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A healthy society must take proper measures to handle human stress, a severe health risk. 

To classify felt mental stress, this work offers an experimental inquiry to determine the 

proper phase when electroencephalography (EEG) based input from the DEAP dataset is 

combined with accelerometer sensor data from the WESAD dataset. A multisensory data 

fusion approach has been proposed to gather complete data for prognostic modeling and 

analysis. These techniques attempt to create a composite health index (HI) by fusing 

numerous sensor inputs. To get an aggregated version of the EEG-based data from the 

DEAP dataset and Accelerometer (ACC) sensor data from the WESAD dataset, we used 

the k-medoid data aggregation method with time-frame constrained intra-cluster similarity 

computations. The mental state is then classified into low-stress, medium-stress, and high-

stress categories using a CNN trained on this aggregated dataset. Three types of data low 

stress, medium stress, and high stress, are created. To categorize stress levels, we used three 

classifiers Support Vector Machine (SVM), Logical Regression (LR), and Naïve Bayes 

(NB) are used. Three-class stress classification is accurate to 82.85% of the actual value. 
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1. INTRODUCTION

We are constantly stressed due to how we live and work in 

today's society. Acute stress is the term used to describe an 

organism's non-specific response to external stresses for 

change that put its proficiencies and resources to the test [1]. 

On the one hand, persistently high acute stress levels reduce 

human productivity, and the decreased cognitive load may 

even lead to mistakes in situations requiring precision [2]. 

However, chronically high-stress levels often negatively affect 

mental and physical wellness [3]. Consequently, everyone 

would benefit by periodically evaluating how they handle 

stress in their daily life. It could be possible to recognize acute 

stress episodes and initiate proactive or remedial action. 

Serious accidents may be avoided by seeing high levels of 

acute stress in persons doing safety-critical duties. However, 

as it is neither instantly visible nor a single, monolithic idea, 

accurate stress detection presently faces major hurdles [4]. 

There are several sorts of stress, and not everyone is 

inherently harmful. It is good that acute stress is one of the 

least dangerous kinds of stress because it is also the most 

common type. We experience acute stress repeatedly 

throughout the day. Acute stress is brought on by a perceived 

impending psychological, emotional, or physical threat. A 

friend fight, a speeding ticket, or passing a test can all lead to 

acute stress. Whether the threat is real or imagined, the 

perception of the danger triggers the stress response. Because 

it happens suddenly and then passes, acute stress is readily 

controlled. Because it is feasible and relatively fast to recover 

from acute stress, it doesn't have the same adverse effects on 

health as chronic stress. Basic relaxation techniques can work 

rapidly if your stress reaction doesn't resolve into a relaxation 

response. 

For accurate, non-intrusive, and continuous acute stress 

monitoring, the physiological study of stress levels, which is 

multimodal and considers several signals, may be utilized [5-

8]. Wearable devices can detect stress reactions in real-time, 

across several modalities, and continuously thanks to wearable 

and low-power edge computing technologies and machine 

learning algorithms. Before a stress detection system can be 

incorporated entirely into wearable technology, some 

difficulties, such as security, confidentiality, memory 

utilization, battery backup, and other elements, must be 

handled. The constrained battery size and form factors that 

guarantee mobility and wearability have made battery 

endurance one of the critical downsides of wearable 

electronics. Furthermore, a wearable multimodal system 

makes it especially difficult since power-hungry biosensors 

use a large amount of energy. 

The battery life problem in developing machine learning 

detection algorithms has yet to be addressed explicitly in 

recent studies on multi-modal monitoring systems [9-11]. 

These investigations have yet to distinguish the physiological 

traits that support the models based on energy use. The most 

beneficial features are selected using conventional feature 

selection techniques without considering the cost of specific 

characteristics. They train multimodal machine learning 

systems to predict output accurately. As a result, they allocate 

similar weights to elements with miscellaneous expenses and 

priorities. Nevertheless, in actuality, the edge device's 

complexity and resource usage are increased by the sensors 

and biosignal processing algorithms. 

In multimodal monitoring systems, three processes require 

energy to generate a single physiological feature: (1) signal 

acquisition by the sensors, (2) bio-parameter analysis, which 

comprises signal processing and segmentation, and (3) 
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extracting features approach. Be mindful that a single signal 

may provide several bio-parameters and unique characteristics. 

Once two characteristics from one particular signal are 

designated, the sensor’s energy cost must be only once, and 

vice versa if the features come from the exact bio-parameter. 

The cost of each characteristic is variable and depends on the 

other options selected. 

The EEG is a crucial instrument for detecting stress and has 

yielded notable results [12] in distinguishing between 

subjective experiences and stress-related discoveries. EEG is 

a technique used to monitor and document the electrical 

activity in the brain [13, 14]. The handling of EEG signals is 

the most fundamental feature of the current investigation [15]. 

Numerous approaches have been developed to measure and 

study stress levels, using a questionnaire or computing the 

variations in physiological signals. Real-time, online 

technology called physiological signals enables better stress 

measurement.  

High resolution in the temporal and geographical aspects 

and high specificity are offered by invasive techniques like 

local field potential (LFP) with electrocorticography, which fit 

into two groups: invasive and benign. They only provide a 

little covering, though, and they might only suit some 

situations. Currently, noninvasive methods such as functional 

magnetic resonance imaging (fMRI), electroencephalography 

(EEG), and magnetic encephalography (MEG) are used to 

evaluate the effects of stress on human health. EEG and MEG 

have better resolution than fMRI, which has good spatial 

resolution but fair temporal resolution. 

A controlled setting for measuring stress has been created 

by Karthick and Manikandan [16]. Three distinct 

circumstances, including low and high-stress sessions that 

include sitting, standing, and walking, are engaged in by 

participants. After that, the accelerometer sensor's activity data 

and all HRV readings will be collected for stress detection.  

The stress classification model may reach excellent 

accuracy with simple fixed activities and trustworthy stress 

labels. A controlled environment can offer detailed data for 

hypothesis testing. Also, it should be noted that this kind of 

controlled environment cannot easily be applied to real life 

because there would be various activities, and the information 

recorded could experience quality issues like incompatible 

data labels. Because of this, it is still challenging to measure 

and evaluate felt stress using the data gathered daily. 

We classified stress into three stages using the WESAD and 

DEAP datasets in our tests. For classification, we employed 

the leave-one-out cross-validation approaches of the support 

vector machine. Our suggested strategy, the highest among 

cutting-edge methods, classified three stress states with an 

average accuracy of 82.85%, to the best of our knowledge. 

The following contributions are made via our suggested 

method: 1) To increase the accuracy of stress classification, 

we employed hybrid features (EEG and ACC characteristics 

generated from our intended trials) from the DEAP and 

WESAD datasets. 2) Out of 32 EEG electrodes, we chose four 

(FP1, FP2, F3, and C4) using K-Medoid clustering as the best 

fit for the classification task. 3) Among cutting-edge 

techniques, our suggested model distinguished between three 

different stress levels with the most significant degree of 

accuracy. 

2. RELATED WORK

Acute stress events cause a physiological response in the 

body known as the stress response, which causes several 

activities coordinated by the autonomic nervous system, such 

as skin perspiration, increased heart rate, and increased 

breathing frequency. Wearable sensors can assess these 

reactions on a variety of physiological signals, including skin 

temperature (SKT), electrodermal activity (EDA), and 

respiration (RSP) [17]. A reliable acute stress prediction has 

been demonstrated to need fused data from many modalities 

(signals) [18, 19]. 

However, because of memory, energy use, and duty cycle 

limitations, multimodal machine-learning techniques are 

challenging to implement on wearable devices. Even yet, edge 

computing (also known as edge processing) still has 

advantages over cloud computing for these multimodal 

regards to transmission expenses, data protection and privacy, 

and battery life [20-25]. Instead of developing a cost-aware 

machine-learning model, substantial effort has been put into 

making hardware platform improvements (sensor systems and 

micro-controllers) [26-30] to get around these restrictions. 

Prior studies have typically intensive on simplified models and 

limited characteristics. All characteristic costs are assumed to 

be the same without accounting for how much they vary in 

costs [31, 32]. 

The goal of several investigations has been to identify stress 

automatically. To identify behavior associated with user stress 

levels, smartphone accelerometer data is employed [33, 34]. 

The workplace is a significant area in which stress sensing is 

used. Hernandez et al. tracked the facial temperature using a 

thermal infrared camera and looked at how it related to stress 

levels [35]. Koldijk et al. [36] created artificial classifiers to 

analyze sensor data, including body postures, facial 

expressions, computer logs, and physiological data, to study 

the association between working circumstances and conditions 

associated with mental stress (ECG and skin conductance). 

This freely accessible WESAD dataset has been the subject of 

several investigations. In one such work, stress is 

automatically recognized using various machine learning 

techniques on the WESAD Dataset while utilizing a variety of 

statistical variables [37]. 

Cinaz et al. [38] gave the contributors to prepare and present 

on an unspecified topic and categorized the felt stress into 

three groups using the findings from the perceived stress scale 

(PSS) feedback form. Similarly, Healey and Picard [39] 

designated three goal stress levels based on the stress ratings 

from the PSS questionnaire. Chen et al. [40] employed a 

mental arithmetic task with three levels of difficulty to alter 

the cortical brain processes that were afterward captured by 

EEG data. The three test categories were used to categorize the 

features that cause stress. The study compared the three stress 

levels caused by mental arithmetic exercises and found that the 

Alpha power considerably decreased from the first to the 

second stress level. But the power increased once again from 

the second to the third level. This information also supports 

the conclusion that cortical activation was unsuccessful at task 

level three. 

In the study [41], Castaldo et al. employed a variety of 

sensors to identify stress, including video, knee-mounted 

accelerometers, galvanic skin reactions, and cardiac sensors. 

Their findings demonstrated that integrating behavioral data in 

addition to physiological measurements increased the 

accuracy of stress identification compared to utilizing only 

physiological features. There has also been a recent study on 

employing wearable sensors to detect stress outside of lab 

settings. An application that runs on a smartphone was 
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developed by Gjoreski et al. [42] to identify stress via voice 

input. Bogomolov et al. [43] classified stressed and not 

stressed states using data from a wrist sensor, questionnaires, 

and mobile phones, with more than 75% accurate findings. 

It is acknowledged that the amount of stress experienced by 

people in this setting differs from stress in everyday life. 

Additionally, it has been shown that people dislike using 

intrusive measuring equipment and find them uncomfortable. 

These reasons have prompted researchers studying stress to 

look beyond the lab and develop a non-intrusive multi-level 

stress monitoring system. Due to their widespread use in 

current society, cell phones and wearable technology have 

been selected as tools for stress detection in daily Sensors. 

After laboratory settings, research on stress level detection has 

been done in confined and semi-confined spaces, including 

offices, cars, and college campuses. Workplaces and offices 

are among the settings where stress levels are most elevated. 

EDA, ECG (Electrocardiogram), and accelerometer are 

used to measure stress levels in the workplace. Individual’s 

stress levels rise amid traffic congestion, especially in 

populated cities. There are several studies in the literature 

about driving environments. Drive DB database was utilized 

in the majority of investigations. This database contains data 

from 24 Boston drivers' ECG, EDA, EMG (Electromyogram), 

and breathing sensors.  

When researchers applied machine learning techniques to 

this data, the EDA-ECG signal combinations and Classifier 

performed best. Campus environments are the closest to free 

everyday life environments since they are semi-restricted. As 

a result, classification performances could be better compared 

to constrained laboratory, office, and automotive contexts. The 

decision tree classifier with an ECG signal had the most 

significant classification accuracy in a campus setting for two-

class categorization [44]. The majority of works have solely 

utilized smartphone functionality. Most of the work needs to 

use intelligent wearables on campuses. 

However, chronically high-stress levels might have a more 

significant negative impact. A state of chronic stress is one in 

which the body's stress response is continuously elicited. 

Chronic stress can result from either repeated happening of 

similar acute stressors (experiencing the very same stress 

repeatedly) or multiple instances of different acute stressors (a 
sequence of unrelated stressful situations). Because of this, 

having a stress management strategy is crucial. 

A person's individual, social, and cultural health are all 

significantly impacted by the current field of study in stress 

detection and monitoring. The current methods for classifying 

emotional states use conventional machine-learning 

techniques and characteristics calculated from various sensor 

modalities. These techniques need many data and rely on 

handmade traits, which makes it difficult to utilize these sensor 

systems in daily life. To address these issues, we provide a new 

Neural Network Model-based stress recognition and 

classification framework that uses input from many sensor 

modalities without doing any feature computation. Our 

approach is competitive, surpasses the most advanced methods 

currently available, and obtains an accuracy of classification 

of 82.85%. 
 

 

3. METHODS AND MATERIALS 
 

3.1 DEAP and WESAD 
 

The DEAP dataset [45] includes multimodal measures, 

including video recordings, EEG, and external physiological 

responses, made using commercially available equipment 

during 16 sessions of around 10-minute-long paired 

conversations on a social problem. It varies from past datasets 

in that it includes emotional assessments from the perspectives 

of the debater, the other participant, and the audience. Every 

five seconds while they watched the debate film, raters noted 

emotional outbursts in terms of physiological and 18 other 

category emotions.  

All subjects' EEG data was gathered while they watched 

films. There were 40 movies displayed, each of which had a 

unique ID and covered a distinct genre. Every participant saw 

a series of 60-second films that were played in order. There are 

two signal arrays in the EEG electrode data: 1) The data array 

(40 40 8064) indicates that a user watched 40 films and that 

8064 data samples were gathered from 40 EEG channels. 2) 

For each movie, there are four goal labels in the second array: 

valence, arousal, dominant, and liking. 

 

 
 

Figure 1. Data fusion construct 

 

This study made use of the WESAD dataset. Attila Reiss et 

al. originally made this dataset available to the general public 

in 2018 [46]. Fifteen patients' movements and physiological 

data were recorded using the RespiBAN Advance chest 

apparatus and the Empatica E4 arm sensor. The physiological 

reactions of the subjects were recorded using the following 

study techniques: baseline, getting ready, having fun, having 

stress, meditating, and recovering. The specifications of the 

sensor setup, position, and methodology used to produce this 

collection of data, as well as the data obtained throughout each 

patient research process, are provided in Ref. [47]. The heart 

rate, ACC, Respiration (RESP), Electromyography signals 

(ECG), Temperature (TEMP), and RESP were all measured 

using RespiBAN. All signs were captured at a frequency of 

700 Hz. E4 was used to record the TEMP, RESP, ACC, and 

Electrocardiogram signals at various frequencies, including 

3.5ghz, 8 Hz, 16 Hz, 32 Hz, and 64 Hz. 

All sensor signals were divided up using the sliding window 

approach. These traits fit within the group described in the 

study [48]. To add the absolute values of the three axes on the 

unprocessed ACC signal, several statistical metrics, such as 

mean, mode, standard deviation, median, minimum, and 

maximum, were individually determined for the x, y, and z 

axes. Statistics were created using the unprocessed ACC, 
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RESP, ECG, and TEMP data, including mean, mode, median, 

standard deviation, minimum, and maximum values. We 

calculated statistical metrics such as mean, standard deviation, 

mode, lowest, median, and maximum values from the raw 

measurements from the accelerometer, respiration, 

electrocardiogram, and temperature sensors. It uses TEMP, 

TEMP optimal rate, and signal gradient as characteristics. 

Statistical parameters such as the mean, standard deviation, 

lowest value, and maximum value were retrieved [49] after the 

raw ECG signal was filtered through a low-pass filter with a 

frequency of 5 Hz. 

 

3.2 Data fusion 

 

The top layer receives the input, while the bottom layer 

gives the output. The intermediate tiers are called hidden 

layers because they are hidden from the outside world. A 

layer's perceptron is all connected to those in the layer above 

it. This is how the feed-forward network gets its name—data 

feeds continually from one unit to the next. In the same layer, 

the perceptron is not coupled. No feedback loop connects the 

current layer to the layer above it. The perceptron is the 

fundamental neural network unit that establishes the weighted 

sum of the input values. 

The mathematical mapping y = f (x: θ) is created using a 

feed-forward neural network to get the best function 

approximation and learn the parameter’s value. A feed-

forward neural network has bias units in each unit beside the 

output unit. Biases play a crucial role in effective learning by 

shifting the activation function to the left or the right. The 

following parameters apply to a feed-forward neural network 

with a single hidden unit, as shown in Eq (1). 

 

(i × h + h × o) + h + o (1) 

 

i - number of neurons in the input layer. 

h - number of neurons within the hidden layer. 

o - number of neurons in the output layer. 

 

A DNN-based data fuse model, as seen in Figure 1, defines 

a nonlinear projection from an original input to the HI space 

as 𝑓: 𝑋 ∈ 𝑅𝑠 → 𝑂 ∈ 𝑅 , where S is the total number of the 

sensors under consideration. Figure 1 shows a feed-forward 

network with one input and output unit and two hidden units. 

We use the following Eq. (2) to receive the numerous sensor 

signals.  

 

h0 = [Xi, j] = [Xi,1, Xi, s, …., Xi, j] (2) 

 

h0 is the number of neurons allocated to the input unit.  

The HIs are supposed to have continuous values, making 

this work a regression problem. We gave the output unit an h0 

value of 1. Each neuron in the hidden units and the output unit 

represents a composite function as a convolution followed by 

a sigmoid activation transformation. Let Pj define the number 

of neurons at unit j, and j represents the number of hidden units. 

Zij means the sequential result of component i at unit j, and the 

sigmoid transformation function is indicated by Eq. (3). 
 

Zij = (𝑤𝑖
𝑗
) hl−1 + bij; 𝑤𝑖

𝑗
= [𝑤1𝑖

𝑗
, … , 𝑤𝑝𝑙−1𝑖

𝑗
]

′

 (3) 

 

The weight 𝑹′𝒑𝒍−𝟏denotes the connection between unit j's 

neuron i's input and unit j's output.  

here, hl−1 = [𝒉𝟏
𝒍−𝟏, … , 𝒉𝒑𝒍−𝟏

𝒍−𝟏 ]
′

∈ 𝐑𝒑𝒍−𝟏.  

where bij is the bias of neuron i at unit j.  

Each neuron's sigmoid transformation function output is 

supplied into a nonlinear transformation function. We have 

activated neurons using the sigmoid function defined in Eq. 

(4). 
 

ℎ𝑖
𝑙 = 𝜔(𝑧𝑖

𝑙) =
1

1 + 𝑒−𝑧𝑖
𝑙 (4) 

 

Suppose Zo = (Wo)’ hL + bo and Wo = ω(Zo) are the weight 

connecting the final hidden unit to the output unit.  

hL = [𝒉𝟏
𝑳 , … , 𝒉𝒑𝑳

𝑳 ]
′

∈ 𝐑𝒑𝑳 are input to the hidden unit and bo 

is the bias of the output unit.  

Wo = [𝐖𝟏
𝒐, … , 𝐖𝒑𝑳

𝒐 ]
′

∈ 𝐑𝒑𝒍 indicate the output mapping that 

is linearly transformed and nonlinearly mapped. 

The DNN-based batch learning method, which handles the 

unsupervised learning issue, incorporates the chosen attributes. 

It is presented by using many unlabeled sensors, a vital task 

following the construction of the CNN architecture for HI. The 

objective function is created by fusing these two 

characteristics using the tuning parameter λ1 ∈ (0, 1) as in Eq. 

(5). 
 

λ1 ∗ Mono + (l – λl) ∗ R (5) 

 

We view the optimization problem as a system of various 

antagonistic terms, that is 𝐌𝐨𝐧𝐨𝒊,𝒋 and range parameters, Ri, 

which are the essential units for model development. To 

incorporate these qualities in the architecture. However, 

because there are many more monotonic parameters 

∑𝒊=𝟏
𝒎  (𝒏𝒊 − 𝐦) than range parameters ‘m’, using each of them 

as a training data separately would result in a skewed sampling 

issue during combinational optimization. To solve this 

problem, each range parameter Ri is split into ( 𝒏𝒊  − m) 

subrange parameters 1/ (𝒏𝒊−m) ∗ Ri, and each of these is then 

combined with the monotone term's opposite, which is 1. 
 

𝜆1 ∗ Mono𝑖,j +
(1−𝜆1)

𝑛𝑖−1
∗ 𝑅𝑖 = 𝜆1𝑐𝑖,j ∗ max(𝑜𝑖,j −

𝑜𝑖,j+1, 𝛼)+
(1−𝜆1)

𝑛𝑖−1
∗ (𝑜𝑖,𝑛𝑖

− 𝑜𝑗,1 − 𝛽)
2
 

(6) 

 

In Eq. (6), 𝐌𝐨𝐧𝐨𝒊,𝒋 gives the atomic term for unit i at time 

j, and Ri is the range parameter for unit i.  

The resulting design, depicted in Figure 1, incorporates two 

adversarial networks related to the monotonic properties and 

range characteristics. This implies that these two 

interconnected systems attempt to change the attributes of 

DNN during training operations by combining them with 

similar parameters. 

To determine if the periodicity and range properties are met, 

the outcomes of each pair of units are evaluated explicitly to 

one another at each phase. If these requirements are not 

satisfied, the number of mistakes is calculated and sent back 

to change the model parameters. In this way, errors are 

continuously reduced until convergence.  

A pair of facts linked to sparsity, [Xi, j, Xi, j+1] ∈ 𝑅𝑠×4, and a 

pair of points related to the range, [X𝑖,𝑛𝑖
,Xi,1] ∈ 𝑅𝑠×4 , establish 

two different forms of adversarial connections that, practically 

speaking, enable DNN learning. Monotonicity is initially 

offered as an instance of this. 

These systems may now use an adversarial strategy due to 
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the sparsity of two nearby outputs, 𝒐𝒊,𝐭 and 𝒐𝒊,𝐭+𝟏. To be more 

specific, as shown in the left side of Figure 1, two similar 

systems for 𝒐𝒊,𝒋 and 𝒐𝒊,𝒋+𝟏 compete with one another during 

learning till monotonicity is fulfilled i.e., 𝒐𝒊,𝒋 ≤ 𝒐𝒊,𝒋+𝟏  or the 

breach of sparsity is minimized that is min {max (𝒐𝒊,𝒋, 𝒐𝒊,𝒋+𝟏, 

α). 

Related to this, the range property conflicts with the starting 

points 𝒐𝒊,𝟏 and 𝒐𝒊,𝒏𝒊 for component i, as seen on the right side 

of Figure 1. Particularly, two similar systems linked to 𝒐𝒊,𝟏 and 

𝒐𝒊,𝒏𝒊  collide with one another unless the range traits are 

fulfilled, or the breach of the range limitation is reduced, that 

is, min {max (𝒐𝒊,𝒋, 𝒐𝒊,𝒋+𝟏, α)}.  

For stochastic optimization, they are combined to form a 

training sample, as in Eq. (7). 
 

X𝑖𝑗
𝑘 = [Xi, j, Xi, j+1, X𝑖,𝑛𝑖

, Xi,1] , k∈ 𝑅𝑠×4 (7) 

 

where k =1 to ∑𝑖=1
𝑚  (𝑛𝑖 − m) is the sample index in the dataset.  

 

Mon𝑖𝑗
𝑘 = Mon𝑖,j, 𝑅𝑖𝑗

𝑘 = 𝑅𝑖, and 𝑐𝑖𝑗
𝑘 = 𝒄𝒊,𝒋 (8) 

 

As a result of Eq. (8), we got 𝒐𝒊𝒋
𝒌 =

[𝒐𝒊,𝒋, 𝒐𝒊,𝒋+𝟏, 𝒐𝒊,𝒏𝒊
, 𝒐𝒊,𝟏]

𝒌
≡ [𝒐𝒊,𝒋

𝒌 , 𝒐𝒊,𝒋+𝟏
𝒌 , 𝒐𝒊,𝒏𝒊

𝒌 , 𝒐𝒊,𝟏
𝒌 ] ∈ 𝐑𝟏×𝟒 , in 

which 𝒐𝒊,𝒋 is the constructed HI of unit i at time j. 

 

3.3 The organizational structure of CNN 

 

We employ a deep CNN structure to assess the patch that 

represents the signal frames point and obtain the interest of 

points description of the signals [50]. The seven convolution 

layers that makeup CNN, are seen in Figure 2, have three 

convolutional layers with a 4*4 kernel and three pooling layers 

with a 2*1 kernel. A pooling layer follows each convolution 

layer.  

The convolutional layers use a series of kernels to 

automatically generate the extracted features that serve as the 

input to the subsequent layers. An approximation technique 

called Rectified Linear Unit further purges the feature maps 

(ReLU). Pooling eliminates the weak components and reduces 

the feature dimension while preserving the critical 

characteristics of a kernel. 

To prevent the CNN architecture from progressing 

gradually or modifying the distribution of data provided to the 

active layer throughout the training phase, backpropagation is 

used. The network's contouring will disappear if 

backpropagation is utilized, slowing down data transport 

during training. At the same time, the issue of over-fitting may 

be managed, as well as the case of the convolution network 

being sensitive to the activation weight. 

The bias vector known as the Rectified Linear Unit (ReLu) 

does nonlinear operations on extracted features that have 

undergone batch regularization. The expression of the function 

is given as in Eq. (9). 

 

H(x)=max(0, x) (9) 

 

Due to the Relu function's unilateral suppression, the CNN 

can activate sparsely, better visual features, better-fit training 

data, and recognize more expressions. The Dropout layer, 

which follows the sixth ReLu layer, seeks to lessen the 

network's over-fitting issue while lowering the coupling 

between various parameters.  

The Dropout layer is only used once since this 

convolutional neural network topology uses BN layers, which 

can help alleviate the overfitting issue. After feature 

extraction, we combine these two categories of characteristics 

to obtain the fusion features. To develop more discriminative 

features, feature fusion integrates the features obtained from 

the sensor- and vision-based techniques. A Random Forest 

classifier uses the recovered attributes to determine whether or 

not the subject is stressed. 

 

 
 

Figure 2. Overall proposed system model 

 

3.4 CNN for feature extraction 

 

The CNN model has seen much success in image processing. 

To obtain features, CNN learns the convolution in each 

convolution layer. Methods including dimension reduction 

and multi-layer convolutional kernel operations are applied to 

extract image data from the input image. The predicted data is 

received by sharing the CNN model's layer information while 

the model is trained. Backpropagation is used to transmit the 

difference in values between the observed and predicted 

values, and the loss function is used to send the fractional 

derivative of each layer's parameter. The gradient descent 

technique is used to update each layer's parameters. The 

network can remarkably describe the picture since it 

continuously learns and changes its parameters. We employed 

a deep neural network structure in this study. A multi-layer 

convolution network improves the extraction accuracy of the 

description of visual characteristics. To improve the network's 

resilience, the triple loss function was utilized for training the 

network, and the stochastic gradient descent technique was 

used to update the parameters. 

 

3.5 K-medoid 

 

Algorithm 1: K-Medoid  

Input: WESAD and DEAP dataset,  

Result: Medoids M 

1. Pick k objects at random to serve as initial medoids 

2. Give the closest medoids to each of the remaining objects. 

3. The sum of all item differences from the closest medoid is 

the aim function, which should be found. 

4. Use Oramdom to choose a non-medoid object at random. 

5. If objective performance was enhanced, then Switching 

Oramdom and O 

6. Calculate the total cost of the trade. 

7. Continue iterating steps 3 through 6 until there is no change. 

To decrease this study’s data, we apply the k-medoids 

clustering approach. An input for n observations is divided 
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into k clusters using the "K-Medoids Clustering" method, with 

each data point matching the cluster that contains the nearest 

medoid. The k-Means and medoid algorithms are combined to 

accomplish this. One might use the object or medoids 

positioned in the cluster’s center instead of utilizing the 

average value of the cluster's elements. A data point is 

recognized as the medoid out of a finite data collection if its 

mean differentiation to all other sample points is below a 

particular threshold. In terms of execution speed and 

susceptibility to outliers or noise, it improves k-means 

clustering. 

 

3.6 Classification models 

 

In this study, y = [low stress, medium stress, or high stress] 

was used to simulate the link between the reduced set of 

attributes and the related treatment response (low stress, 

medium stress, or high stress) by Eq. (10) [51]. The coefficient 

calculations for the LR classifier were based on the maximum 

likelihood strategy. A probability score p(x), where 0 ≤ p(x) ≤ 

1, was produced by the LR classifier and indicated whether the 

condition was related to stress or control. The condition was 

classified as stress if p(x) was more than the threshold value of 

0.5. 

 

𝐹(𝑧) = 𝐸(𝑌/𝑥)= 
1

1+𝑒−𝑧 (10) 

 

In Eq. (10), Y is the class label given low, medium, or high-

stress values. Additionally, x is a synthesis of various qualities. 

We utilized the logistic function and the formula z = α + β1X1 

+ β2X2 +   + βkXk to derive the LR model. Eq. (11) represents 

the logistic function by altering the value of z from Eq. (10). 

 

𝐹(𝑧) = 𝐸(𝑌/𝑥) =
1

1 + 𝑒−(𝛼+∑𝛽𝑖𝑋𝑖)
 (11) 

 

The probability that an individual will respond or not is 

determined and represented by the letters Y or p(x). The LR 

classifier generated a chance of p(x), which meant whether the 

individuals belonged to the stressful or control categories, 

where 0<p(x) ≤ 1. Low stress has deemed the condition if p(x) 

was more than the threshold value of 0.5. When p(x) exceeded 

the threshold value of 0.7, the state was classified under 

"medium stress." When p(x) exceeded the threshold value of 

0.85, the state was classified as under "high stress." 

The Classification models with such a sigmoid kernel were 

utilized as the second classifier. According to the class labels, 

the feature space might be divided into stress and control 

scenarios using a "hyperplane.” The SVM, a more advanced 

classification model, is used for comparison. The SVM claims 

a linear decision boundary may be discovered based on this 

high-dimensional space. The risk of over-fitting the data 

decreased, our data performed substantially better, and the 

total model complexity was significantly lowered using a 

linear kernel instead of a nonlinear kernel. In conclusion, the 

SVM created a hyperplane to obtain the highest level of 

classification accuracy, while the LR classifier provided 

probability values to categorize stress. 

The Naïve Bayes classifier, which is reliant on producing 

the conditionally posterior probability of each sample when 

incorporating the target condition, stress vs. control, is the 

third classification model. The classifier was created by 

categorizing the sample in the category with a greater posterior 

probability. 

4. RESULT AND DISCUSSION 

 

The three-level stress SVM classification's performance and 

prediction results are summarized in the confusion matrix, 

which is displayed in Table 1. Low-level stress circumstances 

were appropriately identified as actual occurrences from the 

low-stress class. This amounted to 43% of all 50 occurrences, 

and 100% of those instances were correctly classified into the 

relevant category. 

Regarding the moderate stress level, 25 instances that made 

up 54% of the total were correctly classified, and the overall 

percentage of correct classification for that specific class was 

100%. Only one of the eight highly stressed predictions (1 

actual incidence) from the highlight stresses was misclassified 

as moderate stress, which accounted for 2% of all cases (i.e., 

seven instances) or 14% of the highly stressed predictions. The 

confusion matrix shows that the three-level stress 

categorization often provided 82% correct predictions and 

18% wrong ones. 

 

Table 1. Confusion matrix of three-class stress level of 

SVM classifier 

 
 Low Medium High 

Low 1343 863 193 

Medium 585 3710 541 

High 26 245 7003 

 

Table 2. Stress classification accuracy 

 

Algorithm 
Accuracy 

ACC EEG ACC+EEG 

LR 68.98 71.59 76.85 

SVM 60.46 72.09 80.09 

NB 62.79 69.76 75.93 

 

From Table 2, the SVM algorithm attained a maximum 

classification accuracy of 85.62% for 2-class and 80.09% for 

3-class using ACC and EEG inputs. The EEG signal obtains 

greater detection accuracies with all methods, which is another 

significant observation. Maximum accuracy rises to 89.04% 

for 2-class and 80.54% for 3-class classification, especially 

when the features are combined with time and frequency 

domain features and feature selection is used. 

 

 
 

Figure 3. Graphical visualization of features selected for 

perceived stress classification 

 

 

The traits selected using our recommended method for 

stress classification are shown in Figure 3 in two dimensions 

using the t- Stochastic Neighbor Embedding scheme(t-SNE) 

[52], a dimension reduction approach to depicting high 

dimensional data. We discovered that the two classes that 
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are stressed and non-stressed are easier to differentiate from 

the three classes visually. This demonstrated that the chosen 

criteria successfully discriminated between perceived stress 

groups with two and three classes. 

 

 
 

Figure 4. The density function for entropy features 

 

 
 

Figure 5. Stress classification accuracy of using 

accelerometer and EEG data 

 

Figure 4 displays the entropy feature's estimated 

distribution for all users. Vertical lines represent the median. 

Visual inspection reveals that the median Entropy of high and 

mild stress differs. Although less pronounced than the 

difference between medium and low stress, the gap between 

high and moderate stress is perceptible. Entropy appears to be 

a strong candidate trait for separating high/low and 

medium/low-stress levels, but it may have trouble separating 

high/medium stress levels. 

Figure 5 shows the model’s accuracy on ACC+EEG data, 

ACC data for each subject, and only EEG data for each subject. 

Compared to EEG or ACC, which had accuracy values of 

72.09% and 68.98%, respectively, it was shown that 

ACC+EEG predicted the stress condition more accurately. 

However, both methods performed poorly compared to 

combined data (EEG and ACC), which produced an accuracy 

value of 80.09%. 

 

 

5. CONCLUSION 

 

In this work, the underlying IoMT-based WESAD dataset 

and the DEAP dataset for mental health were condensed to 

train a CNN model. The cumulative edition of the WESAD 

dataset was built using k-medoid cluster analysis. However, 

due to the k-scalability medoid's concerns, we limited the 

intra-cluster similarity calculations using a time-frame 

window and reduced the processing cost. The overall 

execution time was shortened using the data clustering 

approach. 

Further study can take advantage of the modalities 

employed in conjunction with physiological parameters such 

as facial expression, logging records, audio or video 

recordings, etc., and a new dataset can be presented. Such a 

dataset can be utilized for stress classification with higher 

accuracy because it contains almost all the features needed to 

cause stress in humans. 
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