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In the process of picking tomatoes, due to the mechanical error caused by the mechanical 

arm, the tomato positions cannot be detected accurately, and the information feedback of the 

positioning is not available, affecting the picking efficiency. Therefore, this article proposed 

visual feedback information and correction, and designed an improved yolov5s model 

lightweight detection method, whose backbone network was replaced with lightweight 

ShuffleNetV2. In addition, the Bidirectional Feature Pyramid Network (BiFPN) was added 

to obtain richer feature information. Experimental results showed that the improved model 

achieved 97.4 percent mAP, 97.5 percent accuracy and 1.89 MB model size, with inference 

time of 4.8 ms per image. This detection method quickly calculated the Euclidean distance 

between the reference point and the target tomato. The target tomato, with the Euclidean 

distance less than 58.12 mm, was picked successfully, while the one, with the Euclidean 

distance greater than 58.12 mm, was not picked. Then the error needs to be calculated and 

fed back to the robot for picking again. The whole process realized information feedback 

and correction and improved the picking efficiency with less feedback time. 
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1. INTRODUCTION

China is the country with the largest cultivation area and the 

largest total production of tomato in the world. At present, 

tomato picking mainly depends on manual picking, which has 

high labor intensity, high cost and low degree of automation. 

Therefore, the research and development of tomato picking 

robot is of great significance to picking operation. However, 

the difficulty of the current problem lies in how to improve the 

recognition and localization precision of tomato picking robot 

[1]. 

There are two kinds of localization errors of picking robot, 

one is the localization error of tomato recognition and 

detection, and the other is the localization error of mechanical 

movement. They determine the accuracy and efficiency of the 

picking robot. In practical application, the phenomenon that 

the tomato can not be picked successfully often appears, which 

is mainly caused by the localization error of computer vision 

and robot arm movement. The reason for the localization error 

in computer vision is that the algorithm of recognition and 

detection can not adapt to the needs of the natural growing 

environment in the actual field. The localization error caused 

by the movement of the manipulator comes from the hardware 

equipment such as the manipulator and the motor.  

Previous studies have studied tomato detection and tomato 

localization [2, 3]. This paper mainly focuses on the error 

caused by mechanical motion. The current picking robot does 

not give feedback on the picking results after picking the target. 

It does not form a closed-loop information. Little research has 

been done on providing corrective information to robots in the 

event of picking failure. In this paper, the computer vision 

technology was used to detect the feedback of the target 

tomato after picking and to provide the robot with corrective 

information for the target that failed to pick. After field testing, 

we find that if we can find a connection between a relative 

fixed point and the target point, in which the problem can be 

solved well. Therefore, we put forward an idea to add a 

reference point in the site environment to analyze and judge 

the picking results. The main principle is to determine whether 

the tomato is successfully picked by comparing the spatial 

position information between the target tomato and the 

reference point after picking with the spatial position 

information of the picking template. At the same time, the 

error of the failed target is calculated to provide the robot with 

correction information. In order to improve the efficiency of 

the picking robot, firstly, it is necessary to detect the tomatoes 

and reference points with high precision, and then reduce the 

feedback time. Therefore, as long as 3D information of target 

tomato and reference point can be detected and located quickly, 

then the purpose of this study can be achieved. 

2. RELATED RESEARCH

In recent years, scholars at home and abroad have carried 

out research on the localization technology of picking robot, 

and achieved certain results. Kondo et al. [4] developed a 

tomato picking robot, and mainly studied the customization of 

the end effector according to the characteristics of structured 

tomatoes planted in greenhouse environment. The end effector 

developed by the study is not only aimed at a single tomato, 

but directly at picking the whole string of tomatoes. 

Experiments show that the success rate of picking tomato 

string is only 50%, and it takes 15 seconds to pick the whole 

tomato string. Mehta and Burks [5] of the University of Florida 

in the United States has studied citrus picking robots. They 
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proposed a visual recognition scheme with two cameras, one 

installed in the center of the end effector position and the other 

installed in a fixed position. Through the picking experiment 

in the laboratory, the picking success rate reached 95%. 

Experimental measurement shows that the picking precision 

of this institute is about 15mm. Hayashi et al. [6] developed 

strawberry picking robot, which mainly includes machine 

vision system, mobile platform system, picking device system 

and so on. Through the experiment, the pick success rate can 

reach 54.99%, and the average pick success time is 8.6 seconds. 

Feng et al. [7, 8] of the National Engineering Research Center 

of Intelligent Equipment for Agriculture (NERCIEA) 

developed a picking robot for hanging-line cultivation of 

tomatoes, which adopts the rail-type mobile lifting platform, 

is equipped with a 4-DOF articulated mechanical arm, and has 

the end effector structure of sucking and pulling sleeve, air bag 

clamping and screwing separation. It’s equipped with line 

laser vision system, and the fruit recognition and localization 

are realized by CCD camera and laser vertical scanning 

respectively. The results show that the picking time of single 

tomato fruit is about 24s, and the picking success rate is 83.9% 

under strong light and 79.4% under weak light, respectively. 

As to the tomato picking robot designed by Wang et al. [9], 

the picking claw consists of fruit adsorption, tightening and 

rotation; the vacuum generator can absorb tomatoes when they 

move to the target; through laser ranging, the fruits are covered 

by telescopic cylinders to complete picking. Experiments 

show that it takes 4 seconds to locate tomato fruit, 12 seconds 

to move the mechanical arm, 8 seconds to pick fruit and 12 

seconds to reset the mechanical arm, and the success rate of 

robot picking reaches 83.9%.  

Ling et al. [10] designed a dual-arm tomato picking robot. 

Two-DOF mechanical arms are symmetrically distributed, the 

target fruit is grasped by a vacuum cup, and then the fruit is 

separated by cutting. In its vision system, the sliding window 

method is used to extract haar-like features in each sub-

window. The AdaBoost classifier is also used to detect 

tomatoes. In 171 target tomatoes, 60 sample images were used 

to test, the recognition success rate was 96.5%, and the average 

detection speed was 85ms per image. Eighty ripe tomatoes 

were randomly selected for picking experiment, and 70 target 

tomatoes were picked by the picking robot, with a success rate 

of 87.5% and an average picking rate of 29 seconds/tomato. 

Yaguchi et al. [11] designed a rotary claw end effector. After 

the end effector is positioned on the target fruit, the three claws 

first approach to clamp the tomato, drive the tomato to rotate 

relative to the stem, and separate is from the stem to realize 

picking. In the recognition process, color features are extracted 

by using hue, saturation and intensity space, then Euclidean 

distance is selected to cluster point clouds, and finally 

tomatoes are recognized by spherical fitting, which takes 

200ms. The picking experiment shows that the picking 

efficiency is 23S/piece, and the picking success rate is 60%. 

Williams et al. [12] showed a robot with multiple mechanical 

arms to pick kiwifruit. The average cycle of each fruit is 5.5 

seconds, and the robot picker can successfully pick 51.0% 

kiwifruit in the orchard. Jia et al. [13] proposed an apple 

recognition method based on pulse coupled neural network 

and genetic Elman neural network (GA-Elman) to improve the 

efficiency of picking apples. Xiong et al. [14] developed a 

machine vision system for strawberry localization, which is 

implemented on strawberry picking robot and tested in 

greenhouse strawberry production. Their test results show that 

the picking robot with optimized localization method can 

achieve 74.1% picking rate under structured conditions. Miao 

et al. [15] proposed an algorithm for estimating the maturity of 

truss tomato and a synthesis method for stalk localization 

based on the experimental errors of each method. Both indoor 

and field tests were carried out using robot pickers. The results 

show that the proposed algorithm has high precision under 

different illumination conditions, and the average deviation is 

2 mm. It can guide the robot to pick truss tomatoes effectively, 

and the average running time is 9 seconds/cluster. Rong et al. 

[16] proposed yolov5m model to recognize tomato in the 

greenhouse, and adopted the optimal sorting algorithm and the 

nearest neighbor localization algorithm to design directional 

grasping tomato. The Experimental results showed that the 

recognition precision of tomato is 97.3%, and the average 

harvest time of single fruit is 14.6s. 

To sum up, a lot of work has been done at home and abroad 

in the aspect of fruit and vegetable picking and harvesting 

robots, and many achievements have been made. 

In the research process, researches are mostly aimed at 

tomato recognition and localization of picking robot, and some 

researches are on end executive structure localization. 

However, there are few studies related to inaccurate fruit 

localization caused by mechanical motion errors. Therefore, 

this article proposes to study the localization error caused by 

robot movement, and analyze and compensate the position 

error of grasping fruit by machine vision, so as to achieve 

successful picking of fruits. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Image acquisition 

 

The research site is tomato greenhouse of China 

International Intelligent Agriculture Demonstration Base. In 

the experiment, tomato images are collected by mobile phone 

and ZED camera from multiple angles, and the imaging 

distance is 300mm-1200mm. The image resolution is 

1280*720. The tomato images collected are shown in Figure 

1. 

 

 
 

Figure 1. Tomato images collected 

 

3.2 Data enhancement mode  

 

In the tomato planting environment of intelligent 

agricultural greenhouse, different light intensities and angles 

bring different image features, and the number of datasets will 

affect the learning ability and generalization ability of deep 

learning neural network training model. This requires that 

enough datasets be used to train the model, which can 

represent the image data of different environments and 
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different perspectives in greenhouse. The data needed in this 

article are tomato data and the relative position mark data of 

mechanical arm, which are basically to-be-picked tomato data 

and mark data. In order to achieve the general capability of the 

depth network model, image flipping, brightness balance, 

image rotation and image scaling are used to enhance the 

collected images. Among them, image flipping and rotation 

can improve the detection ability and stability of the network 

model, and brightness balance can avoid the influence of 

performance deviation of the network model due to sensor 

differences and ambient illumination changes [17, 18]. 

Finally, a total of 1000 images of tomato data samples are 

obtained, including 800 training sets, 100 verification sets and 

100 test sets.  

 

3.3 Method  

 

3.3.1 Principle of YOLO  

In YOLO algorithm, the object detection is directly 

regarded as the regression of position coordinates and 

confidence score. Therefore, YOLO algorithm can predict the 

categories and positions of multiple objects in real time once. 

Different from traditional target detection algorithms such as 

selecting sliding window method and Faster R-CNN algorithm 

to extract candidate regions, YOLO directly inputs the whole 

image into the network model for training and detection. This 

idea greatly improves the training and detection speed of 

network model. 

In 2016, YOLO network was proposed by Redmon et al. 

[19]. Based on YOLO, yolov2 (Redmon and Farhadi [20]), 

Yolov3 (Redmon and Farhadi, [21]) and Yolov4 

(Bochkovskiy et al. [22]) were proposed. As a new excellent 

target detection technology, YOLO network has been widely 

recommended by scholars. It only needs a neural network to 

detect objects. YOLO can read the whole image once, and can 

identify the local information of the image, which greatly 

reduces the error detection rate of the background. 

2020 saw the release of yolov5, which was well reflected in 

precision and speed. yolov5 model is divided into four 

versions: yolov5l, yolov5m, yolov5x and yolov5s according to 

the parameters depth multiple and width multiple. Among 

them, yolov5s model has the fastest detection speed and the 

smallest model parameters. Its network structure is shown in 

Figure 2. 

The localization error feedback of tomatoes is mainly 

realized by tomato visual recognition technology, so the model 

is required to have high real-time and lightweight performance. 

This article studies the improved design based on yolov5s 

network structure, and the main improvements are as follows.  

 

3.3.2 Backbone network improvement  

When yolov5 algorithm is used to detect small targets, its 

detection effect is not good. There are many parameters in the 

training network model, and the memory space consumed by 

the model is large. Under the requirement of high real-time 

detection, the reasoning speed is not fast enough. Therefore, 

this article replaces the backbone network of yolov5s model 

with a lightweight ShuffleNetV2 [23], which reduces the 

training model parameters and makes the model lighter. 

 
 

 
 

Figure 2. Yolov5 network structure diagram 

 

 
 

Figure 3. ShuffleNetV2 structure 
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The ShuffleNetV2 architecture consists mainly of a base 

unit and a down-sampling unit, as shown in Figure 3. The basic 

unit divides the number of input feature channels into two 

groups, the left branch is not processed, and the right branch 

is subject to convolution operation and batch normalization, 

which fuses the output features of the left and right branches 

and shuffles the channels [24], thus strengthening the fusion 

of sub-channel graph information. The down-sampling unit 

does not adopt channel separation operation, directly increases 

the number of network channels and the width of the network, 

and further strengthens the ability to extract network features 

[25]. 

 

3.3.3 Add BiFPN (Bi-directional feature pyramid network) 

 

 
 

Figure 4. BiFPN structure 

 

The original path aggregation network (PANet) was 

substituted with the BiFPN [26] to introduce bidirectional 

weighted fusion. In most networks, different image features 

are simply superimposed or added up, without any 

differentiation. With different resolutions, different features 

contribute variedly to the feature map outputted after feature 

fusion. For example, the shallow network has a high resolution 

and relatively clear position information, while the deep 

network has a wide perceptive field and many high-

dimensional semantics. The BiFPN reduces the loss of 

characteristic information, and realizes multiscale and cross 

scale optimization by learning the importance of different 

input features through weighted feature fusion, applying two-

way (bottom-up and top-down) features repeatedly, and 

adding horizontal connections between input and output 

features on the same scale. The improved yolov5 adopts the 

BiFPN to achieve the weighted fusion of features from the 

third to the fifth layer. Figure 4 shows the structure of the 

BiFPN. 

 

 The calculation of Level 4 can be expressed as:  

 

𝑃4
𝑡𝑑 = 𝐶𝑜𝑛𝑣 (

𝜔1∙𝑃4
𝑖𝑛+𝜔2∙𝑅𝑒𝑠𝑖𝑧𝑒(𝑃5

𝑖𝑛)

𝜔1+𝜔2+∈
)  (1) 

 

𝑃4
𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣 (

𝜔1
′ ∙𝑃4

𝑖𝑛+𝜔2
′ ∙𝑃4

𝑡𝑑+𝜔3
′ ∙𝑅𝑒𝑠𝑖𝑧𝑒(𝑃3

𝑜𝑢𝑡)

𝜔1
′ +𝜔2

′ +𝜔3
′ +∈

)  (2) 

 

where, Resize is usually down sampling or up sampling; w is 

the parameter learned to differentiate the importance of 

different features during feature fusion. 

 

 

4. EXPERIMENTAL AND ANALYSIS  

 

4.1 Experimental environment and parameter setting  

 

The experimental equipment is Intel (R) Core (TM) i7-9700 

CPU processor, WIN10 64-bit operating system, and the 

graphics card is NIVIDIA GeForce GTX1660. The number of 

training data iterations is 300, banksize is 6, and Works is 4.  

 

4.2 Lightweight analysis of model  

 

As can be seen from Table 1, it shows a comparison with 

other backbone models. The improved model has a high 

degree of lightweight, with parameters reduced by about 8 

times to 0.8M, model size reduced by more than 7 times to 

1.89MB and inference time reduced by more than 3 times to 

4.8ms. From the experimental results, the overall detection 

performance is guaranteed, which is convenient for mobile 

device deployment and real-time requirements.  

 

Table 1. Lightweight comparison of models 

 
Model Params (M) FLOPs (G) mAP@.5 P R Size (MB) Inference time (ms) 

yolov5 7.0 15.8 0.98.8 0.981 0.965 13.6 18.6 

mobilenetV2 2.9 7.0 0.979 0.975 0.965 5.92 12.4 

mobilenetV3 3.5 6.3 0.981 0.977 0.959 7.06 7.6 

ShuffleNetV2+bifpn(ours) 0.8 1.9 0.974 0.975 0.963 1.89 4.8 

 

4.3 Target detection and analysis 

 

The yolov5s model and the improved yolov5s model are 

trained and tested under the same dataset. Their PR curves are 

shown in Figure 5 and Figure 6. It can be seen from the figures 

that the improved yolov5(ShuffleNetV2+bifpn) training 

model achieves precision 0.975 and mAP 0.974. Although the 

accuracy is reduced, but still maintain the high accuracy. It can 

fully meet the requirements of detection targets in the feedback 

stage. 

The comparison results of mAP@0.5 are shown in Figure 7. 

The model training starts from scratch. After 300 iterations, 

the curve tends to the highest value. The original model has 

slight oscillation, and the improved model is relatively smooth, 

without fitting. On the whole, the improved model 

yolov5(ShuffleNetV2+bifpn) is stable and reliable.  

For the two models, target detection is carried out in 

different target scenes, as shown in Figure 8 and Figure 9. The 

yolov5_improved represents backbone (ShuffleNetV2+bifpn) 

network. The detection precision of tomato class and bzw class 

in all model is close to the same mAP@0.5 value in the range 

of mechanical arm picking. In the middle view area of the 

image, the yolov5 improved confidence of the bzw class is a 

little higher than the original, and the small target detection is 

more accurate, which provides a good basis for error analysis 

and correction in the process of mechanical arm picking. 
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Figure 5. PR curves of yolov5(ShuffleNetV2+bifpn) Figure 6. PR curves of yolov5 

 
 

Figure 7. The mAP@0.5 curves 

 

 
Figure 8. Scene I target detection  

 

 
Figure 9. Scene II target detection  
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5. FEEDBACK OF TOMATO PICKING 

INFORMATION 

 

5.1 Feedback principle 

 

In the process of tomato picking and localization, there are 

two main errors, one is the error caused by tomato recognition 

and detection, and the other is the mechanical error caused by 

mechanical arm operation. The former can be solved by a more 

accurate algorithm, which has been studied before. This article 

mainly focuses on the latter and carries out experimental 

analysis. Mechanical errors are often transmitted to the 

controller by detecting the coordinate information of tomatoes, 

and the controller controls the movement of the mechanical 

arm according to the transmitted tomato localization 

information; then it is impossible to determine whether it 

reaches the accurate position, and most of them have no 

feedback of the information. This stage mainly determines 

whether the target tomato has been picked successfully by the 

robot arm. That is, whether it has reached the position of the 

specified target tomato. If the target tomato has been picked 

successfully, then go on the next tomato. If failed, it needs to 

correct information which will be sent to picking robot and 

pick again. 

Figure 10 shows the process of picking tomatoes by 

mechanical arm, and the images are taken and collected by 

binocular stereo camera. In the previous articles, the 3D 

information of tomatoes was obtained by binocular stereo 

vision calculation. In this article, binocular vision is used to 

move the range information of tomatoes. There are two types 

of images, one is tomato, and the other is bzw; the bzw tag is 

on the end paw of the mechanical arm. Its main function is to 

determine whether the mechanical arm accurately reaches the 

position of the tomato by comparing the tomato to be picked 

with its 3D coordinates, and to realize the whole closed loop 

by feeding back to the controller. Figure 11 shows a side view 

of the picking process. 

 

 

 
Figure 10. Picking and localization process 
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Figure 11. Side view of tomato picking 

 

5.2 Detection and localization in Feedback stage 

 

According to the previous study [3], it combined with the 

detection of reference points and target tomatoes in the 

feedback stage, their 3D coordinates can be calculated. The 

main representative renderings are shown in Figure 12. It only 

displays the 3D coordinates of the reference point and the 

picking point.  

In order to observe and analysis of information between 

reference points and target tomatoes in the feedback stage, a 

full range of tomatoes was picked in the different scenes, it 

was up to a total of 90 picking sample data. These data are 

displayed in 3D space, as shown in Figure 13. Among them, 

they were picked successfully by 50 times, and the 50 sample 

data was shown in line Figure 14. 

 

 
 

Figure 12. Reference point and target point 3D coordinate: (a) The 3D coordinates of tomato picked unsuccessfully; (b) The 3D 

coordinates of tomato picked successfully 

 

 
 

Figure 13. The spatial distribution map of reference points and target points for picking success and failure in the feedback stage 

(Square head represents reference point, round head represents tomatoes, they are connected by solid lines) 
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Figure14. Euclidean distance between reference point and target tomato picked successfully 
 

Figure 13 and Figure 14 show that the distance is in range 

of 8.14 mm to 58.12 mm between tomatoes picked 

successfully and the reference point. So, when the distance 

between the picking point and the reference point is less than 

58.12 mm, it is considered that the tomato is picked 

successfully. The calculation formula is expressed as (3) and 

(4). 

 

𝐿𝑖 = 𝜌𝑖(𝐶𝑖, 𝑇𝑖) (3) 

 

f(𝐿𝑖) = {
1, 𝐿𝑖 ≤ 58.12 mm
0, 𝐿𝑖 > 58.12 mm

 (4) 

 

𝑇𝑖  represents the 3D coordinates of the 𝑖𝑡ℎ  tomato,  𝐶𝑖 

represents the 3D coordinates of reference point of the 𝑖𝑡ℎ 

corresponding tomato,  𝜌𝑖  represents 3D euclidean distance, 

the f(∙) represents the state of the result, with 1 indicating 

success and 0 indicating failure. 

 

5.3 Localization information feedback and correction 

 

Figure 15 shows the left and right images under the picking 

tomatoes, and the information detected by tomato and mark 

recognition. The specific data are shown in Table 2. Through 

these information and binocular hardware parameters, 

according to the previous research, 3D coordinates can be 

solved as tomato (x1, y1, z1) and bzw (x2, y2, z2). 

From the data in Table 2, the 3D difference between the 

tomato to be picked and the mark can be obtained, as shown 

by the following formula:  

 

{
∆𝑥 = 𝑥1 − 𝑥2
∆𝑦 = 𝑦1 − 𝑦2
∆𝑧 = 𝑧1 − 𝑧2

  (5) 

 

The distance between the tomato to be picked and the mark 

can be obtained from formula (5) as follows:  

 

𝐿 = √∆𝑥2 + ∆𝑦2 + ∆𝑧2  (6) 

 

Since both the mark and the picking claw are fixed, the 

center of the claw (tomato) and the center of the reference 

point are fixed, which is L in Formula (6). It can be obtained 

from Table 2. 
 

Table 2. Recognition and detection information of tomatoes and marks 
 

Category 
Left image 

coordinates (pixel) 

Right image 

coordinates (pixel) 

Right image 

width (w) (pixel) 

Right image height (h) 

(pixel) 
3D coordinates (mm) 

Tomato (810,277) (683,277) 53 44 166.30, -74.65, 498.90 

Bzw (809,305) (673,306) 20 19 154.41, -45.00, 465.88 

 

 
 

Figure 15. Binocular stereo 3D calculation  
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Therefore, in the picking process, after the mechanical arm 

moves, it is possible to calculate the ratio of the 3D distance L' 

to L between the tomato to be picked and the reference point. 

In this design, the fault tolerance range of the mechanical arm 

is 58.12 mm, that is to say, when L ≤ 58.12  mm, the 

mechanical arm accurately reaches the position of the tomato 

to be picked and can perform the picking action. 

When 𝐿′(𝑥′, 𝑦′, 𝑧′)  is not within the range that can be 

picked, it is necessary to correct the position information. 

Correction information as formula (7). 

 

∆L = 𝐿′ − 58.12 𝑚𝑚  (7) 

 

Then, the feedback information ∆L is sent to the robot, it 

completed visual feedback and correction.  

 

 

6. CONCLUSION  

 

The improved yolov5s detection method proposed in this 

article replaces the lightweight ShuffleNetV2 as the backbone 

network, and also add BIFPN. The actual experimental results 

show that the performance of model parameters is reduced by 

8 times, the size of model is reduced by 7 times, and the 

inference time of each image is reduced by 3 times, which 

meets the requirements of lightweight deployment and real-

time performance. Especially in the visual perspective of front 

view, tomato and bzw classes can be correctly identified, 

which provides timely feedback and correction for the 

localization information of the mechanical arm and improves 

the efficiency. In the complex environment of greenhouse, in 

order to make tomato localization detection information more 

accurate and faster, it is necessary to optimize the algorithm 

detection precision and detection speed and various 

parameters of the model. At the same time, it is also suggested 

to strengthen the precision of mechanical motion. 
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