function to classify the input image whose dimension is 

210×210×3 as defective or not. 

 

 

5. EXPERIMENTS 

 

5.1 Dataset and data augmentation 

 

Our dataset comprises two labels, defect, and non-defect, for 

binary classification. The defect class comprises the images of 

the three defects considered in our study. A data augmentation 

operation is applied to increase the number of samples in the 

training data and reduce the risk of overfitting. For the faulty 

tile images, we applied 180 degree rotation method, horizontal 

and vertical flip, zoom, and shear techniques with 20% range. 

At the same time, we applied 2 degree rotation only for normal 

images to maintain the correct shape of the tiles and avoid 

breakage. Table 1 describes the total number of images before 

and after augmentation for the images. 

Indeed, after the preprocessing step, which consists in 

adding the default image masks. We have created three 

distributions of images from the dataset to perform our 

experiments to evaluate the performance of our model. The 

details of the distributions are shown in Table 2. Dataset 1 is 

used for binary classification, dataset 2 is used for multiclass 

classification and dataset 3 is composed of images without 

masks. 

 

Table 1. The numbers of the images before and after the 

increase 

 

 Classes 
Before 

augmentation  

After 

augmentation 

Total 

images 

D
efects 

Corners 102 1020 1122 

Pinholes 143 1110 1253 

Pattern 

discontinuity 
117 1096 1275 

 No defects 670 438 1108 

 

Table 2. Description of the datasets of the images of the 

ceramic tiles 

 

Datasets Classes 
Training set  Validation set 

Image Mask Image Mask 

Dataset 1 
Defect 2538 2538 636 636 

No defect 212 / 212 / 

Dataset 2 

Corners 846 846 212 212 

Pinholes 846 846 212 212 

Pattern 

discontinuity 
846 846 212 212 

No defect 846 / 212 / 

Dataset 3 
Defect 2538 / 636 / 

No defect 212 / 212 / 

 

5.2 Training details and evaluation metrics 

 

The set of images in our dataset is divided into 80% for 

training and 20% for validation. The learning rate is 1e-3, we 

used the RMSprop optimizer, the batch size is 15, the input 

image size is set to 120×120, and the experiments are 

performed on a machine with an Intel Core i5-10400F 

processor and an Nvidia GTX 1050ti GPU.In order to show the 

effectiveness of our model, we choose accuracy, precision, and 

recall as metrics to evaluate the performance. These are 
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calculated from the confusion matrix values, as presented in 

Table 3. 

 

Table 3. Values of the confusion matrix 

 

True label 

Predicted label 

TP FP 

FN TN 

 

TP and TN exhibit tiles that are correctly predicted as 

defective and non-defective, respectively. FN presents those 

that are non-defective, but the model predicted them to be 

defective. In contrast, FP defines defective tiles that are 

identified as non-defective. The following equations define the 

three metrics: 

 

Accuracy= 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (18) 

 

Precision= 𝑇𝑃

𝑇𝑃+𝐹𝑃
 (19) 

 

Recall= 𝑇𝑃

𝑇𝑃+𝐹𝑁
 (20) 

 

Accuracy presents the number of tiles correctly predicted out 

of the total number. Accuracy presents the number of tiles 

correctly predicted as faults out of the total number of faulty 

tiles revealed. Finally, the recall presents the number of tiles 

that correctly predicted defects out of the total number 

predicted as defective. 

 

 

6. RESULTS  

 

In this section, we present the results obtained by our model. 

Indeed, an evaluation of the effect of the parameters chosen for 

our model, a quantitative comparison with state-of-the-art 

methods, and finally, an ablation study is conducted to show 

the efficiency of each component of our model. 

 

6.1 Performance evaluation of setting parameters of 

CBAM module 

 

For the CBAM attention module, we tested the performance 

of the variant configurations for more efficiency in detecting 

faults. In fact, experiments are menu by varying the values of 

the reduction ratio of the channel module. 

 

6.1.1 The Ratio reduction (R)  

Table 4 presents the results of experiments comparing the 

accuracy, precision, and recall of the classification obtained by 

our model with the values 8, 16, and 32 assigned to the ratio of 

the channel module reduction. In this study, we have kept the 

default filter size of the convolutional layer of the spatial 

module, which is 7. 

All accuracies achieved by the three combinations are 

satisfactory. Perfect accuracy is reached by minimizing the 

dimensions of the feature maps by the ratio 16, while for the 

values 32 and 8, a decrease in the accuracy is observed by 

0.07% and 0.14%, respectively. Indeed, the exact choice of the 

ratio considerably improves the relevant features generated in 

the channel attention maps. Consequently, better performances 

of defects detection are achieved. 

 

Table 4. Comparison of classification accuracies according 

to Channel module reduction ration values 

 

Models 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Our CNN+Channel (R=8) 99.79 99.84 99.92 

Our CNN+Channel 

(R=16) 
99.93 100 99.92 

Our CNN+Channel 

(R=32) 
99.86 99.84 100 

 

6.1.2 The impact of the number and position of CBAM module 

Table 5 illustrates the performance evaluation of our model 

as a function of the position and number of the CBAM module 

in our CNN model. Indeed, a variation of accuracy, precision, 

and recall are analyzed to choose the optimal configuration to 

obtain an efficient extraction of discriminative features. 

We note from the results shown in Table 5 that the 

integration of the two CBAM modules after the conv 2 and 

conv 4 layers, respectively, produces good defect classification 

performance in terms of accuracy of 99.93%, precision of 

100%, and recall of 99.92%. In addition, the extraction of 

relevant features after conv1 by the CBAM module leads to a 

significant classification of defects by an accuracy of 99.86%, 

precision of 99.92%, recall of 99.92%. 

 

Table 5. The effect of position and number of the CBAM 

attention module on the performance of our model 

 
Position of 

CBAM 
Accuracy (%) Precision (%) Recall (%) 

After Conv 1 99.86 99.92 99.92 

After Conv 2 98.64 98.27 99.44 

After Conv 3 99.46 99.60 99.76 

After Conv 4 99.59 99.68 99.84 

After Conv 2 + 

after conv 4 

(Our model) 

99.93 100 99.92 

 

In this section, we will discuss the choice of parameters of 

our proposed model to effectively classify tile images, 

including the learning rate and classification type. 

 

6.1.3 The impact of learning rate values 

 

 
 

Figure 9. The effect of learning rate on the classification 

accuracy of our CNN model 
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Figure 9 shows the accuracy of the validation for various 

learning rates. The validation accuracy decreases when the 

learning rate is too high 0.01. When the learning rate is 0.01, 

the best performance is attained. The accuracy value reaches 

99.93%. 

 

6.1.4 Effect of type of classification 

Table 6 shows the effect of the type of classification (binary 

or multiclass) on the performance of our model in classifying 

the images of ceramic tiles. Indeed, we used two datasets to 

prove the efficiency of our model. Dataset 1 is a binary dataset 

where the tiles are organized in two classes, defect, and non 

defect, while dataset 2 is a multiclass dataset where the images 

of the non defect class are divided into three distributions 

corresponding to the three types of defects taken into 

consideration by our study: with corner breakage, pinholes, and 

pattern discontinuity. 

The three evaluation metrics, accuracy, precision, and recall, 

are used to measure the performance of our model for a binary 

classification on dataset 1 and multiclass on dataset 2. 

Table 6 illustrates the comparison results among binary 

classification and multi-classification tasks. These results 

demonstrated a significant distinction between our model's 

binary and multiclass classification. Compared to a multiclass 

classification, where each type of defect is represented by a 

different class, our model generalizes more effectively for the 

binary classification of ceramic tiles. Our model performs 

better with a binary classification, increasing accuracy, 

precision, and recall by 4.18%, 4.09%, and 0.82% respectively. 

 

Table 6. Classification performance of our model on different 

datasets 

 
Datasets Accuracy (%) Precision (%) Recall (%) 

Dataset 1 99.93 100 99.92 

Dataset 2 95.75 95.91 99.10 

 

6.2 Effect of masks 
 

Augmenting our dataset with mask images in the 

preprocessing part plays a significant role in improving the 

performance of our solution. Indeed, to evaluate the effect of 

adding the masks to the defect images on the performance of 

tile defect classification, we compare performances of our 

model on dataset 1 and dataset 3. 
 

Table 7. Performance comparison results of our model on 

dataset 1 and dataset 3 

 
Datasets Accuracy (%) Precision (%)  Recall (%) 

Dataset 1 99.93 100 99.92 

Dataset 3 97.30 97.56 99.20 
 

From the results presented in Table 7, the masks added to 

the defect images in dataset 1 significantly affect our CNN 

model's performance of ceramic tile defect classification. 

Without the masks, the defect detection accuracy decreases to 

97.30%, with a precision of 97.56% and recall of 99.20%. 

However, with the addition of the masks of the defect images 

based on segmentation and morphological operations and HSV 

color mode, a performance improvement is achieved by 2.63% 

and 2.44% for accuracy and precision, respectively. 
 

6.3 Quantitative comparison 
 

In this section, we compare the performance of our model 

with existing state-of-the-art methods: VGG16-19 [28], 

AlexNet [29], and ResNet50 [30]. The training of these models 

on the dataset takes place with the same hyper-parameters 

mentioned in the previous section. We used two scores: the 

overall accuracy of classification and the number of network 

parameters. The results obtained after training these models on 

our dataset composed of two classes with defects and without 

defects are presented in Table 8. We observe that our model, 

based on a convolutional architecture and integrating a CBAM 

attention module, outperforms the four models in terms of 

accuracy. Furthermore, our model produces good results with 

a significantly reduced number of parameters compared to 

existing models. 

 

Table 8. Quantitative comparison between our model and the 

state of the art methods 

 

Models Accuracy (%) 
Trainable 

parameters 

VGG 16 85.04 107,001,665 

VGG 19 85.00 112,311,361 

AlexNet 93.02 29,972,545 

ResNet 50 98.18 23,536,577 

Our model 99.93 2,346,337 

 

6.4 Ablation study 

 

We conducted an ablation study to show the effectiveness of 

the attention module in our architecture.  

In this experiment, we investigated the CBAM attention 

module's effect on ceramic tiles' defect classification results. 

Table 9 compares our CNN architecture without CBAM 

attention module integration which noted CNN_base and our 

proposed model with CBAM attention module integration.  

 

Table 9. Ablation study results of the CBAM module on the 

classification performance of our model 

 

Models 
Accuracy 

(%) 
Precision (%) 

Recall 

(%) 

CNN_base 98.98 99.84 99.37 

Our model 99.93 100 99.92 

 

These results show that our model based on the CBAM 

module produces good results compared to the basic model in 

terms of accuracy, precision, and recall. Indeed, integrating the 

CBAM module provides more efficiency and precision to the 

tile classification results on our dataset. Furthermore, these 

results show that the CBAM attention module allows us to 

focus on the ceramic tiles' relevant features to localize the 

defects, which allowed us to increase the performance of our 

model. 

 

 

7. DISCUSSION 

 

In this paper, we proposed a model based on convolutional 

neural networks and the attention mechanism to detect defects 

in ceramic tiles more efficiently. The results show that our 

model performs better classification of different types of 

defects. Furthermore, the accuracy of defect classification by 

our model for binary classification outperforms most of the 

proposed state-of-the-art models, including models based on 

segmentation methods and feature extraction methods with 

machine learning algorithms [6-9] and models based on deep 
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learning [11, 12]. This is related to the efficiency and 

robustness of the proposed preprocessing and classification 

step. Indeed, on the one hand, the increase in defective images 

is represented by the addition of masks that improve the visual 

representation of defects. On the other hand, the integration of 

the CBAM attention module. Moreover, our model reduces the 

computation cost thanks to the reduced number of parameters. 

On the other hand, the proposed model to automate the defect 

detection of ceramic tiles suffers from some limitations, a 

decrease in the defect detection rate for multi-class 

classification. 

 

 

8. CONCLUSION AND FUTURE WORK 

 

The accurate detection of defects in ceramic tiles, until now, 

is a significant issue for researchers due to the difficulty of 

distinguishing between defects and surface texture. Therefore, 

in this paper, to address this challenge, we propose a solution 

for accurate defect detection of ceramic tiles based on deep 

learning and attention mechanism. 

Our solution consists of three fundamental steps: the first 

step consists in collecting real images from a production unit, 

preprocessing, and classification.  

Our model is capable of classifying with high precision the 

three defects (corner breaks, pinholes, and pattern 

discontinuity) through a binary classifier based on the 

convolutional architecture equipped with a CBAM attention 

module. Furthermore, given the complexity imposed by the 

defects of the ceramic tiles and to simplify the learning of the 

ceramic defects, a preprocessing step is carried out on the 

images of the data set by applying several masks according to 

each defect in order to expose the characteristics of defects 

better, this simplifies learning and improves the performance 

of classifying ceramic tile defects. 

Integrating the CBAM module into our CNN model allows 

our model to extract the local and global characteristics of 

defects, which greatly improves the performance of our model 

and produces good results compared to state-of-the-art 

methods.  

As future work, we want to integrate our model into an 

industrial vision system capable of providing all the essential 

information concerning the defects of the ceramic tiles to the 

control room. Indeed we plan to improve our model to offer a 

muti-class classification that includes more defects and exact 

identification of the ceramic tiles by using RFID tags attached 

to the ceramic tiles to send the classification result to the 

processing center via a Zigbee protocol. 
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